
(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 15, No. 2, 2024 

31 | P a g e  

www.ijacsa.thesai.org 

Classifying Motorcycle Rider Helmet on a Low Light 

Video Scene using Deep Learning 

John Paul Q. Tomas, Bonifacio T. Doma 

School of Information Technology, Mapua University, Makati, Philippines 

 

 
Abstract—For safety in transportation, it is important to 

always monitor the use of proper motorcycle helmet, especially at 

night. One way to enforce transportation rules and regulations in 

wearing proper motorcycle helmet is to use computer vision 

technology. This study focusses on classifying motorcycle rider 

helmet at low light video conditions, like at dusk and at night, 

using YOLOv5 and YOLOv7 with Deep SORT. In these deep 

learning methods, the study tunes and optimizes 

hyperparameters to attain high accuracy in classifying 

motorcycle rider helmet at this challenging environment.  To 

accomplish this objective, a vast and diverse dataset was 

employed, containing classes such as riders, different types of 

helmets (valid and invalid), and instances of riders not wearing 

helmets at all in Metro Manila, Philippines. The results show that 

Hyperparameter 3 consistently outperformed other settings in 

terms of precision (95.6%), recall (91.2%), and mean average 

precision (mAP) scores across multiple scales and time frames 

with 95.1% on mAP@0.5 and 76.3% on mAP@0.95, owing to 

greater epochs, quicker learning rates, and lower batch sizes. 
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I. INTRODUCTION 

Wearing motorcycle helmets is essential for the safety of 
riders especially in the Philippines, where over 1,000 
motorcycle-related road crashes occurred in 2019 [1-2]. 
Research from the World Health Organization reveals helmets 
can reduce motorcycle crash death risk by up to 40% [3]. This 
emphasizes the necessity of helmets to prevent injury or death 
for riders [4-8]. Helmet use is mandated by many countries' 
laws. Yet, detecting helmet use in low-light conditions, at dusk 
or at night, remains a challenge. This study evaluates You Only 
Look Once (YOLO) version five models combined with Deep 
Simple Online Realtime Tracking (Deep SORT) for detecting 
helmet use in nighttime traffic situations in Metro Manila, 
Philippines. Meanwhile, Metro Manila's traffic persist due to 
car-centric policies and resistance to eco-friendly transportation 
[9]. Efforts like the Public Utility Vehicle Modernization 
Program face challenges due to historical norms and current 
crises. Addressing low light conditions in object detection is 
another hurdle, tackled by a study that integrates multi-scale 
detection, attention mechanisms, and Convolutional Block 
Attention Module (CBAM) for improved accuracy in 
identifying objects under limited light [10]. The YOLOv5 
Small – Feature Combinatorial Grouping (FCG) model 
showcased up to 87.5% mean accuracy precision (mAP) in 
detecting objects like helmets in challenging low light, 
highlighting the potential of advanced techniques. 

Combining YOLOv7 and Deep SORT offers cutting-edge 
object recognition and tracking, applied in real-time video 
analysis [11]. They contribute to safer roads by identifying 
helmetless riders. These open-source technologies continually 
evolve, serving the research community and the public. The 
YOLOv5 algorithm achieves high detection accuracy while 
maintaining real-time performance, making it suitable for a 
variety of computer vision applications. On the other hand, 
YOLOv7 is a one-stage object detection system that divides an 
image into grid cells and predicts bounding boxes and class 
labels for each. Both algorithms utilize a convolutional neural 
network (CNN), mainly employed for calculating bounding 
boxes, and the use of a SoftMax layer for class label prediction 
[12]. The architecture of the network consists of three main 
parts: the backbone network, the neck network, and the head 
network. The backbone network oversees extracting picture 
features. The neck network oversees fusing the backbone 
network's extracted features. The head network oversees 
predicting the bounding boxes and class labels for the objects 
in the dataset. 

Moreover, the main contribution of this study is the tuning 
and optimization of hyperparameters within the framework of 
YOLOv5 and YOLOv7 with Deep SORT to classify accurately 
motorcycle helmets at low light video scenarios with respect to 
the authors’ previously conducted study [13]. To the best of 
our knowledge, we believe that this is the first study done on 
this type of video scenes for this application. The 
enhancements made will definitely be beneficial to the 
implementation of transportation rules and regulation on 
wearing of proper motorcycle helmets at all times using 
computer vision technology. 

II. RELATED WORKS 

A. YOLOv5 

YOLOv5 is an object detection technique that improves on 
the success of prior YOLO models by introducing a real-time 
object detection methodology. It performs object detection 
tasks by dividing an input image into grid cells and predicting 
bounding boxes and class probabilities for items within each 
grid cell using a deep CNN architecture [14]. Its methodology 
includes a novel approach known as a ―cross-stage partial 
network" that improves the network's feature representation 
capabilities and enables more accurate object detection [12]. 
The algorithm achieves high detection accuracy while 
maintaining real-time performance, making it suitable for a 
variety of computer vision applications. In a study conducted 
by Jia et al. (2021) [15], they proposed an end-to-end 
motorcycle helmet detection using YOLOv5 wherein 
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motorcycle riders were detected including the riders wearing 
helmets. The model was able to achieve an exceptional 
accuracy having an mAP up to 97% for each classes. However, 
it is important to note that these results were only evaluated in 
a high-light condition since the dataset used only contains noon 
time footages of highways. 

B. YOLOv7 

YOLOv7 is an improvement of YOLOv5. It is also a one-
stage object detection system that divides an image into grid 
cells and predicts bounding boxes and class labels for each. It 
also uses a CNN which primarily used to forecast the bounding 
boxes, and a SoftMax layer is used to predict the class labels 
[10]. Its network is divided into three sections: the backbone 
network, the neck network, and the head network. The 
backbone network oversees extracting picture features. The 
neck network oversees fusing the backbone network's extracted 
features. The head network oversees predicting the bounding 
boxes and class labels for the objects in the dataset. As for the 
backbone network in YOLOv7, it uses the CSPDarknet53 
network [16–19]. CSPDarknet53 is a revision of the Darknet53 
network that has been shown to improve performance and 
accuracy. In YOLOv7, the neck network is the called the 
YOLOv7-Neck network, which is used in fusing the features 
extracted by the backbone network. The head network, on the 
other hand, is in charge of predicting the bounding boxes and 
class labels for the image's objects. It is trained using a dataset 
of tagged images with bounding boxes and class labels for the 
objects in the images. The training procedure is divided into 
two stages: pre-training and fine-tuning. Moreover, the 
network is trained on a huge dataset of photos tagged with 
bounding boxes and class labels for the objects in the images 
during the pre-training phase. The pre-training phase is used to 
understand the fundamental properties of objects.  

According to Nandhakumar [19], YOLOv7 outperforms 
earlier object detection algorithms in terms of both speed and 
accuracy. It can reach real-time speeds of up to 160 frames per 
second while maintaining great precision. As a result, it is a 
helpful tool for a wide range of applications, including 
autonomous driving, video surveillance, and robots. Currently, 
there have been no studies yet that utilized YOLOv7 in 
detecting motorcycle helmet specifically in low-light 
conditions. It has been used before in detecting Camellia 
Oleifera Fruit in orchard scenes by Wu et al [20], as well as 
Chicory Plant by Gallo et al. [21] 

C. Deep SORT 

Deep SORT on the other hand is a method for tracking 
multiple objects that combines a deep learning-based object 
detector and the SORT (Simple Online and Realtime Tracking) 
algorithm. This method improves on traditional tracking 
methods by employing a deep neural network to generate high-
quality embeddings that encode the appearance of seen objects 
[19-20]. These embeddings are then used in conjunction with a 
Kalman filter-based tracking framework to associate and track 
objects over successive frames. Deep SORT provides powerful 
and dependable tracking by combining appearance, motion 
dynamics, and temporal information. social distancing 
measures during the COVID 19 pandemic by Narinder Singh 

Punn et al. (2020) [22], as well as Pear fruit detection by Addie 
Ira Borja Parico and Tofael Ahmed (2021) [23]. 

D. Scale 

YOLO has multiple scales, from nano, small, medium, 
large, xlarge. The nano-scale model is the algorithm's smallest 
and fastest variant, but least in precision.  It contains fewer 
layers and characteristics than the medium and large scales, 
making it better suited for deployment on resource-constrained 
devices. The YOLOv5 small-scale model performs effectively 
in object detection tasks despite its smaller size. It detects 
objects in an image using a single convolutional neural 
network (CNN) architecture, with a focus on small objects, and 
incorporates data from several sizes of the input image using a 
feature pyramid network (FPN) [11]. 

A single convolutional neural network (CNN) architecture 
is used in the medium-scale model to detect objects. It also 
anticipates object-bounding boxes through the use of anchor 
boxes [26]. It does, however, use more anchor boxes than the 
small-scale model, allowing it to distinguish objects with more 
precision. It can also detect objects with high precision while 
maintaining real-time performance as its major characteristic, 
making it suited for a wide range of real-world applications.  
Finally, the large-scale model operates similarly to the previous 
model scales, but because it employs larger layers and a greater 
number of anchor boxes than the small and medium-scale 
models, it allows for the identification of objects with even 
greater precision [14]. 

E. Inference 

To use model testing and inference in YOLOv5, which is 
the process of using the trained model to make predictions 
based on new unseen data. The model would be prepared and 
configured the Python environment with the required 
dependencies. Then all the test images or videos should be 
collected to generate the YOLOv5 configuration file, this 
includes the model's weights and parameters. Then infer by 
running the test data through the model and generate bounding 
box predictions for object recognition.  The predictions can still 
be refined by removing redundant detections with non-
maximum suppression and scaling the coordinates to fit the 
original image size. Finally, plot the bounding boxes on the 
images or videos to visualize the results [1][16].  

F. Hyperparameters 

In YOLO, adjusting hyperparameters entails fine-tuning 
several settings to optimize the model's performance. 
Considering the speed and accuracy requirements, the 
architecture of the YOLOv5 model can also be adjusted by 
selecting different scales such as YOLOv5s, YOLOv5m, or 
YOLOv5l [27]. Experimentation with hyperparameters such as 
learning rate, weight decay, and batch size, can all have a 
major impact on training.  To boost generalization, 
regularization techniques such as dropout and data 
augmentation can be used. It is critical to evaluate the model's 
performance using evaluation metrics such as mean average 
precision (mAP) and to iteratively alter the hyperparameters 
based on the results. By carefully tweaking these 
hyperparameters, the model's detection accuracy and overall 
performance can be enhanced [18]. Full model framework can 
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reference based on the image below Fig. 1, the application of 
Kalman filter in which Deep SORT is integrated for 
optimization [24] [28]. 

 

Fig. 1. YOLOv5 multi-scaled conceptual framework. 

Deep SORT is a deep learning-based multi-object tracking 
algorithm that is capable of tracking objects over time even 
when they are occluded or partially visible. It uses a 
combination of appearance information and motion cues to 
track objects in real-real time. By combining the YOLOv7 with 
Deep sort, the system works by first using YOLOv7 to detect 
objects in each frame of a video stream. The detected objects 
are then passed to the Deep Sort algorithm, which associates 
objects across frames and tracks them over time. By combining 
both object detectors, the system can track multiple objects in 
real time, even in complex and cluttered scenes.  

It is critical to apply Kalman filter in improving Deep Sort 
algorithm's tracking performance as it adds temporal 
information and refine tracking predictions. The Kalman filter 
is initially initialized with the object's position and velocity 
represented by the state vector and covariance matrix, then 
forecasts the next state based on the object's motion model 
throughout each time step. When new detection or tracking 
data becomes available, the Kalman filter updates the 
measurement, including the measurements into the estimating 
process and changing the state estimate. This enables the 
Kalman filter to smooth out noisy detections, handle 
occlusions, and provide more accurate and consistent object 
tracking predictions in Deep SORT [24]. The full model 
framework can be referred to using the graphic below Fig. 2. 

 

Fig. 2. YOLOv7 + Deep SORT conceptual framework. 

G. Synthesis 

Reviewed studies indicate that the performance of 
YOLOv5 is limited in low-light conditions while YOLOv7 

remains unexplored along with the implementation of Deep 
SORT in terms of detecting motorcycle helmets in low-light 
scenarios. The researchers then aims to address this by 
exploring the performance of the two models with the help of 
hyperparameter tuning to achieve optimal results. 

III. METHODOLOGY 

The study compared two YOLO versions: YOLOv5 and 
YOLOv7. Deep sort was integrated as an optimization in 
YOLOv7 [24], [25]. 

A. Scaling 

To ensure uniformity in image dimensions and maintain 
consistency during both the training and inference stages of the 
model training, each image were resized to a resolution of 
640x640 pixels using Roboflow. 

B. Inference 

The dataset was divided into three parts: 70% for training 
set, 20% for validation set, and 10% for testing set with the use 
of Roboflow. After the model has been trained using the 
training set. The validation set was used to evaluate the 
performance of the model based on the initial training for the 
optimization of hyperparameters then the testing set was used 
to evaluate the unbiased performance of the model on new 
unseen data. 

C. Tuning amd Optimization of Hyperparameters 

Three hyperparameter configurations were used: (1) 
Hyperparameter 1 with 0.01 LR, 64 Batch, and 50 Epochs, (2) 
Hyperparameter 2 with 0.02 LR, 32 Batch, and 75 Epochs, (3) 
Hyperparameter 3 with 0.03 LR, 16 Batch, and 100 epochs. 

The study also included another version of the YOLO, 
which is version 7. Most of the initial processes of this model 
are the same as YOLOv5, but it differs in processes such as 
measurement association and Kalman Filter Estimation. 

D. Data Gathering 

The dataset was gathered from a bustling street in Makati 
City, Philippines, renowned for its substantial motorcycle 
traffic. The data collection process was strategically conducted 
during three distinct timeframes to encompass diverse lighting 
conditions: 5-6 PM, 6-7 PM, and 7-8 PM. 

E. Data Pre-Processing 

In this step, Smart Video Player was used to monitor the 
video footage and to identify which timeframes would be 
relevant to be used in the model. This was followed by 
annotation. The next step is annotation. The collected footages 
were monitored to make sure that there were enough types of 
riders for each scenario: riders with helmets (half-faced or full 
faced), no helmets, and invalid situations. 

The images were then annotated and separated using the 
training-validation-test splitting method, wherein 70% was 
used for training, 20% was used for validating, and 10% was 
used for testing. The images were annotated with four (4) label 
classes namely Motorcycle Rider, Helmet Full-Faced, Helmet 
Half-Faced, No Helmet, and Invalid Helmet as shown in Table 
I. 
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TABLE I. IMAGE LABEL CLASSES 

Class Label Image Sample 

Rider Full Face 

 

Rider Half-Face 

 

Rider Helmet Invalid 

 

Rider No Helmet 

 

Three strategies were used for pre-processing, including 
auto-orientation, resizing, and class modification. Images were 
auto-orientated to align to a standard orientation before feeding 
them into the model. This technique ensures that the images are 
in the correct orientation for processing, which can increase the 
model's accuracy. Because the orientation of the motorcycle 
rider and helmet might change substantially in different photos, 
auto-orientation is especially important in the context of helmet 
recognition for motorcycle riders. 

The images were then resized and expanded to the typical 
size of 640x640. This strategy ensures that all of the photos are 
of the same size, which is required for the model to efficiently 
assess the images. Resizing the photos can also help to 
minimize the model's computational complexity, making it 
faster and more efficient. In the area of motorcycle helmet 
recognition, scaling the photos to a consistent size can be very 
significant because the size of the motorcycle rider and helmet 
can vary greatly between images. 

Finally, the images were class modified by mapping and 
dropping specific classes from the dataset. In this scenario, 16 
classes were mapped while 0 were dropped. This strategy 
ensures that the model is trained on the relevant classes and can 
increase the model's accuracy. Dropping classes entails 

deleting extraneous classes from the dataset whereas mapping 
classes requires merging comparable classes into a single class. 
In the domain of motorcycle helmet detection, mapping and 
removing classes can help to ensure that the model is trained 
on the necessary classes and can detect helmets effectively. 

F. Data Augmentation 

Various image enhancement techniques were employed to 
augment the dataset. These included flipping, rotation, 
cropping, grayscale conversion, and color distortion. Flipping 
involved horizontal or vertical image flipping, while rotation 
altered images in clockwise, counterclockwise, or upside-down 
orientations. Random cropping was applied to zoomed image 
sections. Grayscale conversion turned images to grayscale, and 
color distortion adjusted hue, saturation, brightness, and 
exposure [22]. Applying these enhancements resulted in three 
training examples per original image, expanding and 
diversifying the training dataset. These techniques increased 
the model's resilience to input photo variations. 

Bounding box augmentation was also performed, applying 
the same techniques to helmet-bounding boxes for accurate 
post-transformation alignment [22]. Augmentation, in the 
context of motorcycle helmet identification, improved model 
resilience and accuracy. The augmented, pre-processed dataset 
was split for model training, validation, and testing. A 
YOLOv5 model was developed for different scales, with 
modifications based on three time frames. 

The time frames (5-6 PM, 6-7 PM, 7-8 PM) accounted for 
varying luminance, affecting helmet visibility. Images were 
tagged into four classes as depicted in Table I, "Rider Full 
Face" depicted helmets covering the entire head. "Rider Half 
Face" showed helmets protecting the top and back, excluding 
the chin. "Other Helmets" encompassed non-motorcycle 
headgear. "Rider No Helmet" included images of unprotected 
riders. This approach facilitated effective helmet detection and 
classification. 

G. Model Training 

The dataset of photos or videos of motorcycles and 
motorcycle riders wearing helmets was prepared by ensuring 
the following: bounding boxes were drawn around the objects 
of interest (motorcycles and helmets), together with class labels 
indicating whether the object is a motorcycle or a helmet. It is 
critical to include a diverse range of motorcycle and helmet 
types in the dataset to guarantee that the model can detect these 
objects under a variety of situations. 

After the dataset has been prepared, the YOLOv5 model 
architecture must be configured. This entails deciding on a 
model size (such as YOLOv5s, YOLOv5m, or YOLOv5l) and 
determining the number of classes to detect. In this particular 
scenario, the motorcycle and the rider’s helmet.  

After configuring the model architecture, the next step is to 
start the training process. During training, the model iteratively 
updates its weights based on the loss calculated between the 
predicted and ground truth bounding boxes and class 
probabilities. The objective is to minimize this loss function by 
adjusting selected hyperparameters until the model produces 
accurate and consistent predictions. 
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For each of the architecture, time frames were considered 
to segment changes in lighting conditions. Then, the three 
hyperparameters were used within the experiment. Aside from 
using the default hyperparameter setting, additional settings 
were included by changing the learning rate, batch size, and 
epoch during training. Learning rate is a hyperparameter that 
determines the magnitude of the update to the model's 
parameters during the training process. It controls how quickly 
the model converges to the optimal solution and can have a 
significant impact on the model's performance. Batch size 
refers to the number of training examples used in one iteration 
of the optimization algorithm during the training process. The 
batch size is a hyperparameter that can have a significant 
impact on the model's performance and training time. Lastly, in 
machine learning, an epoch refers to a complete iteration 
through the entire training dataset during the training process. 
The number of epochs is a hyperparameter that determines how 
many times the algorithm will cycle through the entire dataset. 
Each epoch is broken down into batches, and the model's 
parameters are updated based on the loss function calculated on 
each batch. 

To further discuss the optimization process, different 
hyperparameter settings were applied in the different YOLOv5 
architectures (YOLOv5s, YOLOv5m and YOLOv5l) and 
YOLOv7 as shown in Table II, specifically, the first 
hyperparameter setting has a configured learning rate of 0.01, 
batch size of 64, and 50 epochs. The second had a higher 
learning rate of 0.02, but with a smaller batch size of 32, and 
more epochs of 75. The third setting has the highest learning 
rate of 0.03, smaller batch size of 16, and more epochs of 100. 
Though these settings, and applied in the different time frames, 
optimized HP can be determined for each of the architectures.  

TABLE II. TRAINING HYPERPARAMETERS 

Hyperparameter 

Name 
Learning Rate Batch Size # of Epochs 

H1 0.01 64 50 

H2 0.02 32 75 

H3 0.03 16 100 

Moreover, to improve the robustness of the model, data 
augmentation techniques such as random cropping, flipping, 
and resizing were used to create more variations in the training 
data. Once the training process was complete, the model was 
evaluated on a validation set to measure its performance. 
Metrics such as mAP and intersection over union (IoU) were 
used to evaluate the accuracy and robustness of the model.  

H. Model Validation 

To validate the model, the "detect.py" script, was used. 
This script effectively conducted bounding box predictions and 
class estimations on the designated test images. The core 
functionality of YOLOv5 was harnessed to accomplish this. 
Subsequent to the bounding box predictions and class 
estimations, an essential step known as inference computation 
was performed. This involved the integration of the predicted 
bounding box information with corresponding prediction rates. 

For a comprehensive model validation process, the "val.py" 
script was applied. This script, crucially, made use of the 

optimal model weights contained within the "best.pt" file, 
ensuring the utilization of the most refined model 
configuration. This choice of weights maximized model 
performance. Within the validation process, the script 
meticulously computed a suite of performance metrics. These 
metrics encompassed crucial elements such as classes 
identified, total images assessed, individual instances detected, 
as well as precision, recall, and mean average precision values. 
These calculated metrics collectively formed a robust 
quantitative representation of the model's efficacy and accuracy 
in object detection and classification [8]. 

IV. RESULTS 

A. Effect of Timeframes 

Three different timeframes were used. Each timeframe can 
be described as follows. During the 5-6 PM timeframe, as 
depicted in Fig. 3, the environment still retained traces of 
daylight, albeit with a diminishing intensity. The sun's descent 
casted elongated shadows, and the street came alive with a 
mixture of natural and emerging artificial light sources, such as 
streetlights and the headlights of vehicles. 

 

Fig. 3. 5-6 pm footage. 

As the clock advanced to 6-7 PM, based on Fig. 4, the 
setting underwent a noticeable change. The sky took deeper 
hues of twilight, and the natural light waned further. 
Streetlights begin to dominate the scene, creating a stark 
interplay between light and shadow. Details became less 
discernible, and the environment embraced an ambiance of 
early evening. 

 

Fig. 4. 6-7 pm footage. 
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Fig. 5. 7-8 pm footage. 

By the time 7-8 PM arrived, as depicted in Fig. 5, darkness 
had firmly settled in. The streetlights and vehicle headlights 
became the primary sources of illumination, casting a subdued 
glow across the surroundings. The scene exuded an atmosphere 
of low light, with visibility significantly limited compared to 
earlier hours. 

These deliberate timeframes were chosen to 
comprehensively capture the spectrum of lighting conditions 
that motorcycle rider’s encounter. The resultant dataset's pre-
processed videos effectively portrayed the evolving 
illumination scenarios, enriching the machine-learning model's 
ability to navigate and respond adeptly across varying levels of 
lighting intricacies. 

B. YOLOv5 

The model's performance was evaluated using different 
hyperparameters in various scenarios and summarized in Table 
III. In the YOLOv5 Small scale results from 5 to 6 PM, 
Hyperparameter 3 yielded the best performance, achieving an 
average precision of 94.4%, an average recall of 89.8%, an 

average mAP@.5 of 94.3%, and an average mAP@.95 of 
73.8%. Moving to the YOLOv5 results from 6 to 7 PM, 
Hyperparameter 3 also had the best performance, achieving an 
average precision of 75.6%, an average recall of 65.6%, an 
average mAP@.5 of 68.3%, and an average mAP@.95 of 40%, 
especially in the Rider class. In the YOLOv5 Small scale 
results from 7 to 8 PM, Hyperparameter 2 performed the most 
achieving an average precision of 62%, an average recall of 
59.3%, an average mAP@.5 of 61.4%, and an average 
mAP@.95 of 49.2%.  

Various hyperparameters yielded different results across 
three varying time frames. While different hyperparameters 
performed well on certain scenarios. The Hyperparameter 3 
performed the most while striking a balance between precision 
and recall. 

C. YOLOv7 with Deep SORT 

The results presented in Table III reflects the performance 
of the YOLOv7 model under different hyperparameters and 
timeframes. Notably, precision, recall, and mAP (mean 
Average Precision) scores were evaluated to gauge the model's 
ability to accurately detect and classify objects within these 
specified contexts. 

During the 5-6 PM timeframe, Hyperparameter 3 exhibited 
the highest precision (94.4%), recall (89.8%), mAP@.5 
(94.3%), and mAP@.95 (73.8%). Shifting to the 6-7 PM 
timeframe, Hyperparameter 1 stood out with the highest 
precision (75.6%) and a relatively good recall (65%), leading 
to a commendable balance between the two metrics. Lastly, in 
the 7-8 PM timeframe, Hyperparameter 2 demonstrated the 
highest precision (72.3%), recall (68.2%), mAP (70.6%), and 
mAP@.95 (63%). These results show that the implementation 
of Deep SORT to the training of YOLOv7 models had 
outperformed the results of its predecessor YOLOv5 given the 
hyperparameter configurations mentioned in Table II 

TABLE III. YOLOV5 AND YOLOV7 RESULTS 

Model 
Parameters 

Precision (%) Recall (%) mAP@.5 (%) mAP@.95 (%) 

Timeframe 5-6 PM 

YOLOv5 (L) H3 94.4 89.8 94.3 73.8 

YOLOv7 H3 95.6 91.2 95.1 76.3 

Timeframe 6-7 PM 

YOLOv5 (L) H3 75.6 65.6 68.3 40 

YOLOv7 H1 86 73 79.5 51 

Timeframe 7-8 PM 

YOLOv5 (M) H2 62 59.3 61.4 49.2 

YOLOv7 H3 72.3 68.2 70.6 63 
 

V. DISCUSSION 

Our study compared three hyperparameter settings in 
YOLOv5 and YOLOv7 with Deep SORT object identification 
models which demonstrated the importance of hyperparameter 
adjustments in achieving superior performance metrics [18]. 
Particularly for certain classes such as riders and invalid cases, 
H3 regularly displayed higher precision, recall, and mAP 

scores. To address issues such as accurate helmet detection, 
however, fine-tuning and rigorous evaluation are still required. 
These findings contribute to the continuous developments in 
object detection models and provide useful insights for 
computer vision researchers and practitioners. 

Based on the outcomes of the different models, it is 
recommended that researchers and practitioners working with 
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object identification models, particularly YOLOv5 and 
YOLOv7 with Deep SORT, take into account the ideal 
hyperparameter settings revealed in study [6] [10] [13] [12]. 
Specifically, Hyperparameter 3 regularly outperformed other 
scales and time frames, with higher precision, recall, and mean 
average precision (mAP) ratings. 

Implementing Hyperparameter 3 (higher epochs, quicker 
learning rates, and smaller batch sizes) can result in enhanced 
object detection accuracy and better localization of certain 
classes such as riders and invalid cases. It is crucial to 
highlight, however, that further study and fine-tuning may be 
required to overcome difficulties with helmet identification, as 
this area demonstrated space for development. 

Finally, this work emphasizes the need of doing 
comparative analyses and experimenting with different 
hyperparameter settings to maximize model performance. As 
the science of computer vision advances, it becomes 
increasingly important to adjust and refine hyperparameters to 
achieve the best results for individual applications. 

Overall, this study gives useful insights on hyperparameter 
tuning in object detection models, as well as practical 
recommendations for scholars and practitioners in the field. 
Practitioners can improve the accuracy and performance of 
their object detection systems by evaluating the findings and 
using the recommended hyperparameter values, thereby 
contributing to breakthroughs in computer vision and its 
diverse applications. 

Further research could explore innovative techniques and 
data augmentation methods tailored to low-light scenarios. 
Leveraging advancements in low-light image enhancement and 
night vision technologies could prove beneficial. Additionally, 
the incorporation of infrared or thermal imaging sensors in 
object detection models may enhance the accuracy of helmet 
detection under challenging lighting conditions. Moreover, 
collaborating with experts in the field of motorcycle safety to 
collect real-world data from diverse lighting environments and 
helmet types would be invaluable for training and evaluating 
detection models. Lastly, an emphasis on fine-tuning 
hyperparameters, such as those highlighted in this study, 
should continue to be a crucial aspect of future research efforts 
to achieve more robust and reliable helmet detection, 
ultimately contributing to increased safety for riders. 

VI. CONCLUSION 

In conclusion, our study comparing YOLOv5 and YOLOv7 
with Deep SORT object identification models revealed that 
YOLOv7 with Hyperparameter 3 consistently outperformed 
YOLOv5 and other hyperparameter settings in terms of 
precision, recall, and mean average precision (mAP) scores. 
Specifically, Hyperparameter 3, characterized by higher 
epochs, quicker learning rates, and smaller batch sizes, proved 
to be the superior choice for achieving enhanced object 
detection accuracy, especially for certain classes like riders and 
invalid cases. These findings suggest that YOLOv7 with 
Hyperparameter 3 is the recommended configuration for 
practitioners and researchers working in the field of object 
detection, highlighting its potential to contribute significantly 
to advancements in computer vision applications. 
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