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Abstract—The World Health Organization (WHO) sheds light 

on the escalating prevalence of heart diseases, foreseeing a 

substantial rise in the years ahead, impacting a vast global 

population. Swift and accurate early detection becomes pivotal in 

managing severe complications, underscoring the urgency of 

timely identification. While Ventricular Ectopic Beats (V) might 

initially be considered normal, their frequent occurrence could 

serve as a potential red flag for progressing to severe conditions 

like atrial fibrillation, Ventricular Tachycardia, and even cardiac 

arrest. This accentuates the need for developing an automated 

approach for early detection of cardiovascular diseases (CVD). 

This paper presents a novel method to classify arrhythmias. 

Leveraging the Wavelet Scattering Transform (WST) to extract 

morphological features from Electrocardiogram heartbeats 

(ECG), these features seamlessly integrate into a 1D 

Convolutional Neural Network (CNN). The CNN is finely tuned 

to distinguish between V, Supraventricular Ectopic Beats (S), 

and Non-Ectopic Beats (N). Our model's performance surpasses 

state-of-the-art models, boasting precision, sensitivity, and 

specificity of 94.56%, 97.26%, and 99.54% for V, and 99.25%, 

98.65%, and 93.26% for N. Remarkably, it achieves 68.01% 

precision, 77.75% sensitivity, and 99.14% specificity for S. 

Keywords—Electrocardiogram (ECG); Cardiovascular Diseases 

(CVD); Wavelet Scattering Transform (WST); Convolutional 

Neural Network (CNN) 

I. INTRODUCTION 

According to the World Health Organization (WHO), 
cardiovascular diseases (CVD) stand as the foremost cause of 
global mortality, contributing to approximately 17.9 million 
deaths annually. This staggering toll is predominantly 
attributed to coronary heart disease, encompassing heart 
attacks, and Cerebrovascular illnesses, including strokes, which 
collectively account for 80% of these fatalities. The 
demographic most vulnerable to these health challenges 
comprises individuals in their middle and elderly years [1]. 
Clinical research in the preceding century has significantly 
advanced to facilitate the early detection of CVD. During the 
historical period when the electrical nature of the heart was 
widely acknowledged, a notable challenge existed due to the 
absence of tools for its systematic study. It is noteworthy that 
the exploration of electricity in the medical domain had 
commenced nearly two centuries before Einthoven's pivotal 
contributions. Pioneers such as: Gilbert with his work "De 
Magnete" in 1600, Bacon through "Novum Organum" in 1620, 

and Browne who coined the term electricity in the mid-
seventeenth century within "Pseudodoxia Epidemica" in 1646, 
had laid the foundation for understanding electrical phenomena 
in the context of medicine. 

Despite this early groundwork, it was only with Einthoven's 
groundbreaking efforts that a tangible method, namely the 
EKG or ECG, was developed to specifically delve into the 
intricate electrical dynamics of the heart [2]. In the year 1893, 
Einthoven not only introduced the term "electrocardiogram" 
but also demonstrated notable advancements by enhancing the 
electrometer. His significant contributions included the 
introduction of a correction formula, a pivotal innovation that 
enabled the differentiation of five distinct deflections [3-4]. 
These deflections, denoted by the names PQRST, were 
assigned based on the Cartesian nomenclature. 

Comprising P, QRS, and T waves, along with an array of 
intervals, the electrocardiogram (ECG) serves as a 
comprehensive diagnostic tool. This intricate waveform not 
only facilitates the analysis of fundamental parameters such as 
heart rate but also provides invaluable insights into the intricate 
conditions and potential risks associated with the heart's 
functionality [5]. 

By examining these distinctive components and intervals, 
clinicians can glean a nuanced understanding of cardiac health, 
enabling them to address and mitigate potential issues 
proactively. Determining the signal's classification into the 
normal range or otherwise relies crucially on assessing the 
amplitude measured in millivolts and the intervals expressed in 
milliseconds [6]. 

Sinus rhythm, denoting the typical heart rhythm, is 
characterized by the orchestrated propagation of triggering 
impulses originating from the sinoatrial node. This 
synchronized transmission extends seamlessly throughout the 
four chambers of the heart, ensuring a harmonious and 
coordinated cardiac activity [7]. The underlying cause of 
Cardiac arrhythmia (ARR) stems from the disruption of proper 
electrical impulses that orchestrate the coordinated beats of the 
heart (too slow or too fast) [7]. It is noteworthy that certain 
ARRs, if left unaddressed, pose a serious threat, potentially 
leading to sudden cardiac death. Hence, understanding and 
addressing these dangerous arrhythmic conditions becomes 
paramount in safeguarding cardiovascular health. 
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ARRs encompassing four prevalent types: extra beats, 
supraventricular tachycardia, ventricular ARRs, and brady-
arrhythmias [8-9]. Premature (extra) beats include both 
premature atrial contractions (PAC) and premature ventricular 
contractions (PVC). Supraventricular ARRs initiate in the atria, 
characterized by elevated heart rates, they include atrial 
fibrillation (AF), atrial flutter, paroxysmal supraventricular 
tachycardia (PSVT), and Wolff-Parkinson-White syndrome. 
Within the realm of ventricular ARRs lie Ventricular flutter, 
Ventricular tachycardia (VT), and Ventricular fibrillation (VF). 

These potentially life-threatening conditions necessitate 
immediate intervention, often requiring the prompt 
administration of a defibrillator shock to safeguard and 
preserve life. Heart block, a condition that can manifest in the 
atrioventricular node or the HIS Purkinje system, it leads to an 
irregular slowed heartbeat, potentially necessitating the use of a 
pacemaker for treatment. The condition is observed on either 
the left or right side of the ventricles, identified as right bundle 
branch block (RBBB) or left bundle branch block (LBBB). 

    Precise interpretation of ECG signals holds the potential 
to avert the progression of chronic heart conditions to 
irreversible stages. However, the manual interpretation and 
analysis of ECG pose a formidable challenge [10-11]. 
Moreover, beyond the challenge of manual interpretation, the 
analysis of long-term ECG signals is a time-intensive 
endeavor, susceptible to human errors that may compromise 
the accuracy of assessments [12-13-14, 15]. 

In recent decades, researchers have responded to the 
challenges by developing automated models aimed at the 
detection and in-depth analysis of long-term ECG signals. This 
innovative approach not only addresses the limitations 
associated with manual interpretation but also heralds a 
paradigm shift in enhancing the efficiency and accuracy of 
cardiac signal assessment over extended periods. These 
techniques solely rely on advancements in machine learning 
and deep learning [16-17, 18], which have seen significant 
progress in recent years, thanks to the continuous development 
of computer systems and technology. 

In the ensuing sections, relevant literature was explored, 
outlining automated heartbeat classification models. 
Subsequently, in the methodology, the meticulous preparation 
and processing of our data were unfolded, the method 
employed for feature extraction was elucidated, and a 
comprehensive explanation of the classifier utilized was 
provided; including its parameters, along with the evaluation 
metrics employed to assess the efficacy of our proposed model. 

Moving forward, the results and discussion section 
expounded on our findings, drawing comparisons with state-of-
the-art systems. Lastly, the conclusion section summarized our 
results, highlighted the limitations inherent in this study, and 
proposed avenues for future research to address these 
constraints. 

II. RELATED WORKS 

A. Methodology Overview in Previous Studies 

This section introduces state-of-art automated inter-patient 
ECG heartbeat classification models, adhering to the 

Association for the Advancement of Medical Instrumentation 
(AAMI) recommendation [19]. These models categorize ECG 
heartbeats into five types according to the AAMI standard: 
Normal (N), Supraventricular ectopic beats (S), Ventricular 
ectopic beats (V), Fusion beats (F), and Unknown beats (Q), as 
outlined in Table I. 

TABLE I. AAMI HEARTBEAT CLASSES 

AAMI Classes MIT-BIH heartbeats 

N 

Normal (N) 

Right bundle branch block beats (RBBB) 

Nodal (junctional) escape beats (j) 

Left bundle branch block beats (LBBB) 

Atrial escape beats (e) 

S 

Aberrated atrial premature beats (a) 

Atrial premature contraction (A) 

Supraventricular premature beats (S) 

Nodal (junctional) premature beats (J) 

V 

Premature Ventricular contraction (PVC) 

Ventricular escape beats (E) 

Flutter wave (!) 

F Fusion of ventricular and normal beat (F) 

Q 

Paced beat (/) 

Fusion of paced and normal beat (f) 

Unclassified beat (Q) 

Sellami et al. [20] introduced a deep CNN, leveraging state-
of-art deep learning techniques for precise heartbeat 
classification. They advocated for a batch-weighted loss 
function to effectively address class imbalances, wherein the 
loss weights dynamically adjust based on the changing class 
distribution in each batch. Additionally, they proposed the 
utilization of multiple heartbeats to enhance the classification 
of the five heartbeat classes. The evaluation of their proposed 
approach on inter-patient data from the MIT-BIH arrhythmia 
database yielded results, their model achieving an accuracy, 
precision, sensitivity, and specificity of 88.34%, 45.25%, 
90.90%, and 88.51%, respectively. 

Li et al. [21] employed the overlapping segmentation 
method to divide ECG signals from the MIT-BIH database into 
5-second segments, addressing class imbalances by re-labeling 
these segments. Subsequently, discrete wavelet transform 
(DWT) was applied for denoising, and a deep residual CNN 
was employed for ARR classification. They incorporated the 
focal loss function. Their proposed method demonstrated a 
sensitivity, precision, and specificity of 94.54%, 93.33%, and 
80.80% for class N. For class S, the model achieved 35.22% 
sensitivity, 65.88% precision, and 98.83% specificity, while for 
class V, the method exhibited 88.35% sensitivity, 79.86% 
precision, and 94.92% specificity. 

Garcia et al. [22] presented an innovative approach wherein 
they proposed an ECG representation based on 
vectorcardiogram, termed temporal vectorcardiogram. They 
employed a complex network for feature extraction and fine-
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tuned an SVM classifier using the particle swarm optimization 
algorithm. The results of their approach, applied to inter-patient 
analysis on the MIT-BIH arrhythmia database, demonstrated a 
precision of 53% for class S and 87.3% for class V. 

Wang et al. [23] introduced an automated ECG 
classification method that relies on Continuous Wavelet 
Transform (CWT) and CNN. The CWT is employed to 
decompose ECG signals, yielding distinct time-frequency 
components. Subsequently, the CNN is utilized to extract 
features from the 2D-scalogram composed of these time 
frequency components. 4 RR interval features are extracted and 
combined with the CNN features and inputted into a fully 
connected layer. The proposed model demonstrated a 
sensitivity of 99.04%, precision of 98.04%, and specificity of 
87.95% for class N. For class S, the model achieved a 
sensitivity of 70.75%, precision of 77%, and specificity of 
99.51%. Additionally, for class N, the sensitivity, precision, 
and specificity were 94.35%, 95.32%, 99.45%, respectively. 

Takalo et al. [24] introduced a method for inter-patient 
ECG heartbeat classification, leveraging a deep CNN. Their 
proposed approach demonstrated commendable performance, 
achieving a sensitivity of 92% and precision of 97% for class 
N. Additionally, for class S, the method attained a sensitivity of 
62% and precision of 56%. Finally, in the case of class V, their 
approach yielded a sensitivity of 89% and a precision of 51%. 

Junaid et al. [25] proposed a 1D self-organized operational 
neural network for the inter-patient classification of ECG 
heartbeats from the MIT-BIH arrhythmia database. Their 
method exhibited an overall accuracy of 95.99% across: N, S, 
and V. Specifically, for class N, the proposed method achieved 
a sensitivity of 98.48%, precision of 97.39%, and specificity of 
76.82%. In the case of class S, they attained a sensitivity of 
44.01%, precision of 64.50%, and a specificity of 99.01%. 
Lastly, for class V, the method demonstrated a sensitivity of 
92.96%, precision of 89.62%, and a specificity of 99.22%. 

He et al. [26] introduced a new method, multi-level 
unsupervised domain adaptation framework (MLUDAF), for 
diagnosing ARRs. They used the spatial pyramid pooling 
residual (ASPP-R) module to extract spatio-temporal features 
and employed the graph convolutional network (GCN) module 
for data structure features. In domain adaptation, they aligned 
domains, semantics, and structures. Testing on MIT-BIH 
yielded a 96.8% overall accuracy. Notably, the model achieved 
97.8% sensitivity and 99.5% precision for N class, 89.2% 
sensitivity and 90.4% precision for V class, and 90.2% 
sensitivity and 53.2% precision for S class. 

It's crucial to highlight those previous studies have largely 
overlooked classes F and Q due to their minimal representation 
(less than 1%) in the MIT-BIH dataset. As these classes make 
an insignificant contribution to overall performance, they were 
excluded. Including them in model training would lead to an 
imbalanced dataset, adversely impacting classification results. 
Thus, this research focuses exclusively on classes N, S, and V 
for a more effective analysis. 

B. Limitations and Gaps in Previous Studies 

It's noteworthy that Wang et al. [23] achieved the best 
results in distinguishing N, S, and V classes, with an overall 

accuracy of 97.68%. However, their approach fell short, 
particularly in classifying S with a sensitivity below 70.75% 
and limited precision at 77%. Similar limitations were 
observed in class V, where sensitivity did not exceed 94.35%, 
and precision reached only 95.32%. This underscores the need 
for a novel approach to enhance predictions for N, S, and V. 

In previous studies, various methods and approaches based 
on intelligent models have been employed to classify N, S, and 
V classes, yet the classification results remain inadequate for 
clinical applications. Therefore, in this research, we aim to 
investigate the efficacy of a deep feature extraction method 
using WST, complemented by a second stage feature extraction 
through 1D CNN. Our objective is to improve prediction and 
classification results for the three classes. 

The rationale for selecting the WST lies in its robust 
capability to extract both time-domain and frequency-domain 
features crucial for effectively distinguishing between the three 
classes. Furthermore, the choice of the 1D CNN in this study is 
justified by its inherent feature extraction stage, which 
facilitates the extraction of deeper features. Additionally, the 
1D CNN has demonstrated remarkable performance in various 
classification tasks, underscoring its widespread applicability 
and effectiveness in classification endeavors. 

The combination of these two techniques aims to address 
the limitations encountered in previous works and improve the 
prediction accuracy of the 3 ECG classes. This enhancement 
holds significant promise for advancing the field of automated 
detection of ARR in ECG. By integrating the WST and 1D 
CNN, our study seeks to surpass the constraints of prior 
methodologies and achieve more precise classification results. 

III. MATERIALS AND METHODS 

A. Database Description 

The research relies on publicly available data from 
PhysioNet, accessible at the following link: 
https://www.physionet.org/content/mitdb/1.0.0/. The ECG 
readings were extracted from the MIT-BIH Arrhythmia 
database, comprising 48 half-hour excerpts of two channel 
ambulatory ECG recordings [27]. 

The recordings were digitized at a rate of 360 samples per 
second per channel, with an 11-bit resolution over a 10 mV 
range. The records used in this study are taken from the lead II, 
because lead II is positioned along the axis of the heart, making 
it particularly sensitive to changes in heart's rhythm that occur 
in this plane. So, it’s an important tool for detecting ARRs. 

In this study, recordings with paced beats were excluded 
from the MIT-BIH dataset, specifically four recordings (102, 
104, 107, and 217) out of the total 48. The reason for excluding 
those patients from the analysis was that they had cardiac 
pacemakers, which had the potential to cause interference. 

B. Data Preprocessing 

Our study focuses on long-term ECG signals from the 
MIT-BIH database, aiming to classify heartbeats into three 
categories: N, S, and V. To achieve this, a QRS detection 
algorithm is essential for extracting distinct ECG heartbeats 
from a single recording. Numerous approaches have been 
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explored in the realm of QRS detection, ranging from the 
foundational Pan-Tompkins algorithm [28] to wavelet-based 
techniques [29-30], and even machine learning models [31]. 

In our investigation, the Pan-Tompkins algorithm was 
opted due to its proven accuracy in QRS detection, achieving 
an impressive 99.3% accuracy when tested on the MIT-BIH 
arrhythmia database. Additionally, the algorithm exhibits a 
lower computational cost compared to alternative QRS 
detection models. This choice aligns with our goal of 
efficiently and accurately discerning QRS complexes in ECG 
signals for subsequent heartbeat classification. 

Following the QRS complex detection using the Pan-
Tompkins algorithm, 70 samples before and 70 samples after 
each R peak were extracted, resulting in a total of 141 samples 
per heartbeat. Fig. 1, Fig. 2, and Fig. 3 depict three distinct 
types of ECG heartbeats: N, S, and V. To accommodate 
variations in heart rate, the difference between the post-RR 
interval and pre-RR interval was incorporated into the samples. 

To ensure a fair comparison with previous automated 
heartbeat classification models, a data split strategy consistent 
with state-of-the-art approaches was adopted. Similar to these 
studies, 44 MIT-BIH recordings (excluding four with paced 
beats) were partitioned into two subsets. Half of the recordings 
(DS1) were utilized for training, while the remaining 
constituted the test set (DS2). The distribution of the data used 
in this paper is outlined in Table II. This inter-patient data split 
methodology enhances the development of well-generalized 
model, capable of effectively classifying ECG from new, 
unseen patients. 

In this paper, the DS1 subset was employed for model 
training and DS2 for testing. A notable observation within DS1 
revealed a substantial class imbalance, where the N class 
boasted 46,596 instances, while the minority classes, S and V, 
were represented by 1,669 and 3,799 instances, respectively. 
Recognizing that training on such an imbalanced dataset could 
skew results towards the majority class and amplify bias, we 
implemented the Synthetic Minority Over Sampling Technique 
(SMOTE) [32]. SMOTE proved instrumental in mitigating this 
imbalance by generating synthetic instances for the minority 
class. This strategic approach aimed to rectify the skewed class 
distribution, and foster more equitable representation of each 
heartbeat type during training. By addressing this imbalance, 
we sought to enhance the classification performance of our 
model, ensuring its effectiveness across all classes. 

 
Fig. 1. Non-Ectopic beat. 

 
Fig. 2. Supraventricular ectopic beat. 

 
Fig. 3. Ventricular ectopic beat. 

TABLE II. RECORDS AND HEARTBEAT CLASSES PARTITION 

Partition Patients ID N S V 

DS1 

101, 106, 108, 109, 112, 114, 115, 
116, 118, 119,122,124, 201, 203, 

205, 207, 208,209, 215,220, 223, 

230 

46596 1669 3799 

DS2 

100,103,105, 111, 113,117, 121, 

123, 200, 202,210, 212, 213,214,  

214,219,221,222,228,231,232, 
233,234 

43478 1110 3681 

Total  90074 2779 7480 

C. Deep Features Extraction 

To achieve accurate ECG heartbeat classification, it is 
crucial to employ a feature extraction technique. Two main 
types of features play a key role in this process: time-domain 
features, which capture and analyze signal amplitudes over 
time, and frequency-domain features, providing insights into 
different signal frequencies. However, traditional approaches 
like Fourier transform, commonly used for extracting 
frequency-domain features, lack temporal information, only 
revealing the frequencies present in the signal. Addressing this 
limitation, the wavelet scattering transform (WST) emerges as 
a solution. Fig. 4 illustrates the composition of a wavelet 
scattering network, featuring multiple layers where WST, akin 
to a CNN with cascading wavelets, is performed at each layer. 

The WST offers features that exhibit stability against 
deformation, as well as invariance to translation and rotation. 
Notably, it serves as a potent technique for signal denoising 
and dimensionality reduction. Applied extensively in audio, 
image, and 1D signal analysis [33]. 
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Fig. 4. Scattering network architecture 

This paper introduces the Morlet analytic wavelet, offering 
several advantages. Firstly, being a complex wavelet, it allows 
the utilization of both its real and imaginary components in 
convolution processes. Additionally, the wavelet features a 
low-pass filter represented by the modulus of this wavelet, 
facilitating down-sampling during the scattering transform. 

Moreover, Fig. 5 highlights the remarkable similarity 
between the shape of this complex wavelet and the QRS 
complex in ECG heartbeats. This similarity enhances its 
sensitivity in analyzing and detecting ARR within ECG 
signals. The expression below represents the mathematical 
representation of the complex wavelet employed. 

 ( )   
 

√    
 
   

                                    (1) 

In the given expression, t corresponds to time, and σ stands 
for the standard deviation of the Gaussian function. ω is 
defined as 2πf, where f is the center frequency of ψ, and i is the 
imaginary unit. The envelope of the complex wavelet is 
characterized as a low-pass filter denoted as Φ in Eq. (2). 

 ( )   | ( )|                                    (2) 

The WST initiates by convolving x(t), which represents the 
signal being analyzed, with Φ. 

                                ( )   ( )                                   (3) 

The wavelet function ψ and the low-pass filter Φ are 
specifically designed to span the entire frequency range of the 
signal x(t). The low-pass filter introduces a form of averaging, 
ensuring locally invariant translation features of x. However, 
the initial order of the Wavelet Scattering Network (WSN) 
results in the loss of high frequencies, which can be restored by 
progressing to the subsequent order of the WSN. 

In the 1
st
 order of the WSN, an additional convolution was 

applied using the wavelet     with the scale   . Here,     

*   +     , where,     represents the multi-scale high-pass 

filter bank, and    represents the family of wavelet indices 
with an octave frequency resolution   . 

             |  |  *   ( ) |     |+                        (4) 

The 1
st
 order scattering coefficients result from the 

convolution with the low-pass filter Φ. 

                 ( )  *|     |   +                             (5) 

To retrieve the information (high frequencies) lost during 
the application of the low-pass filter, the second order of the 
WSN was proceed. 

         |  |  *   ( ) |     |     +                    (6) 

Obtaining the 2
nd

 order coefficients of the WSN involves 
applying convolution with the low-pass filter Φ. 

                ( )  *||     |     |   +                     (7) 

Similarly, we iterate through this process to determine the 
coefficients of the n

th
 order in the scattering network. 

   ( )  *|  ||     |     |       |   +*      + *      +   

(8). 

The final scattering matrix coefficients represented as: 

                       ( )  *          +                               (9) 

    In this study, only a 2
nd

 order WSN was used. This is 
because 99% of the energy of the signal under analysis is 
preserved in this layer. Furthermore, the addition of more 
layers to the network would result in a loss of information 
about the signal and an increase in computational cost. 

For the representation of a single ECG heartbeat, applying 
the WST yields a tensor of size 34x5, which serves as the 
feature matrix. The scattering coefficients undergo critical 
down sampling based on the bandwidth of the low-pass filters, 
generating five-time windows for each of the 34 scattering 
paths. Each row and column in the tensor correspond to a 
specific scattering path and time window. Furthermore, the 
difference between post-RR and pre-RR interval was 
introduced through feature fusion, oversampling this value by a 
factor of 34. So, the final representation of the feature matrix is 
size 34x6. With a total of 48,269 testing instances, this results 
in a tensor size of 48,269x34x6. Same process is applied to 
training instances. 

Utilizing the WSN with an invariance scale of 0.3 seconds 
and employing   =8 and   =1 as the quality factors for the 2 
filter banks. The frequency bands of the 1st and 2nd filter 
banks are illustrated in Fig. 6. 

Fig. 7 displays the scattering coefficients obtained through 
the application of WST. These coefficients serve as a visual 
representation of the hierarchical feature extraction process. 
The scattering coefficients indicate the presence and 
distribution of significant features within the signal, offering 
insights into the signal's composition at various levels. 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 15, No. 2, 2024 

623 | P a g e  

www.ijacsa.thesai.org 

 
Fig. 5. Morlet Analytics wavelets. 

 

Fig. 6. Frequency bands of first and second filter banks. 

 
Fig. 7. Scattering coeffecients for one ECG heartbeat. 
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At a glance, one can observe the dominant patterns and 
structures captured by the different orders of scattering. Higher 
order coefficients reveal more intricate details and relationships 
within the signal, while lower order coefficients highlight 
foundational features, analyzing the spatial distribution and 
patterns in these coefficients aids in interpreting the 
discriminative aspects and inherent characteristics of the signal 
under consideration. This visual representation enhances the 
understanding of how the WST effectively captures and 
organizes relevant information for further analysis. 

The WSN was implemented in the MATLAB environment, 
with the WSN parameters configured for an invariance scale of 
0.3 seconds. The sampling frequency was set at 360 Hz. 

D. Classification Model 

In our research endeavor, a 1D Convolutional Neural 
Network (1D CNN) was meticulously utilized to address the 
intricate task of classifying ECG heartbeats into three 
discernible categories. This deliberate choice of utilizing a 1D 
CNN stems from its widely acknowledged effectiveness in 
both the realms of classification and feature extraction, a 
critical aspect of signal analysis. 

The architecture of the 1D CNN unfolds in a systematic 
manner, featuring two fundamental components. In the initial 
phase, convolution is employed with fixed-size filters to extract 
salient features from the signal under scrutiny. This process 
plays a pivotal role in enhancing the network's ability to 
discern subtle patterns inherent in ECG data. The subsequent 
infusion of non-linearity is achieved through the application of 
the (ReLU) activation function, a prevalent choice in this 
context due to its efficacy in preventing vanishing gradient. 

Moving forward, the convolutional stage is followed by 
pooling, strategically implemented to reduce the 
dimensionality of the extracted features. This reduction not 
only aids in computational efficiency but also enhances the 
network's ability to focus on the most relevant information for 
subsequent classification steps. 

The final stages of the 1D CNN involve a fully connected 
layer, which serves as a critical bridge between the extracted 
features and the subsequent classification process. The output 
layer, equipped with an activation function tailored for signal 
classification, culminates in the conclusive step of categorizing 
ECG signals into their respective classes. 

One notable distinction in our approach is the deliberate 
choice of a 1D CNN over a 2D CNN. This decision is rooted in 
a keen consideration of computational costs, with the 1D CNN 
proving to be a more resource-efficient solution. This 
pragmatic approach underscores our commitment to not only 
achieving high classification accuracy but also optimizing the 
computational demands, making our methodology a judicious 
choice for real-world applications. 

Our designed 1D CNN boasts a sophisticated architecture 
comprising a total of 11 layers. The inaugural layer, known as 
the sequence input layer, plays a crucial role in organizing 
input rows as sequences, setting the stage for subsequent 
treatment. Following this, our 2

nd
 layer takes the form of a 

convolution layer with a filter size of 3 and 64 filters. Notably, 

a fixed padding size of [2,0] was employed to enhance the 
convolutional process. In the 3

rd
 layer, the non-linearity was 

infused into the model through the ReLU activation function. 
Finally, the 4

th
 layer introduces a normalization step, a pivotal 

measure prevented the exploding gradient phenomenon. In the 
5

th
 layer, another convolution layer was employed with a filter 

size of 3 and an increased 128 filters. Accompanied by a 
padding size of [2,0], this convolutional stage is complemented 
by ReLU activation and normalization. 

The convolution, ReLU, and normalization processes are 
represented by the following Eq. (10), Eq. (11) and Eq. (12). 

                            ∑   
   
                           (10) 

In the output feature map, yi represents the output at 

position i where b is the bias term, wj is the weight at position j 

in the filter kernel, xi+j refers to the input at position i+j in the 

input feature map, and n denotes the width of the filter kernel. 

The ReLU function sets negatives to zero, leaving positives 

unaffected. 

                                        (    )                                (11) 

The normalization process can be modeled as follows. 

                                           
   

 
                                        (12) 

where,   designed the mean value and   is the standard 
deviation. 

In the 8
th
 layer, global average 1D pooling is applied to 

decrease dimensionality. Subsequently, a fully connected layer 
with an output layer featuring a SoftMax activation function 
follows. Eq. (13) and Eq. (14) below illustrate the fully 
connected layer and the SoftMax activation function. 

        ∑    
 
                                      (13) 

    
   

∑     
   

                                    (14) 

where, Yc is the predicted probability for class c after 
applying the SoftMax activation function. 

Fig. 8 illustrates the architecture of our 1D CNN designed 
for the classification process, while Table III displays the 
specific parameters set for training the model. 

E. Evaluation Metrics 

In assessing the efficacy of our model and conducting a 
comprehensive comparison with state-of-art models, it 
becomes imperative to employ a spectrum of performance 
metrics. Key measures, including accuracy, sensitivity, 
specificity, precision, and the F1 score, play pivotal roles in 
providing a nuanced evaluation of the model's capabilities. 
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F. System Description 

All algorithms were implemented using MATLAB version 
R-2021b on a Windows server. The system used for execution 
had an Intel Core i5 6300U processor running at 2.40 GHz, 
equipped with 12 GB of RAM, and operated on a 64-bit. 

 
Fig. 8. 1D CNN architecture. 

TABLE III. 1D CNN HYPERPARAMETERS 

Hyperparameters Values 

Optimizer adam 

No. epochs 300 

Learning rate 0.01 

Batch size 64 

Weights initializer glorot 

Bias inintializer zeros 

No. layers 11 

Input size 34*6 

Input size of fully connected layer 128 

Output size of fully connected layer 3 

No. Classes 3 

Validation frequency 500 

IV. RESULTS AND DISCUSSION 

A. Results 

This paper introduces an innovative method for classifying 
ECG heartbeats into three categories (N, S, and V) following 
the AAMI standard. The primary goal is to improve accuracy, 
sensitivity, specificity, and F1 score for each class. 

To ensure a fair comparison with existing models, the data 
was divided into two subsets: DS1 for training and DS2 for 
validation, aligning with the MIT-BIH arrhythmia database. 

Our approach begins by employing the Pan-Tompkins 
algorithm for QRS detection, enabling the calculation of 
differences between post-RR intervals and pre-RR intervals. 

Subsequently, the WST was utilized to extract 
morphological features from ECG heartbeats. Combining these 
features with the calculated post-RR and pre-RR results in a 
34x6 matrix for each ECG heartbeat. This matrix is then fed 
into a specially designed 1D CNN for classification, as 
illustrated in Fig. 9. 

By integrating these techniques, the classification 
performance aimed to be enhanced and contributed to the field 
of ECG heartbeat analysis. 

After training our 1D CNN model with DS1 heartbeats, it 
was tested on DS2, revealed notable results. Among 43,478 
actual N heartbeats, the model correctly identified 42,891, but 
intriguingly, it misclassified 191 N heartbeats as V and 396 as 
S. This misclassification stems from the morphological 
closeness between N and S classes. Similar challenges were 
observed in the S class, where out of 1,110 actual S heartbeats, 
863 were accurately detected, but 232 were misclassified as N 
and 15 as V. 

Conversely, for the V class heartbeats, out of 3,681 actual 
V heartbeats, the model successfully classified 3,580, with only 
91 misclassified as N and 10 as S. This outcome aligns with the 
distinct morphological differences observed between V and S. 

The precision analysis unveils that the model excels in 
detecting N and V classes but demonstrates lower precision for 
S heartbeats. This nuanced understanding is crucial, 
emphasizing the challenges posed by morphological 
similarities, especially between N and S classes. 

The testing data's confusion matrix, depicted in Fig. 10, 
encapsulates these findings, providing a visual representation 
of the model's performance across the three heartbeat 
categories. 

Our model's performance was evaluated using various 
metrics. Based on the confusion matrix in Fig. 10, our model 
achieved an average accuracy of 98.71% across three classes. 
The average precision stood at 87.27%, with an average 
sensitivity of 91.22%. Additionally, an average specificity of 
97.31% and an average F1 score of 89.13% was attained. 
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B. Discussion 

In this research, a comparison with state-of-art models was 
conducted, utilizing the MIT-BIH arrhythmia database and 
adopting the same inter-patient data partitioning (DS1 for 
training and DS2 for testing). The results, illustrated in Table 
IV, underscore the superior performance of our proposed 
model across various evaluation metrics. 

Notably, for the N class, our model demonstrated 
remarkable precision at 99.25%, coupled with a specificity of 

93.26% and F1 score of 98.95%. Furthermore, our model 
showcased superiority in the S class, achieving a noteworthy 
sensitivity of 77.75%. This trend persisted in the V class, 
where our model outperformed the state-of-art models across 
multiple metrics, attaining a sensitivity of 97.26%, specificity 
of 99.54%, and an F1 score of 95.89%. These results 
underscore the efficacy of our model in effectively 
distinguishing between N, S, and V. 

TABLE IV. COMPARISON WITH STATE OF ART MODELS 

Methods N S V 

 SEN PRE SPE F1 SEN PRE SPE F1 SEN PRE SPE F1 

Sellami et al. [18] 94 98 82.55 95.95 61.96 52.96 97.89 57.10 87.34 59.44 95.91 70.73 

Li et al. [19] 88.52 98.80 91.3 93.37 82.04 30.44 92.8 44.40 92.05 72.13 97.54 80.88 

Garcia et al. [20] 94.54 93.33 80.8 93.93 35.22 65.88 98.83 45.90 88.35 79.86 94.92 83.89 

Wang et al. [21] 99.04 98.64 87.95 98.83 70.75 77.0 99.51 73.74 94.35 95.32 99.54 94.83 

Takalo et al. [22] 91.89 97 76.93 94.37 62.49 55.86 98.11 58.98 89.23 50.58 94.02 64.56 

Junaid et al. [23] 98.48 97.39 76.82 97.93 44.01 64.50 99.01 52.32 92.96 89.62 99.22 91.25 

Present Work 98.65 99.25 93.26 98.95 77.75 68.01 99.14 72.55 97.26 94.56 99.54 95.89 

 
Fig. 9. An overview of the sequential steps for classifying heartbeats 

 

Fig. 10. Testing confusion matrix. 

In our investigation, our analysis was extended by 
comparing the overall accuracy achieved in this study with 
results from previous works, as detailed in Table V. Sellami et 
al. [18] achieved an overall accuracy of 92.4% in identifying 
ECG heartbeats with their proposed approach. In contrast, Li et 
al. [19] attained an overall accuracy of 88.34% with their 
method. Among all the other previous works, Wang et al. [21] 

achieved the highest overall accuracy of 97.68%. The findings 
reveal that our proposed model successfully detected 47,334 
out of 48,269 instances during testing, yielding an impressive 
overall accuracy of 98.06%. This value signifies that our model 
accurately classified 98.06% of the tested heartbeats. 
Importantly, this overall accuracy underlines the superiority of 
our model over existing automated classification models. 

TABLE V. OVERALL ACCURACY COMPARISON WITH OTHER PREVIOUS 

WORKS. 

Methods Overall accuracy % 

Sellami et al. [18] 92.4 

Li et al. [19] 88.34 

Garcia et al. [20] 88.99 

Wang et al. [21] 97.68 

Takalo et al. [22] 89.91 

Junaid et al. [23] 95.99 

Present Work 98.06 
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V. CONCLUSION 

In this study, an approach was introduced by combining 
WST for deep feature extraction with 1D CNN classifier. Our 
model's evaluation, employing inter-patient partitioning, 
enhances its generalizability for potential clinical applications. 

Our results showcase the superiority of our model over 
state-of-art models. Achieving an overall accuracy of 98.06%, 
our model excelled in distinguishing between three heartbeat 
classes. Specifically, it demonstrated a sensitivity of 98.65%, 
precision of 99.25%, and specificity of 93.26% for the N class. 
For the S class, our model achieved a sensitivity of 77.75%. 
Additionally, it outperformed in the V class with a sensitivity 
of 97.26%, precision of 94.56%, specificity of 99.54%, and an 
F1 score of 95.89%. These results highlight the significant 
advancement our model brings to the field. 

VI. LIMITATIONS AND FUTURE WORK 

Despite these successes, our method has limitations. The 
computational cost of our feature extraction method is notable 
due to numerous arithmetic operations during convolution. 
Furthermore, our model shows room for improvement in 
evaluating the S class, with an F1 score not exceeding 72.55%. 

Future work will concentrate on mitigating computational 
costs by identifying essential wavelets for optimal results. 
Additionally, we aim to conduct an in-depth analysis of ECG 
heartbeats to enhance our model's predictive capabilities for the 
S class. These advancements will further solidify the 
applicability and efficiency of our proposed method. 
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