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Abstract—Robust broad learning system (RBLS) 

demonstrates the generalization and robustness for solving 

uncertain data regression tasks. To enhance representation 

ability of RBLS, this paper aims at developing a novel robust 

stacked broad learning system for solving noisy data regression 

problems, termed as RSBLS. In our work, we expand traditional 

BLS into a stacked broad learning system model with deep 

structure of feature nodes and enhancement nodes. Furthermore, 

ℓ1 norm loss function is employed to update the objective 

function of RSBLS for processing noisy data, we apply 

augmented Lagrange multiplier (ALM) to get the output weights 

of RSBLS which keeps the effectiveness and efficiency compared 

with weighted loss function. Simulation results over some 

regression datasets with outliers demonstrate that, the proposed 

RSBLS performs favorably with better robustness with respect 

to RVFL, BLS, Huber-WBLS, KDE-WBLS and RBLS. 

Keywords—Robust; stacking; broad learning system; deep 

learning; neural networks 

I. INTRODUCTION 

Recently, inspired by random vector functional link neural 
networks (RVFL) [1, 2], Chen et al. proposed a novel 
randomized neural network architecture, broad learning system 
(BLS) [3-5]. Compared with the classical deep learning model, 
BLS adopts the broad structure which has the advantages of 
higher efficiency and fewer parameters. Due to its excellent 
learning ability, BLS has been widely concerned by scholars 
since it was proposed, and has developed rapidly in theoretical 
and applied research. To improve the interpretability of BLS, a 
novel broad neuro-fuzzy model, fuzzy broad learning system 
(FBLS) was presented, which reduces the number of fuzzy 
rules and improves the learning accuracy neuro-fuzzy model 
[6]. Subsequently, Guo et al. used FBLS to synthesize multi-
view HDR images [7], Ali proposed a novel optic disk and cup 
segmentation method through FBLS for glaucoma screening 
[8]. Furthermore, compact FBLS (CFBLS) which has better 
interpretability and fewer fuzzy rules was designed to balance 
the algorithm accuracy and complexity [9]. For improve the 
representation of BLS, type-2 fuzzy BLS was given in [10]. 
For solving sequential data, recurrent broad learning system 
and structured manifold broad learning system (SM-BLS) were 
presented respectively [11, 12]. To process the data with less 
label, semi-supervised broad learning system (SS-BLS) by 
introducing manifold regularization method to BLS [13], and 
some other SS-BLS algorithms had been used in semi-
supervised classification tasks [14, 15]. Otherwise, BLS and its 
variants had been extensive used in various engineering fields, 

such as traffic forecasting [16], image classification [17], EEG 
signals classification [18-20], sentiment analysis [21, 22]. 

In practical engineering applications, sensors are 
susceptible to equipment failure, human interference, working 
environment and other factors, and there are different degrees 
of noises and outliers in the collected data, thus reducing the 
generalization of the learning model. To solve the uncertain 
data regression problem effectively, Chu et al. proposed 
weighted broad learning system (WBLS) framework for 
tackling industrial noisy data [23]. Then, Zheng et al. designed 
a broad learning system based on maximum correntropy 
criterion (BLS-MCC) which used maximum correntropy 
criterion to calculate weights of training samples [24]. In 
addition, Liu et al. adopted Cauchy loss function to process the 
noisy data [25]. Meanwhile, ℓ1 norm cost function and ℓ2 
regularization method were used in robust broad learning 
system (RBLS) [26], then elastic-net regularization approach 
replaced ℓ2 regularization method in RBLS [27]. Moreover, 
robust manifold broad learning system (RM-BLS) was used to 
predict large-scale noisy chaotic time series [28]. In addition, 
for online sequential learning, Guo et al. presented online 
robust echo state broad learning system (OR-ESBLS) [29]. 
However, the above models improved the robustness of BLS, 
the shallow models still lack feature representation capability. 

Now-a-days, deep neural networks with multi-layer have 
powerful representation capability, BLS was also been 
expanded with multi-layers [30-32]. Therefore, to improve the 
noisy data processing performance of RBLS, we demonstrate a 
novel robust stacked broad learning system (RSBLS) for 
solving outlier data regression, which adopts deep structure of 
feature nodes and enhancement nodes through stacking deep 
model, ℓ1 norm loss function and ℓ2 regularization method 
ensure the learning accuracy and efficiency. 

In brief, the highlights of RSBLS are listed as follows: 

 A novel robust stacked broad learning system structure 
is demonstrated, we presented the model architecture 
and algorithm description of RSBLS in detail. 

 ℓ1 norm loss function and ℓ2 regularization method are 
adopted to enhance the robustness of RSBLS. 

 Experiments on the benchmark datasets with different 
noise ratios present the superiority of RSBLS. 

The other sections of our manuscript are given as follows: 
Section II introduces the basic algorithm description of BLS. 
Section III presents the architecture and optimization method 
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of the proposed RSBLS. Section IV demonstrates the uncertain 
data regression results on some datasets with different 
percentage of outliers. Finally Section V concludes the paper. 

II. RELATED WORKS 

BLS is novel random neural network model with effective 
and efficient performance, proposed by Chen et al., which has 
the architecture as Fig. 1 [3-5]. 

 

Fig. 1. The structure of BLS [3-5]. 

The modeling process of BLS is given as follows [3-5]: 

Given a training data { , }X Y , 1 2{ , , , }Nx xX x   and 

1 2{ , , , }Ny yY y   express the feature and label. Among them, 

,1 ,2 ,{ , , , } d

i i i dix x x x   , d is denoted as the number of feature 

dimension; 1,2, ,i N , N indicates the number of training 
samples. 

A. Feature Nodes Generation 

The feature nodes are generated through Eq. (1), then n 
groups of mapping nodes can be combined according to Eq. (2), 
each group has Le feature nodes. 

( )p ep epZ XW                                (1) 

1 2[ , , , ]=n

nZ Z Z Z                               (2) 

Among them, ( )   indicates the activation function of 

feature mapping; epW  and ep  represent random weights and 

biases respectively; 1,2, ,p n . In particularly, the authors 

of BLS use sparse autoencoder to tune the initial parameters 
for obtaining better features [3-5]. 

B. Enhancement Nodes Generation 

All the feature nodes in Eq. (2) are enhanced by using Eq. 
(3), each enhancement processing generate Lh nodes. Then the 
enhancement nodes can be combined according to Eq. (4). 

( )n

q hq hqH Z W                               (3) 

1 2[ , , , ]=m

mH H H H                             (4) 

where, ( )   is denoted as the activation function, it can be 

set as the same as ( )  ; hqW  and hq  are generated randomly; 

1,2, ,q m . 

C. Output Y  determination 

The output Ŷ  of BLS can be calculated according to Eq. 

(5). 

[ | ]n mY Z H W                                  (5) 

[ | ]n mW Z H Y                                (6) 

where, W  represents the output weight of BLS,  

is determined by the ridge regression approximation as Eq. (7). 

1

0

[ | ]

lim( [ | ][ | ] ) [ | ]

n m

n m n m T n m T

Z H

I Z H Z H Z H









 

    (7) 

III. ROBUST REGULARIZED HIERARCHICAL BROAD 

LEARNING SYSTEM 

A. The Structure of RSBLS 

BLS, as a randomized learning algorithm, has an effective 
and efficient structure. Although the novel structure can reduce 
the computational burden and enhance learning accuracy, BLS 
with multi-layer structure can extract deep representation 
information [30-33]. Meanwhile, the noisy and outliers in the 
training data affect the accuracy and generalization 
performance of BLS seriously. Therefore, we propose a novel 
RSBLS to solve noisy data regression problems. It is different 
from traditional BLS, RSBLS has multi-layer structure of 
feature nodes and enhancement nodes, the feature nodes and 
enhancement nodes of each layer are used as the input of next 
layer, only the feature nodes and enhancement nodes of the 
final layer are fully connected with the output. 

In addition, due to the outliers usually take up a fraction of 
training data, the noisy data can be understood as having 
sparsity, ℓ1 norm function is not only more robust to solving 
the sparsity data, but also ensures a faster learning efficiency, it 
is especially suitable for solving large-scale data and deep 
models [34, 35]. The RSBLS adopts ℓ1 norm cost function and 
ℓ2 regularization method to solve the noisy data regression. Fig. 
2 demonstrates the model structure of RSBLS; the RSBLS 
algorithm is described as follows: 

1) RSBLS parameters initialization: To simplify the 

RSBLS model, the layer number is set as U, the feature 

mapping times of each layer are set to nu, the number of 

neurons in each feature mapping is Lue, the enhancement 

processing times of each layer are set to mu, and the number 

of neurons in each enhancement processing is Luh. 

a) Feature nodes generation: The original data X is 

transformed into feature nodes by using Eq. (8), then all the 

nodes in the feature layer are combined through Eq. (9) and 

Eq. (10). 

( )u u

p ep epZ X W                                 (8) 

1 2[ , , , ]u u u u

nuZ Z Z Z                                (9) 
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where, 1X X ; 1u uX S  ; ( )   indicates the activation 

function of feature mapping; epW  and ep  are random values of 

feature nodes; 1,2, ,p nu ; 1,2, ,u U . 

 

Fig. 2. The structure of RSBLS. 

b) Enhancement nodes generation: All the feature nodes 

in Eq. (9) are enhanced as enhancement nodes through Eq. 

(10), then all the enhancement nodes are connected by Eq. 

(11). 

([ )u u

q hq hqH Z W                               (10) 

1 2[ , , , ]u u u u

muH H H H                             (11) 

where, ( )   expresses the activation function of 

enhancement processing; hqW  and hq  indicate the random 

parameters of enhancement nodes; 1,2, ,q mu ; 

1,2, ,u U . 

In addition, we combine all the nodes of layer u through Eq. 
(12) as the input of next layer. 

[ , ]u u uS Z H                                     (12) 

c) Target output matrix Y  determination: To reduce 

the computational burden of RSBLS, we only connect the 

feature nodes and enhancement nodes of layer U in Eq. (13), 

then we use the ℓ1 norm cost function and ℓ2 regularization 

method to calculate the model output weights as Eq. (14). 

[ , ]U U US Z H                            (13) 

2

1 2arg min || || || ||US Y C


            (14) 

where, C express as the ℓ2 regularization parameter. 

The outputs of RSBLS can be calculated by Eq. (15). 

UY S                                   (15) 

B. The Optimization of RSBLS 

Hence Eq. (14) can be considered as a constrained convex 
optimization problem, we use augmented Lagrange multiplier 
(ALM) approach to solve this problem, and Eq. (14) can be 
transformed as Eq. (16). 

2

1 2

2

2

1
( , , ) || || || ||

( ) || ||
2

T

L e e
C

Y H e Y H e
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
  

 

     

          (16) 

where, e H Y  ;  is denoted as the vector of Lagrange 

multiplier; 12 / || ||= N Y . 

The optimal  and the Lagrange multiplier  can be 

optimized by ALM method iteratively by using Eq. (17). 

1 1
,

1 1 1

( , ) arg min ( , , )

( )

e
e L e

Y H e
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  
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 

  




   

                (17) 

Moreover, we transform Eq. (17) as Eq. (18), then  

and  are expressed as Eq. (19) and Eq. (20) respectively. 

1
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1 1 1
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where, “○” denotes the element-wise multiplication. 
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The algorithm flow of RSBLS is described in Algorithm 1. 

Algorithm 1: RSBLS 

Dataset: , ,1 ,2 ,{ , , , } d

i i i dix x x x   ; 

. 

Parameters: the number of feature layer V, the feature mapping 

times of each layer n, the number of neurons in each feature 

mapping Le; the number of enhancement layer U, the enhancement 

processing times of each layer m, the number of neurons in each 

enhancement processing Lh. 

Output: Y . 

1. Initialize 1p  , 1q  , 1u   

Phase 1: feature nodes generation (Step 2-8) 

2. for u U , do 

3.    for p nu , do 

4.       Generate epW  and ep  randomly; 

5.       Calculate 
u

pZ  using Eq. (8); 

6.    end for 

7. end for 

8. Set the feature mapping group uZ  using Eq. (9); 

Phase 2: enhancement nodes generation (Step 9-15) 

9. for u U , do 

10.    for q mu , do 

11.       Generate hqW  and hq  randomly; 

12.        Calculate 
u

qH  using Eq. (10); 

13.     end for 

14. end for 

15. Set the enhancement group uH  using Eq. (11); 

Phase 3: target output matrix Ŷ  determination (Step 16-21) 

16.    for max1,2,..., P  , do 

17.       12 / || ||= N Y , 1 0e  , 1 0   

18.       Compute   by using Eq. (16)- Eq. (20); 

19.    end for 

20. Compute output Y  by using Eq. (13)- Eq. (15); 

21. return Y . 

IV. NUMERICAL EXPERIMENTS 

The related experiments of our paper are programmed 
based on MATLAB 2019b. 

A. Experimental Datasets 

In this part, six benchmark datasets, including Concrete, 
Abalone, Stock, Mortgage, Treasury, and Compactiv from 
KEEL (http://www.keel.es/) are selected to demonstrate the 
feasibility of the RSBLS. Table Ⅰ gives the corresponding 
information of these datasets. 

In addition, to verify the robustness of RSBLS, the datasets 
are preprocessed as follows: we first carry out normalization 
processing, the features and corresponding labels are 
normalized in the range of [0, 1]. Moreover, 75% samples of 
the original datasets are selected as the training datasets 
randomly, the rest 25% samples are determined as the test 
datasets. In the last, 10%, 20%, 30%, 40% and 50% outliers 

with uniform distributed are inserted into the training datasets 
as Eq. (21). 

, 0.5 0.5noise outlier outliery y y y    V V           (21) 

where, noisey  expresses the contaminated training label in 

the range of [-0.5, 1.5]; outlieryV  means the random outlier. 

TABLE I.  THE ATTRIBUTES INFORMATION OF EXPERIMENTAL DATASETS 

Datasets Features Instances 

Concrete 8 1030 

Abalone 8 4177 

Stock 9 950 

Mortgage 15 1049 

Treasury 15 1049 

Compactiv 21 8192 

B. Evaluation Indexes 

To present the robustness of RSBLS, we carry out all the 
related algorithms 50 times independently, the average root 
mean square error (RMSE) (see Eq. (22)) of experimental 
results are recorded as the evaluation indexes. 

 
2

1

1
RMSE

N

i i

i

y f
N 

                       (22) 

where, yi indicates the actual value of sample i; fi represents 
the output results of sample i; N denotes the number of samples. 

C. Experimental Results 

1) Parameters settings: To illustrate the proposed RSBLS, 

RVFL [1, 2], BLS [3-5], Huber-WBLS [23], KED-WBLS [23] 

and RBLS [24] are chosen as the contrast algorithms, among 

them, we use the sigmoidal function (see Eq. (23)) as 

activation function of all the compared models. 

1
( )

1 x
S x

e



                         (23) 

Some key parameters of RSBLS, RVFL, BLS, Huber-
WBLS, KED-WBLS and RBLS are listed as follows: 

RVFL: the hidden layer nodes are selected from {50, 100, 
150, 200}, the weights and biases are generated randomly in 
the range of [-1,1] and [0,1] respectively. 

BLS, Huber-WBLS, KED-WBLS and RBLS: the feature 
mappings and feature nodes are chosen from {5, 10, …, 45, 
50}, and the enhancement nodes are selected from {50, 100, 
150, 200}. Moreover, these models adopt ℓ2 regularization 
technique and the regularization parameter C are chosen from 
{2-10, 2-5, 0, …, 215, 220}. Some other models are set as the 
same as the original references. 

RSBLS: the number of layers is set as 2; the feature 
mappings and feature nodes of each layer are chosen from {5, 

1 2{ , , , }Nx xX x 

1 2{ , , , }Ny yY y 
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10, …, 45, 50}, and the enhancement nodes of each layer are 
selected from {50, 100, 150, 200}. Moreover, these models 
adopt ℓ2 regularization technique and the regularization 
parameter C are chosen from {2-10, 2-5, 0, …, 215, 220}. 

2) Results and discussion: In this section, we give the 

performance evaluation of RSBLS, Table II to Table VII show 

the average test RMSE results of RSBLS compared with 

different models on six regression problems with uniform 

distributed outliers. As it can be seen from Table II to Table 

VII, with the increase of contamination rates, the performance 

of RVFL and BLS gradually become worse, Huber-WBLS, 

KED-WBLS and RBLS can improve the robustness of BLS. 

TABLE II.  PERFORMANCE COMPARISON OF DIFFERENT MODELS ON 

CONCRETE DATASET 

Models 
Test Performance (RMSE) at different contamination rates 

10% 20% 30% 40% 

RVFL 0.0934 0.0970 0.1062 0.1065 

BLS 0.0957 0.0981 0.0983 0.0948 

Huber-WBLS 0.0890 0.0893 0.0938 0.0914 

KED-WBLS 0.0936 0.0883 0.0933 0.0914 

RBLS 0.0889 0.0841 0.0957 0.0953 

RSBLS 0.0781 0.0783 0.0834 0.0890 

TABLE III.  PERFORMANCE COMPARISON OF DIFFERENT MODELS ON 

ABALONE DATASET 

Models 
Test Performance (RMSE) at different contamination rates 

10% 20% 30% 40% 

RVFL 0.0745 0.0743 0.0810 0.0782 

BLS 0.0742 0.0749 0.0781 0.0756 

Huber-WBLS 0.0723 0.0736 0.0777 0.0732 

KED-WBLS 0.0736 0.0747 0.0776 0.0744 

RBLS 0.0727 0.0738 0.0778 0.0736 

RSBLS 0.0719 0.0732 0.0764 0.0720 

TABLE IV.  PERFORMANCE COMPARISON OF DIFFERENT MODELS ON 

STOCK DATASET 

Models 
Test Performance (RMSE) at different contamination rates 

10% 20% 30% 40% 

RVFL 0.0456 0.0549 0.0584 0.0633 

BLS 0.0425 0.0520 0.0567 0.0577 

Huber-WBLS 0.0311 0.0349 0.0392 0.0460 

KED-WBLS 0.0355 0.0358 0.0416 0.0428 

RBLS 0.0320 0.0380 0.0394 0.0409 

RSBLS 0.0301 0.0340 0.0332 0.0342 

TABLE V.  PERFORMANCE COMPARISON OF DIFFERENT MODELS ON 

MORTGAGE DATASET 

Models 

Test Performance (RMSE) at different contamination 

rates 

10% 20% 30% 40% 

RVFL 0.0275 0.0351 0.0527 0.0580 

BLS 0.0293 0.0416 0.0518 0.0622 

Huber-WBLS 0.0088 0.0124 0.0236 0.0333 

KED-WBLS 0.0096 0.0111 0.0147 0.0188 

RBLS 0.0052 0.0070 0.0057 0.0063 

RSBLS 0.0050 0.0059 0.0062 0.0062 

TABLE VI.  PERFORMANCE COMPARISON OF DIFFERENT MODELS ON 

TREASURY DATASET 

Models 
Test Performance (RMSE) at different contamination rates 

10% 20% 30% 40% 

RVFL 0.0248 0.0373 0.0427 0.0507 

BLS 0.0280 0.0310 0.0484 0.0538 

Huber-WBLS 0.0126 0.0125 0.0195 0.0293 

KED-WBLS 0.0125 0.0121 0.0184 0.0217 

RBLS 0.0119 0.0114 0.0117 0.0100 

RSBLS 0.0114 0.0103 0.0109 0.0090 

TABLE VII.  PERFORMANCE COMPARISON OF DIFFERENT MODELS ON 

COMPACTIV DATASET 

Models 
Test Performance (RMSE) at different contamination rates 

10% 20% 30% 40% 

RVFL 0.0404 0.0421 0.0451 0.0435 

BLS 0.0287 0.0287 0.0291 0.0312 

Huber-WBLS 0.0256 0.0250 0.0252 0.0278 

KED-WBLS 0.0270 0.0265 0.0262 0.0290 

RBLS 0.0249 0.0250 0.0252 0.0279 

RSBLS 0.0242 0.0243 0.0238 0.0248 

At the same time, it is obviously that RSBLS with 2 hidden 
layers has a better robustness compared with Huber-WBLS, 
KED-WBLS and RBLS. Our proposed model, RSBLS with ℓ1-
norm loss function gains the best mean RMSE on 6 datasets, 
which demonstrates the effectiveness of regularization method. 
In addition, the uncertain data regression performance of those 
models on different datasets with different contamination rates 
indicates the strong robustness of RSBLS, at different levels of 
outliers; the RSBLS shows the best consistency. 

In summary, RSBLS with ℓ1 norm loss function can solve 
uncertain data regression with uniform distributed outliers 
effectively; the stacked deep model is helpful to enhance the 
robustness of BLS well. 
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V. CONCLUSION 

In the paper, we propose a novel robust stacked broad 
learning system model with multi-layers for solving uncertain 
data regression problem, named as RSBLS. In the proposed 
RSBLS, we expand BLS into a stacked deep model with multi-
layer of feature nodes and enhancement nodes, which can 
helpful to extract deep representation information. In addition, 
ℓ1-norm function is introduced to calculate the output weights 
of RSBLS, which can process noisy data and ensure learning 
efficiency of hierarchical model. Experimental results on some 
regression datasets with different ratios of noisy shows that, 
RSBLS has better robustness compared with RVFL, BLS, 
Huber-WBLS, KDE-WBLS and RBLS. 

In the future, as some parameters should be selected by grid 
search which limits the search scope, some of the latest swarm 
intelligence algorithms can be used to choose the parameter of 
RBLS. 
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