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Abstract—Federated Learning (FL), a crucial advancement in 

smart city technology, combines real-time traffic predictions with 

the potential to enhance urban mobility. This paper suggests a 

novel approach to real-time traffic prediction in smart cities: a 

hybrid Convolutional Neural Network-Recurrent Neural 
Network (CNN-RNN) architecture. The investigation started 

with the systematic collection and preprocessing of a low-

resolution dataset (1.6 GB) derived from real-time Closed Circuit 

Television (CCTV) traffic camera images at significant 

intersections in Guntur and Vijayawada. The dataset has been 
cleaned up utilizing min-max normalization to facilitate use. The 

primary contribution of this study is the hybrid architecture that 

it develops by fusing RNN to detect temporal dynamics with 

CNN for geographic extraction of characteristics. While the 

RNN's recurrent interactions preserve hidden states for 
sequential processing, the CNN efficiently retrieves high-level 

spatial information from static traffic images. Weight 

adjustments and backpropagation are used in the training of the 

proposed hybrid model in order to enhance real-time predictions 

that aid in traffic management. Notably, the implementation is 
done with Python software. The model reaches a testing accuracy 

of 99.8% by the 100th epoch, demonstrating excellent 

performance in the results and discussion section. The Mean 

Absolute Error (MAE) results, which show a 4.5% improvement 

over existing methods like Long Short Term Memory (LSTM), 
Support Vector Machine (SVM), Sparse Auto Encoder (SAE), 

and Gated Recurrent Unit (GRU), illustrate the efficacy of the 

model. This demonstrates how well complex patterns may be 

represented by the model, yielding precise real-time traffic 

predictions in crowded metropolitan settings. A new era of more 
precise and effective real-time traffic forecasts is about to begin, 

thanks to the hybrid CNN-RNN architecture, which is validated 

by the combined strengths of FL, CNN, and RNN as well as the 

overall outcomes. 
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I. INTRODUCTION 

Federated Learning which tackles privacy issues and 
decentralizes model training, is a paradigm shift in machine 

learning. Due to the transmission and storage of sensitive data, 

traditional machine learning models are frequently trained on 
centralized servers using aggregated datasets, which raises 

privacy concerns [1]. Conversely, Federated Learning enables 

cooperative model training across decentralized devices, such 

as servers, edge devices, and smartphones, without requiring 

raw data exchange [2]. This novel method preserves the 
privacy of local data while enabling individual devices to 

make improvements to the model. Federated Learning is a 
tempting option for applications in healthcare, finance, and, 

most importantly, the setting of smart cities. It is especially 
applicable in situations where data privacy is a top priority [3]. 

The integration of technology to improve urban living is a 

hallmark of smart cities, and federated learning is essential to 
this shift. It is clear that efficient and private-preserving 

machine learning solutions are needed in the context of smart 
cities, where enormous volumes of data are produced on a 

regular basis from many sources [4]. Smart city applications 
that make use of Federated Learning may train models 

collaboratively with data from disparate sensors, devices, and 
systems dispersed across the city. This method is especially 

applicable to situations where precise decision-making 

requires the aggregation of real-time data, such as energy 
management, pollution monitoring, and traffic prediction [5]. 

Because Federated Learning is decentralized and keeps 
data localized, it naturally addresses privacy issues. To protect 

contributor privacy, only model changes are shared rather than 
raw data that is sent to a central server. This is particularly 

important in smart cities, where there is a need to manage data 

from several sources carefully, such as public databases, IoT 
devices, and security cameras [6]. In order to guarantee the 

safe and private transmission of model changes, Federated 
Learning also uses cryptographic methods and secures 

aggregation protocols. Federated Learning is a desirable 
alternative for implementing machine learning solutions in the 

delicate and changing contexts of smart cities because of these 

privacy and security constraints. 

Federated Learning presents problems in addition to its 

many appealing benefits. Non-trivial problems include 
coordinating model updates from a variety of devices, 

handling heterogeneous data sources, and controlling 
communication overhead. Through breakthroughs like 

federated optimization algorithms, model compression 
approaches, and effective communication protocols, 

researchers and practitioners are actively attempting to 
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overcome these difficulties [7]. Federated Learning will be 
more effective, scalable, and suitable for a larger range of 

smart city use cases thanks to these developments. Federated 
Learning is becoming more and more popular in smart cities, 

as seen by practical uses. Decentralized machine learning is 

helping smart cities anticipate traffic patterns, optimize waste 
management, and improve public safety. Success tales 

emphasize decreased latency, increased prediction accuracy, 
and above all the protection of citizen privacy. Federated 

Learning is positioned to be a key player in creating data-
driven and privacy-preserving urban ecosystems as smart city 

programmes continue to grow [8]. 

Federated Learning has a bright future in smart city 
applications. Federated Learning is anticipated to become an 

essential component in the creation and implementation of 
intelligent systems as technology develops and the need for 

privacy-preserving solutions increases. The responsible and 
ethical deployment of Federated Learning in smart city 

contexts will depend heavily on the cooperation of academics, 

business, and government in tackling the remaining obstacles. 
Federated Learning stands out as a critical enabler as cities 

work to become more interconnected, effective, and 
sustainable [9]. It provides a means of using the combined 

intelligence of dispersed data sources while preserving 
people's security and privacy in urban areas. Smart cities are 

metropolitan regions that use data and technology to improve 

the effectiveness and standard of urban living. Cities must 
manage intricate systems like transit as the globe grows more 

urbanized in order to provide smooth movement for its 
citizens. Improving overall urban mobility, streamlining 

transport networks, and lowering congestion all depend 
heavily on real-time traffic forecast. The dynamic nature of 

urban areas presents challenges for traditional approaches of 
traffic prediction. Using cutting-edge technology like 

Federated Learning has become a viable strategy to solve 

these issues. 

For efficient urban planning and administration, traffic 

prediction is essential. It makes it possible for local 
government officials to improve public transport services, 

optimize traffic signal timings, and proactively handle traffic 
congestion. Individual commuters can also benefit from real-

time traffic data, which can assist them in making well-

informed decisions regarding their travel schedules and routes. 
Predictive models allow smart cities to be proactive in 

addressing traffic problems, lessening their negative effects on 
the environment, and improving the general quality of life for 

their citizens [10]. By using a decentralized machine learning 
technique called federated learning, models may be trained on 

many servers or devices without requiring the exchange of 

raw data. Federated Learning is an innovative approach for 
privacy and data security in the context of smart cities. 

Without jeopardizing personal privacy, traffic data from 
several sources including sensors, GPS units, and cameras can 

be used to train models. Through collaboration, heterogeneous 
statistics from various sections of the city are leveraged to 

create strong and reliable traffic forecast models. 

Federated Learning has many benefits, but there are 

drawbacks as well. It takes significant planning to coordinate 

and aggregate models from many places while upholding data 

security and privacy. Federated Learning implementation in 
real-time traffic prediction also requires eliminating potential 

biases and guaranteeing the interoperability of heterogeneous 
datasets. But there are also a lot of potential since this strategy 

enables cities to use the combined wisdom of disparate data 

sources to create traffic forecast models that are more precise 
and flexible [11]. Several smart cities worldwide have already 

started exploring the potential of Federated Learning for real-
time traffic prediction. Case studies illustrate the successful 

implementation of this technology, showcasing improvements 
in traffic flow, reduced congestion, and enhanced 

transportation services. These examples serve as inspiration 

for other urban centers seeking innovative solutions to address 
their unique traffic management challenges. As smart cities 

continue to evolve, the integration of Federated Learning for 
real-time traffic prediction holds great promise [12]. The 

future implications extend beyond traffic management to 
contribute to a broader vision of sustainable and intelligent 

urban living. Cities can address existing transportation 

difficulties and provide the groundwork for a more connected, 
efficient, and resilient urban future by embracing cutting-edge 

technology like Federated Learning. The success of smart 
cities is largely determined by the cooperation of technology, 

data science, and urban planning; a crucial element of this 
revolutionary process is real-time traffic forecast. 

The research questions for utilizing federated learning for 

enhanced real-time traffic prediction in smart urban 
environments may include:  

 How can federated learning algorithms be adapted or 
optimized to effectively leverage distributed data 

sources for real-time traffic prediction in dynamic 
urban environments? 

 What strategies can be employed to address privacy 
concerns while aggregating and learning from 

decentralized traffic data in federated learning settings? 

 How can federated learning models be integrated with 
existing traffic prediction systems to enhance accuracy 

and reliability in smart urban environments? 

The research objectives could be: 

 To investigate and analyze existing federated learning 
algorithms and assess their suitability for real-time 

traffic prediction tasks. 

 To develop novel techniques for privacy-preserving 

federated learning in the context of traffic prediction, 
ensuring compliance with regulatory standards and 

user privacy preferences. 

 To design and implement a federated learning 
framework that integrates seamlessly with urban traffic 

monitoring systems, enabling real-time data exchange 
and model training across distributed nodes. 

The research significance lies in its potential to 
revolutionize traffic prediction systems in smart urban 

environments by leveraging federated learning techniques. By 

addressing privacy concerns and enabling decentralized model 
training, this research could pave the way for more accurate, 
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efficient, and scalable traffic prediction systems that can adapt 
to the dynamic nature of urban environments. Furthermore, 

the outcomes of this research could have broader implications 
for the development of federated learning applications in other 

domains, contributing to advancements in decentralized 

machine learning and data privacy preservation. 

The key contributions of the paper are given as follows: 

 The study presents unique hybrid architecture for real-
time traffic prediction in smart cities that combines 

CNN and RNN. This combination of techniques 
incorporates the best aspects of temporal analysis from 

RNN, which identifies sequential patterns and 

relationships in traffic data with spatial evaluation from 
CNN, which identifies high-level characteristics from 

static traffic images. 

 In contrast to traditional models, the suggested method 

combines geographical and temporal components for 
traffic prediction. While the CNN module retrieves 

static geographical information to provide an extensive 
understanding of traffic patterns, the RNN component 

methodically examines sequential data, taking into 

account unpredictable shifts in traffic circumstances 
over time. 

 The study proposes a paradigm that improves privacy 
and efficiency by utilizing the concepts of federated 

learning. The federated learning strategy guarantees 
decentralized learning, protecting the privacy of 

individual sources of information while jointly 

enhancing the global model, by permitting local 
training on customer devices with locally produced 

data. 

 To maximize the model's performance, the hybrid 

model uses backpropagation-based training and weight 
modification techniques. In the end, this increases the 

accuracy of real-time traffic forecasts by allowing the 
network to adjust to complicated temporal correlations 

and geographical patterns in traffic information. 

 The suggested architecture is mostly used in the field 
of smart city traffic management. The model enhances 

road safety in urban contexts, reduces congestion, and 
improves traffic flow efficiency by improving real-time 

traffic forecast skills. The suggested model stands out 
as a complete response to traffic issues in smart cities 

due to its holistic approach, which takes into account 
both static and dynamic elements. 

The arrangement of the remaining content is as follows. 

The traffic prediction literature is illustrated in Section II. The 
Problem Statement is provided in Section III. The suggested 

method for predicting traffic in real-time in smart cities is 
discussed in Section IV. In Section V, the method's 

performance is compared to earlier approaches, and the 
performance measurements are illustrated along with a 

summary of the findings. The conclusion and future works is 

summarized in Section VI. 

II. RELATED WORKS 

The widespread use of Internet of Things (IoT) sensors 

and devices, in conjunction with artificial intelligence, has 

resulted in the creation of "smart environments [13]." 
However, these solutions have high latency conditions and 

more information transmission from a network standpoint. 
Accordingly, this paper suggests a Federated Learning 

structure for Real-Time Traffic Calculation, which is 
supported by Roadside Units for simulation aggregation. The 

solution envisions learning being done on clients with locally 

generated information, and fully dispersed on the Edge, with 
outstanding learning rates, low latency, and less bandwidth 

consumption. To that end, this paper addresses tools and 
necessities for FL implementation towards asynchronous 

traffic estimation, as well as how such an approach could be 
assessed employing VANET and network simulations. The 

study first provides a preliminary assessment of a learning 

model on a group of automobiles that exemplify a distributed 
learning technique as a practical step. The study intends to 

employ a distributed technique like to this one in our proposed 
design. It is necessary to talk about the suggested solution's 

suitability in situations when vehicular ad hoc networks aren't 
present. The study should examine the approach's flexibility 

given that not all places may have a substantial VANET 
infrastructure. 

Since federated learning is decentralized and protects data 

sources' privacy, it is commonly used in traffic forecasting 
employment requiring large-scale IoT-enabled sensor data. 

The current FL frameworks face significant overhead in 
communication when transmitting changes to parameter 

values for state-of-the-art deep learning-derived traffic 
indicators in FL systems, as the models' extensive and deep 

modelling necessitates the incorporation of a large number of 

parameters. To address this issue, we provide in this paper a 
workable FL scheme: Clustering-based modular and Two-

step-optimized FL [14]. The suggested plan uses a divide et 
impera technique to categorize the clients according to how 

comparable the parameters of their local models are. 
Researchers include the particle swarm optimization technique 

and develop a two-phase method for optimizing local models. 

This technique lowers the communication cost of the model 
update transmission in FL by allowing just one representative 

local model upgrade from each cluster to be published to the 
central server. In order for the gradient compression or 

sparsification-based techniques to coordinate and minimize 
communication cost, CTFed is perpendicular to them. 

Comprehensive case studies utilizing three real-world sets of 
information and three cutting-edge models show how the 

suggested approach excels in terms of training effectiveness, 

precise forecasting performance, and resilience to unstable 
network settings. The suggested scheme's scalability, 

however, could have drawbacks. In large-scale IoT-enabled 
networks of sensors, in particular, the number of clients can 

lead to computationally demanding clustering and 
optimization stages that compromise scalability. 

Recent developments in cloud computing, which offer near 

real-time processing along with storage scalability, have 
accelerated the development of data-intensive smart city 

applications. Millions of people rely on centralized, effective 
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route planning systems like Google Maps as a result of this. 
Algorithms for route planning have advanced along with the 

cloud settings in which they operate [15]. As current state-of-
the-art solutions are predicated on a shared memory paradigm, 

their deployment is constrained to data center multiprocessing 

scenarios. As a result of centralizing these functions, latency is 
becoming the limiting factor for emerging technology like 

driverless vehicles. These services also need connectivity to 
external networks, which raises questions about availability in 

the event of a disaster. As a result, this study offers a 
decentralized method for commercial fog network route 

planning. The study uses a hypothetical case study from a 

mid-sized American city to explore our method of 
cooperatively learning shared prediction models online, using 

recent breakthroughs in federated learning. However, a 
number of variables, such as network congestion, device 

malfunctions, and environmental circumstances, might affect 
the dependability and accessibility of private fog networks. 

The article ought to go into how the suggested strategy 

handles these kinds of obstacles. 

Intelligent transportation systems, particularly in urban 

settings, are undergoing a transformation as a result of the 
Internet of Things' exponential expansion [16]. Transport 

network intelligence and efficiency are improved by an 
Intelligent Transportation System by utilizing data analytics 

and communication technology innovations. These IoT-

enabled ITSs also produce a large amount of complicated data 
that is categorized as Big Data. Due to the enormous volume, 

velocity, diversity, and serious data privacy problems 
associated with Big Data, traditional information analysis 

frameworks require assistance in order to analyze it 
effectively. Federated Learning, which is well-known for 

protecting privacy, is a promising technique that may be used 
in ITSs to handle Big Data created by IoT devices. However, 

the variety of data, the varying nature of devices, and the 

dynamic environment in which ITS functions provide 
difficulties for the system. The concrete selection of an 

averaged technique during the server's aggregation phase and 
the practical training of dynamic clients are the main areas of 

recent endeavour to address these difficulties. The research 
that is now available, notwithstanding these efforts, still 

depends on customized FL with customized averages and 

customer education. In this study, a tailored architecture 
utilizing FL for effective and real-time large-scale data 

analysis in IoT-enabled ITSs is presented, along with an 
efficient Federated Averaging technique. The conventional 

averaging process is improved by applying a variety of 
customizing techniques. Weighted averaging and local fine-

tuning adapt the global algorithm to the unique client data. 

Further performance improvement is achieved by using 
custom learning rates. To keep the model's efficacy intact, 

regular assessments are recommended. The suggested 
architecture provides a complete solution for contemporary 

urban transportation systems utilizing Big Data, addressing 
important issues including actual existence federated 

environment applications integrating information, and 
substantial data protection. The study implements the 

suggested methods for vehicle detection on the Udacity Self-

Driving Car Database to show our model's effectiveness. The 
empirical findings confirm the architecture's superiority in 

terms of data privacy protection, instantaneous decision-
making capabilities, and scalability. 

Since sharing confidential information puts people's lives 
in danger, privacy concerns are seen as one of the biggest 

obstacles in smart cities. Federated learning has shown to be a 

successful method for both protecting privacy and optimizing 
data usage [17]. However, the amount of identifiable 

information acquired in smart cities is limited, while the 
amount of unlabelled data produced is abundant; this makes 

the use of semi-supervised learning necessary. We suggest 
FedSem, a semi-supervised collaborative learning technique 

that makes use of unlabelled data. The technique is split into 

two stages, the first of which uses the labelled data to train a 
global model. To enhance the model in the second stage, the 

study employs semi-supervised learning depending on the 
pseudo labelling approach. Utilizing the traffic sign dataset, 

the study ran a number of tests to demonstrate how FedSem 
may use unlabelled information to enhance accuracy 

throughout the procedure of learning by a maximum of eight 

percent. 

Over the next several decades, Artificial Intelligence will 

revolutionize many aspects of our lives and careers, from face 
recognition to autonomous driving. Current AI methods for 

urban computing face several obstacles, such as managing the 
processing and synchronization of massive amounts of data 

created by edge devices and protecting user privacy and 

security, including biometrics, geolocation, and itinerary data 
[18]. Conventional centralized-based methods need uploading 

all organizational data to a single database, which may be 
against the law according to data protection laws like the 

CCPA and GDPR. Federated Learning, a novel training 
paradigm, is suggested as a way to separate model training 

from the requirement to keep the data on the cloud. With FL, 
the danger of privacy leakage may be greatly reduced as 

several devices can work together to jointly build a common 

framework while retaining the training data locally on each 
device. However, data in urban computing situations are 

frequently asynchronous, high-frequent, and communication-
heavy, which presents additional difficulties for the 

implementation of FL. The study suggests StarFL, a novel 
hybrid federated learning architecture, as a solution to these 

problems. Secure key distribution, encryption, and decryption 

are made possible by StarFL in conjunction. Additionally, 
StarFL offers a verification method for every participant to 

guarantee the confidentiality of the local data. Furthermore, 
StarFL can offer precise timestamp matching to make it easier 

for several clients to synchronize. With all of these 
enhancements, StarFL is now more suitable for use in 

security-sensitive circumstances in the upcoming urban 

computing age. 

Through decentralized training initiatives, federated 

learning has already been utilized for a variety of activities in 
automated transportation systems to preserve data privacy 

[19]. When it comes to learning spatial information, most of 
the most sophisticated approaches in automated transportation 

systems depend on graph neural networks. The present 
architectures for federated learning in ITS activities utilizing 

GNN-based models are limited to safeguarding data privacy, 

and they fail to consider the topological data related to 
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transportation systems. To address this issue, the study 
presents a unique architecture for federated learning in this 

study. To safeguard the topological information, the study 
specifically presents an adjacency matrix preservation method 

that employs differential privacy. Additionally, the study 

suggests using an adjacency matrix aggregation technique to 
provide local GNN-based models access to the global network 

for improved training outcomes. Additionally, the study 
suggests the attention-based spatial-temporal graph neural 

networks model for traffic speed forecasting, which is based 
on GNNs. For traffic speed forecasting, we combine 

ASTGNN as FASTGNN with the suggested federated 

learning system. Numerous case studies using an actual 
dataset show that FASTGNN is capable of producing precise 

forecasts while adhering to the privacy preservation 
requirement. 

The fields of real-time traffic estimates and smart city 
applications have already investigated a number of 

approaches, such as graph neural networks, semi-supervised 

learning, and federated learning. Federated learning has 
proven successful in maintaining privacy, whereas FedSem 

and other semi-supervised learning techniques have tackled 
the difficulties associated with using unlabelled data. 

Transportation systems have used graph neural networks to 
extract topological information. But these methods frequently 

run into problems, such scalability problems in large-scale IoT 

networks, communication overhead, and dependence on 
specialized federated learning methods. Furthermore, 

difficulties with data synchronization, privacy issues, and 
processing needs have been identified. In order to overcome 

these drawbacks, the research suggests a hybrid CNN-RNN 
approach to real-time traffic prediction. This model seeks to 

improve precision as well as effectiveness in smart city traffic 
management by utilizing the advantages of both spatial as well 

as temporal analysis. 

The proposed utilization of FL for real-time traffic 
prediction in smart urban environments holds significant 

promise, addressing issues of privacy preservation and 
scalability inherent in centralized models. However, several 

limitations and challenges need to be considered. Firstly, the 
scalability of FL frameworks, particularly in large-scale IoT-

enabled networks, may be compromised due to computational 

demands during clustering and optimization stages. 
Additionally, while FL offers privacy protection, the 

decentralized nature of urban computing environments 
presents asynchronous, high-frequency, and communication-

heavy data, posing challenges for FL implementation. 
Moreover, existing FL architectures may not adequately 

address topological data related to transportation systems, 

necessitating innovative approaches for preserving such 
information while ensuring privacy. Furthermore, the 

effectiveness of FL techniques may be impacted by variables 
such as network congestion, device malfunctions, and 

environmental circumstances, which could affect the 
reliability and accessibility of FL-based traffic prediction 

systems. Thus, future research efforts should focus on 

addressing these limitations to realize the full potential of FL 
in enhancing real-time traffic prediction in smart urban 

environments. Table I shows the advantages and 
disadvantages of existing methods. 

TABLE I. ADVANTAGES AND LIMITATIONS OF EXISTING APPROACHES 

Authors Methods Advantages Limitations 

M. V. S. da Silva, L. F. 

Bittencourt, and A. R. 

Rivera, 

Utilizes FL for real-time traffic prediction, 

supported by Roadside Units for simulation 

aggregation. Learning done on clients with 

locally generated data, dispersed on the Edge, 

with low latency and less bandwidth 

consumption. 

Decentralized model training 

enhances privacy protection. 

Scalability due to distributed nodes. 

Computational demands in large-

scale networks may compromise 

scalability. Challenges with data 

synchronization and communication 

overhead. 

C. Zhang, L. Cui, S. Yu, and 

J. J. Q. Yu, 

Uses divide et  impera technique to categorize 

clients based on local model parameters. 

Incorporates particle swarm optimization and 

two-phase optimization for local models, 

reducing communication costs. 

Reduction in communication 

overhead. Effective training and 

precise forecasting performance. 

Resilience to unstable network 

settings. 

Computational demands during 

clustering and optimization may 

affect  scalability. 

M. Wilbur, C. Samal, J. P. 

Talusan, K. Yasumoto, and 

A. Dubey 

Hybrid federated learning architecture with 

secure key distribution, encryption, and 

decryption. Offers verification method for data 

confidentiality and precise timestamp 

matching for synchronization. 

Enhanced security and privacy 

protection. Precise timestamp 

matching improves data 

synchronization. 

Complexity in implementation and 

management. Potential performance 

overhead due to encryption and 

decryption processes. 

S. Kaleem, A. Sohail, M. U. 

Tariq, and M. Asim, 

Tailored architecture for real-time data 

analysis in IoT-enabled ITSs. Improves 

conventional averaging process with 

customizing techniques like weighted 

averaging, local fine-tuning, and custom 

learning rates. 

Improved data privacy protection and 

model effectiveness. Scalability with 

efficient  customization techniques. 

Complexity in customization and 

management. Potential performance 

overhead due to customization 

processes. 

A. Albaseer, B. S. Ciftler, 

M. Abdallah, and A. Al-

Fuqaha, 

Utilizes both spatial and temporal analysis for 

real-time traffic prediction. Combines 

advantages of CNNs and RNNs. 

Improved precision and effectiveness 

in traffic management. Enhanced 

capability for spatial and temporal 

analysis. 

Potential complexity in model 

architecture and training process.  

Dependency on accurate data 

synchronization and integration of 

spatial-temporal features. 
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III. PROBLEM STATEMENT  

Prior research in the field of smart city applications has 
examined a number of strategies, including semi-supervised 

learning, and graph neural networks, with a focus on real-time 
traffic estimates. Although federated learning has shown 

promise in protecting privacy and maximizing data use, large-

scale IoT-enabled networks may provide difficulties for 
current models due to high communication cost and scalability 

constraints. Furthermore, other research has addressed data 
security, synchronization, and topological data preservation 

difficulties. These initiatives, however, frequently have their 
own set of drawbacks, including high processing 

requirements, dependence on tailored federated learning 

strategies, and challenges managing asynchronous and highly 
communicative urban computing settings [20]. This paper 

suggests unique hybrid CNN-RNN architecture for real-time 
traffic forecasting in smart cities in light of these factors. By 

combining the advantages of recurrent neural networks for 
temporal evaluation and convolutional neural networks for 

spatial extraction of characteristics, the suggested model seeks 

to address the noted limitations and offer an efficient method 
for traffic prediction that takes into account both the static and 

dynamic aspects of the data. 

IV. FEDERATED LEARNING FOR REAL-TIME SMART CITY 

TRAFFIC FORECASTING 

In order to develop hybrid CNN-RNN architecture for 
real-time traffic prediction, two steps are involved in the 

proposed approach: first, data collecting and pre-processing. A 

systematically low-resolution dataset of 1.6 GB was created 
by methodically gathering real-time CCTV traffic camera 

images from important crossroads in the cities of Guntur and 
Vijayawada under a variety of situations. The dataset was pre-

processed, using min-max normalization to normalize pixel 
values, to improve usability. Next, the suggested hybrid model 

combines RNN to capture temporal elements of traffic data 

with CNN for extracting geographical features. The RNN uses 
recurrent interactions to preserve hidden states for sequential 

information processing. The CNN uses static traffic images to 
extract high-level spatial information. By utilizing weight 

adjustment and backpropagation-based training, this hybrid 

CNN-RNN architecture intends to enhance traffic 
management in smart cities by improving real-time traffic 

prediction while taking into account both static and dynamic 
features. Fig. 1 shows the overall architecture of the proposed 

approach. 

A. Data Collection 

In order to create the dataset for our study, "Leveraging 
Federated Learning for Real-Time Traffic Prediction in Smart 

Cities," real-time CCTV traffic camera images were 
systematically gathered. Our study was aimed at capturing the 

dynamics of traffic flow in the well-known towns of Guntur 

and Vijayawada. Particularly, information was gathered at 
important crossroads in Guntur City, such as Brundhavan 

Gardens and Guntur Market, as well as in Vijayawada at Benz 
Circle, Seetharamapuram, Guru Nanak Colony, and 

Ramavarappadu Junction. The study measured the time it took 
for a vehicle to travel from one intersection to the other 

endpoint for each junction, taking into account four different 

signal points. The network of eighty-three cameras that have 
been strategically positioned around the cities to provide an 

accurate representation of various traffic situations is included 
in the dataset. The study collected 1.6 GB of information in 

total for our trials. The images in the collection are 
intentionally low-resolution, having been taken in a variety of 

lighting situations, perspectives, and locations. Every image 

has a fixed dimension of 800 pixels for width and 600 pixels 
for height. The goal of this dataset is to improve the 

effectiveness of traffic management in smart cities by 
facilitating the study of real-time traffic forecasting algorithms 

within the context of federated learning [21]. 

 

Fig. 1. Overall architecture of the proposed approach. 
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B. Pre-processing Employing Min-Max Normalization 

In advance of employing the CCTV image collection for 

any analytic or deep learning tasks, pre-processing is required 
to make it more usable. The collection, which was gathered by 

traffic cameras, consists of 1.6 GB of indistinct images that 
have been taken under different lighting conditions. The width 

and height of every image are 800 and 600 pixels, 

respectively. Given the heterogeneity of the images in terms of 
angles, light levels, and climatic conditions, pre-processing is 

necessary to preserve consistency and compatibility for the 
operations that follow. The pixel values must be scaled, 

normalized, and min-maxed in order to bring them into a 
common range for effective assessment. 

Feature scaling, also known as the min-max normalization 
process, is a crucial step in the pre-processing of images. This 

technique involves rescaling the image's pixel values such that 

they fall into a certain range, usually [0, 1]. This uniformness 
the intensity levels across all images, lessening the effect of 

variations in illumination and pixel dispersion of values. The 
two main steps in the min-max normalization procedure are 

determining the maximum and lowest values for each pixel in 
the dataset and then using a linear transformation to change 

each pixel's original value to one that matches inside the 

specified range. This process helps to produce more accurate 
and consistent results in machine learning and subsequent 

assessments. It also improves image consistency. Before the 
dataset is subjected to min-max normalization, the minimum 

and highest pixel values for each picture in the dataset are first 
established. The least significance in the dataset denotes the 

lowest pixel, while the highest value indicates the most lighted 

pixel. After these values have been determined, each pixel's 
initial intensity value is linearly altered to a different value 

that falls inside the [0, 1] range. Eq. (1) gives the formula that 
was applied to this conversion. 

𝑃𝑜𝑢𝑡 = (𝑃𝑖𝑛 − 𝑀𝑖𝑛) 𝑛𝑒𝑤𝑀𝑎𝑥 −𝑛𝑒𝑤𝑀𝑖𝑛

𝑀𝑎𝑥−𝑀𝑖𝑛
+ 𝑛𝑒𝑤𝑀𝑖𝑛       (1) 

Following min-max normalization, the resulting image is 
called𝑃𝑜𝑢𝑡 , and the new minimum and maximal intensities are 

called 𝑁𝑒𝑤𝑀𝑖𝑛 and 𝑛𝑒𝑤𝑀𝑎x. 𝑃𝑖𝑛  represents the initial real-

time traffic image; 𝑀𝑖𝑛 and 𝑀𝑎𝑥, respectively, represent the 

lowest and highest intensity standards, which extend from 0 to 
255. This alteration was applied to every image in the dataset, 

ensuring that the pixel values were consistent and suitable for 

additional processing. By eliminating biases resulting from 
variances in pixel values and illumination, this normalization 

approach helps to improve the dataset's suitability for accurate 
and consistent evaluation. 

C. Prediction of Real Time Traffic in Smart Cities Utilizing 

Hybrid CNN-RNN 

Feature extraction, a crucial stage in computer vision 
applications, uses convolutional neural networks to capitalize 

on the unique qualities of the network, such as weight sharing 
and local connection. CNNs comprise of layers of convolution 

that adjust to express unique qualities within input images and 
pooling layers that integrate shift consistency. When 

interpreting an input image's characteristic, the CNN 
demonstrates exceptional characteristics including weight 

sharing and local connectivity to the neurons. The layers of 

CNN are the pooling layer, which ensures shift invariance, 
and the convolutional layer, which grows to reflect the unique 

qualities of the input image. 

The nearest group of neurons in the layer before the 

resultant layer will supply input to the convolutional layer's 

neurons. The different unique representations were produced 
by combining many kernels from the preceding layer. Eq. (2) 

is used to build the convolution layer. 

𝑣𝑑
𝑗

= 𝜎 (∑ 𝑣𝑙
𝑗−1𝑑𝑗−1

𝑖=1
,𝑀1𝑙𝑑

𝑗
+ 𝑏1𝑑

𝑗 ) , 𝑑 𝜖[1, 𝑑1
]        (2) 

The (𝑗 − 1)𝑡ℎ layer's 𝑙𝑡ℎ activation map is denoted by𝑣𝑙
𝑗−1

, 

the 𝑗 𝑡ℎ  convolution layer's𝑑 𝑡ℎ activation mapping is 

suggested by𝑣𝑑
𝑗
, and the weight connecting the 𝑑 𝑡ℎ layer's lth 

activation map at position can be determined by 𝑀1𝑙𝑑
𝑗

 and 

𝑏1𝑑
𝑗

. The different filters in the 𝑑 𝑡ℎlayer may be described by 

both 𝑙1 and the elementwise exponential activation function. 

Although the pooling procedures possess the required 

information, they might reduce the activation map's spatial 

dimension. Eq. (3) yields 𝑣𝑓
𝑗
(𝑥, 𝑦)  when the output of the 

previous layer is handled bitwise nonlinear activation and 
curled with the dimensions (p, q) in the convolution filter. The 

positions of the kernel are a1 and b1. 

𝑣𝑑
𝑗 (𝑥, 𝑦) = 𝜎 (∑ ∑ ∑ (𝑀1𝑙𝑑

𝑗 (𝑎1, 𝑏1) ⊗
𝑞=1
𝑏1=0

𝑞=1
𝑎1=0

𝑑𝑗=1

𝑙=1

𝑣𝑙
𝑗−1(𝑥 + 𝑎1,𝑘 + 𝑏1) + 𝑏1𝑑

𝑗 )) ,𝑑  𝜖[1, 𝑑1
]      (3) 

The convolution layer was supervened by the location of 

the 𝑑 𝑡ℎactivation map of the 𝑗 + 1𝑡ℎ    pooling layer by 
obtaining the results of the previous layer with a filter of size 

(2, 2). This resulted in the production of𝑣𝑙
𝑗+1

(𝑥, 𝑦), which was 

then used to perform bitwise nonlinear activation using Eq. 

(4). 

𝑣𝑑
𝑗+1(𝑥, 𝑦) = 𝜎 (∑ ∑ ∑ (𝑀1𝑙𝑑

𝑗 +1(𝑎1, 𝑏1) ⊗
𝑞=1
𝑏1=0

𝑞=1
𝑎1=0

𝑑𝑗=1

𝑙=1

𝑣𝑙
𝑗 (2𝑥 + 𝑎1, 𝑘 + 𝑏1) + 𝑏1𝑑

𝑗+1)) , 𝑑 𝜖[1, 𝑑𝑗+1]      (4) 

Enhancing efficacy and safety in real-time traffic 
estimation has been demonstrated through the application of 

federated learning approaches. Following the crucial step of 
using convolutional neural networks to extract characteristics, 

RNNs are utilized to assess the temporal aspects of traffic 

data. RNNs are an effective solution since they perform well 
in tasks involving sequential data when prediction and 

modelling traffic patterns over time. The CNN's output, which 
typically consists of high-level features and spatial 

representations taken from static traffic images, serves as the 
RNN's input. This input includes crucial information about the 

current traffic flow, including vehicle locations, 

concentrations, and movement patterns. But traffic conditions 
are dynamic and ever-changing by nature. To effectively 

manage traffic and make choices, it is important to consider 
the temporal linkages and sequential nature of traffic 

information. 

RNNs are efficient at processing the sequential data 

because of their recurrent interactions, which allow them to 
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maintain a hidden state that accumulates data from earlier time 
phases. Because of this hidden state, which acts as a memory, 

the network may retain and utilize data from earlier traffic 
measurements. The RNN systematically analyses the 

incoming input at each time step, updating its hidden state and 

producing output predictions in the process. This method 
enables RNNs to identify complex temporal correlations and 

patterns in the traffic information, such as variations in traffic 
flow and congestion and recurring patterns at specific times of 

the day. The hidden state at time step t, denoted as𝑟𝑟𝑡 , is found 

by applying Eq. (5) to the previously calculated hidden state, 
𝑟𝑡 −1 and the current input,𝑦𝑡 . 

𝑟𝑡 = 𝑑(𝑀𝑖𝑟 𝑦𝑡 + 𝑀𝑟𝑟 𝑟𝑡 −1 + 𝑏𝑟
)  (5) 

The weight matrices in this instance are 𝑀𝑟𝑟and𝑀𝑖𝑟 , the 

bias term𝑎𝑟 , and the activation function d, which is usually a 
reconditioning linear unit (ReLU) function or a hyperbolic 

tangential (tanh) function. The output at time step t, or as𝑦𝑡 , is 

given by Eq. (6) and is generated based on the hidden state 
that is in effect at that moment. 

𝑥𝑡 = ℎ(𝑀𝑟0 𝑟𝑡 + 𝑏0
)      (6) 

where, 𝑀𝑟0 is the weight matrix and 𝑏0   is the bias factors 

for the resulting layer. RNNs employ recurrent links to store 
information from previous stages of time. The hidden state 𝑟𝑡  

is found using the current input 𝑦𝑡  and the hidden states 𝑟𝑡 −1 

which appeared before it. The network may be trained and its 
weights and biases adjusted by using backpropagation across 

time. This enables the network to identify and respond to 
temporal trends in the traffic data. In smart cities, traffic 

management solutions may leverage RNNs' capacity to 
anticipate traffic in real time, improving flow, reducing 

congestion, and enhancing road safety.  In the context of smart 

city applications, effective traffic management is essential to 
maintaining vehicular flow and improving urban mobility as a 

whole. This research suggests a hybrid strategy integrating 
CNN and RNN for addressing the problems related to real-

time traffic estimation. First, from static traffic images, 
features are extracted using CNNs, which are particularly 

good at extracting high-level characteristics and spatial 

representations. Convolutional and pooling layers make up the 
CNN layers, which use weight sharing and local connection to 

identify distinctive features in input pictures. The usage of 
RNNs is then extended to evaluate the temporal dimensions of 

traffic data, taking into consideration the dynamic and ever-
changing characteristics of traffic situations. RNNs are 

efficient at processing sequential data, which enables them to 

model and forecast traffic patterns in the long run. The hybrid 
model can identify both temporal and geographic correlations 

in the traffic information because the CNN's output, which 
represents high-level spatial information, is introduced into the 

RNN. This combined CNN-RNN architecture shows how to 
estimate traffic in real time while taking into account both the 

static and dynamic aspects of the data. Recurrent interactions 

are used by the hybrid model's RNN component to preserve a 
hidden state that gathers data from previous time periods. Fig. 

2 shows the architecture of the hybrid CNN-RNN. 

 

Fig. 2. Architecture of Hybrid CNN-RNN. 
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By serving as an instance of memory, this concealed state 
helps the network store and use information from earlier 

traffic measurements. The model is an effective tool for real-
time traffic prediction because of its capacity to recognize 

intricate temporal correlations and patterns in traffic data, such 

as fluctuations in congestion and recurrent traffic behaviours 
at particular times of the day. The hybrid CNN-RNN 

architecture has tremendous potential for improving traffic 
management systems in smart cities, helping to improve 

traffic flow, reduce congestion, and increase road safety 
through training and correction of weights and biases utilizing 

backpropagation over time. The pseudocode for the proposed 

approach is given below. 

Pseudocode: Proposed Federated Learning Approach 

Input: Raw traffic camera images from Guntur and Vijayawada crossroads 

// Data Collection and Pre-processing 

raw_images = collect_traffic_images('Guntur', 'Vijayawada', 'crossroads') 

normalized_dataset  = preprocess_images(raw_images, resolution, 
normalization='min-max') 
// Define Hybrid CNN-RNN Model 

model = create_hybrid_model(image_shape=(resolution, resolution, 
channels), sequence_length, num_features) 
Output: Trained hybrid CNN-RNN model for real-time traffic prediction 

V. RESULTS AND DISCUSSION 

The findings and analysis of the suggested hybrid CNN-
RNN architecture for real-time traffic prediction are covered 

in detail in this portion of the article. The performance of the 

hybrid model is assessed after the methodical collecting and 
preprocessing of a 1.6 GB low-resolution dataset from 

significant crossroads in Guntur and Vijayawada. To improve 
usability, min-max normalization was applied to the dataset. 

The architecture is then evaluated, fusing CNN's spatial 
extraction characteristics with RNN's temporal capture 

capabilities. While the CNN retrieves high-level spatial 

information from stationary traffic images, the RNN, which is 
outfitted with recurrent interactions for sequential processing 

of information, detects temporal subtleties in traffic patterns. 
The model is more adaptive to intricate spatial and temporal 

correlations in traffic data when weight adjustment and 
backpropagation-based training are used. The usefulness of 

the suggested model in enhancing real-time traffic forecast, 

taking into account both static and dynamic variables, is the 
main topic of the talks that follow. The investigation aims to 

assess the model's contributions to increased road safety, 
reduced congestion, and enhanced traffic flow. It covers the 

model's accuracy, effectiveness, and practical applications for 
smart city traffic management. 

A. Performance Metrics 

Performance metrics are essential for assessing the 

efficacy of models and algorithms because they offer 
quantitative measures to evaluate their predictive accuracy and 

reliability. For the purposes of this paper, the performance 
metrics that were selected are MAPE, MSE, MAE, and 

RMSE. By calculating the percentage disparity between 

predicted and actual values, MAPE is used to assess prediction 
accuracy and is particularly useful for evaluating forecast 

accuracy in real-time traffic predictions. MSE, on the other 
hand, measures the average squared difference between 

predicted and actual values, which highlights the model's 
error-minimizing capabilities. Finally, MAE determines the 

average absolute differences between predicted and actual 
values, providing a reliable indicator of prediction accuracy. 

With the extra advantage of declaring outcomes in the same 

units as the original data, RMSE, like MSE, emphasizes the 
model's success in minimizing mistakes. The purpose of the 

paper is to provide a thorough evaluation of the suggested 
federated learning-based traffic prediction model in the 

dynamic framework of smart city traffic management by 
employing this suite of performance metrics. 

1) Mean Squared Error (MSE): Mean squared error, or 

MSE, is a common statistic used in machine learning to 

evaluate the performance of regression models. The method 

used to compute the MSE in the dataset is the average squared 

variance between the expected and actual values. Eq. (7) 

provides evidence for this. 

𝑀𝑆𝐸 =
1

𝑎
∑ (𝑊𝑖 − 𝑊�̂� )

2
𝑎
𝑖=1            (7) 

where, a is the total amount of information points, 𝑊𝑖  is 

the original values and 𝑊�̂�  is the anticipated values. 

2) Mean Absolute Error (MAE): The average amount of 

errors between anticipated and real outcomes is measured 

using a metric called mean absolute error in statistical and 

machine learning. It estimates the average of these absolute 

variations after measuring the percentage difference between 

every projected value and its matching real value. A predictive 

model's accuracy may be easily evaluated using MAE, with 

reduced MAE values representing greater predictive 

effectiveness. It is characterised by Eq. (8). 

𝑀𝐴𝐸 =
1

𝑎
∑ |𝑊𝑖 − 𝑊�̂�|

𝑎
𝑖=1          (8) 

where, 𝑊𝑖   denotes the actual values, 𝑊�̂�   denotes the 

predicted values, and a is the total number of information 

points. 

3) Mean Absolute Percentage Error (MAPE): The 

average absolute percentage variance between the real and 

displayed values of a target variable is determined by the 

Mean Absolute Percentage Error, or MAPE, which is a 

commonly used statistic to evaluate the performance of 

regression algorithms in machine learning. Eq. (9) 

incorporates the MAPE equation. 

𝑀𝐴𝑃𝐸 =
1

𝑎
∑ |

𝑊𝑡 −𝑊�̂�

𝑊𝑡

|𝑎
𝑡=1 × 100%       (9) 

where, a denotes the sample size, 𝑊𝑡  is the real value of 

the intended variable, and 𝑊�̂�  is the parameter's projected 

value. 

4) Root Mean Square Error (RMSE): RMSE is a 

frequently used measure to assess how well regression 

techniques function. By considering the squared variances, it 

calculates the average variation between the expected and 

actual outcomes. Because it draws attention to greater 

differences, RMSE is especially helpful when errors are 
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bigger and more significant. Its equation is given in Eq. (10) 

below. 

𝑅𝑀𝑆𝐸 = √∑
‖𝑊(𝑗)−�̂� (𝑗)‖

𝑁

𝐴
𝑗=1    (10) 

The variable j is displayed here together with the actual 

observation time series𝑊(𝑗), the anticipated observation time 

series �̂�(𝑗), and the non-missing data points A. 

The training and testing accuracy of a hybrid CNN-RNN 

model over several epochs is shown in Fig. 3. The training 

accuracy of the model gradually rises as it is trained over more 
epochs, demonstrating its capacity to pick up new skills and 

adjust to the dataset. 

 

Fig. 3. Training and testing accuracy. 

The training accuracy begins at 0.766 in the first epoch 

and increases steadily, hitting 0.99 by the 100th epoch, which 
shows a high level of skill in identifying the underlying 

patterns in the data. Concurrently, testing accuracy shows a 
similar rising trajectory when assessed on a different dataset to 

determine the model's capacity for generalization. The testing 
accuracy starts at 0.745 in the first epoch and steadily 

increases to an astounding 0.998 by the 100th epoch. The 

model's superior learning from training data and good 
generalization to unknown data is indicated by the 

convergence of training and testing accuracy towards later 
epochs, underscoring its usefulness in real-time traffic 

prediction. The general pattern indicates that the hybrid CNN-
RNN model was successfully trained and validated, 

confirming its potential for use in improving traffic 
management systems in smart cities. 

The training and testing loss values for the suggested 

hybrid CNN-RNN architecture for real-time traffic prediction 
are shown in Fig. 4 spanning several epochs. Both training and 

testing losses are somewhat substantial in the early epochs, 
which is an indication of the model's immaturity and its 

difficulty in correctly capturing the complex patterns present 
in the data. A pattern of declining loss values can be seen as 

the epochs go by, which emphasizes the model's ongoing 

development and learning from the training set. The training 

loss has dramatically decreased to 0.06 by the 100th epoch, 
demonstrating the model's effectiveness in reducing errors 

throughout the learning process. Additionally, the testing loss 
shows a significant decrease to 0.14, highlighting the model's 

capacity to generalize to previously untested data. This pattern 

demonstrates how well the suggested CNN-RNN architecture 
performs in terms of improving its predictive performance 

throughout subsequent epochs, providing a strong basis for 
precise real-time traffic forecasts in the context of smart cities. 

The model's improved capacity to capture temporal and spatial 
dynamics is indicated by the decreasing loss values, 

confirming its promise as a useful instrument for enhancing 

traffic management systems. 

 

Fig. 4. Training and testing loss. 

 

Fig. 5. Mean squared error. 

The performance of several techniques for real-time traffic 
prediction using the Mean Squared Error (MSE) metric is 

shown in Fig. 5. The suggested approach is contrasted with 

four other approaches are LSTM (Long Short-Term Memory), 
SAE (Stacked Auto encoder), GRU (Gated Recurrent Unit), 

and SVM (Support Vector Machine). The average squared 
differences between the actual and anticipated traffic levels 
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are represented by the MSE values, which are an essential 
measure of how well the models minimize prediction 

mistakes. MSE values that are lower are indicative of more 
accurate models. The suggested approach sticks out in this 

comparison thanks to its exceptionally low MSE of 99.66, 

which shows how well it minimizes squared prediction errors. 
With an MSE score of 99.85, SAE exhibits competitive 

performance as well. The MSE values of 101.5, 107.16, and 
115.52 for GRU, LSTM, and SVM, respectively, are 

comparatively higher, indicating a lower efficacy of these 
algorithms in minimizing squared prediction errors. The 

suggested method's better performance in optimizing forecast 

accuracy is visually shown by the graph, which highlights its 
potential as an effective technique for real-time traffic 

prediction in the dynamic setting of smart cities. 

 

Fig. 6. Mean absolute error. 

The MAE performance metrics for the several techniques 
used in real-time traffic forecast are shown in Fig. 6. Four 

other approaches are contrasted with the suggested approach 
are GRU, LSTM, SVM, and SAE. One important measure of 

prediction accuracy is the MAE between the actual and 
anticipated traffic levels. More accurate forecasts are 

suggested by lower MAE values. With a significantly lower 

MAE of 7.1 than the other models in this comparison, the 
proposed approach performs better, demonstrating its higher 

accuracy in real-time traffic estimates. GRU and SAE exhibit 
competitive performance as well, with respective MAE scores 

of 7.96 and 8.65. In contrast, the MAE values of 8.3 and 8.7 
for LSTM and SVM are considerably higher, suggesting that 

their traffic projections are less accurate. The graph shows 

how well the suggested strategy performs in terms of 
decreasing prediction errors, and it shows that this approach 

has the potential to be a successful one for real-time traffic 
prediction in the setting of smart cities. 

The MAPE for a variety of real-time traffic prediction 
techniques is shown in Fig. 7, which provides information on 

how well these models are in predicting traffic dynamics. Four 
other approaches are contrasted with the suggested approach 

are GRU, LSTM, SVM, and SAE. The average percentage 
difference between expected and actual traffic levels is a 

critical indicator for evaluating how well the models capture 
the degree of prediction mistakes. Models with higher 

accuracy are indicated by lower MAPE values. With a much 

lower MAPE of 17.23 than the other models in this 
comparison, the suggested strategy performs better, 

demonstrating its efficacy in reducing percentage mistakes in 
traffic forecasts. LSTM and SAE demonstrate competitive 

performance as well, with respective MAPE values of 20.32 
and 19.72. In contrast, the MAPE values of GRU and SVM 

are considerably higher at 22.73 and 19.8, indicating a lesser 

level of accuracy in traffic dynamics prediction. The graph 
highlights the potential of the suggested method as a 

successful real-time traffic forecast tool in the context of smart 
cities by explicitly demonstrating its better performance in 

minimizing percentage mistakes. 

 

Fig. 7. Mean absolute percentage error. 

 

Fig. 8. Root mean square error. 
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The RMSE for many techniques used in real-time traffic 
prediction is shown in Fig. 8, which provides important 

information about how accurate these models are in predicting 
traffic dynamics. Four other approaches are contrasted with 

the suggested approach: GRU, LSTM, SVM, and SAE. The 

square root of the average squared discrepancies between the 
traffic values that were predicted, and the actual traffic values 

is represented by RMSE values, which provide a thorough 
assessment of how well the models minimize prediction 

mistakes. Models with higher accuracy are associated with 
lower RMSE values. With a relatively low RMSE of 9.1, the 

suggested technique stands out in this comparison and shows 

that it is successful in decreasing both squared and root-
squared prediction errors. With an RMSE score of 10.89, SAE 

exhibits competitive performance as well. The comparatively 
higher RMSE values of 11.45, 11.65, and 13.24 for LSTM, 

SVM, and GRU, respectively, indicate that these techniques 
are less successful in lowering squared and root-squared 

prediction errors. The suggested method's improved 

performance in maximizing overall forecast accuracy is 
visually shown by the graph, which also highlights the 

method's potential as a useful strategy for real-time traffic 
prediction in the dynamic setting of smart cities. 

The comparison of error metrics in Table II across 
different methods, including GRU, LSTM, SVM, SAE, and 

the proposed method, reveals that the proposed approach 

outperforms existing models in terms of mean absolute 
percentage error (MAPE), mean absolute error (MAE), mean 

squared error (MSE), and root mean squared error (RMSE). 
Specifically, the proposed method achieves the lowest values 

across all error metrics, indicating its superior accuracy and 
effectiveness in real-time traffic prediction compared to the 

other models considered. The significant reduction in error 
metrics underscores the potential of the proposed method to 

provide more reliable and precise traffic forecasts, which is 

crucial for effective traffic management and urban planning in 
smart city environments. 

TABLE II. COMPARISON OF ERROR METRICS 

Methods MAPE (%) MAE (%) MSE (%) 
RMSE 

(%) 

GRU 22.73 7.96 1.015 13.24 

LSTM 20.32 8.3 1.0716 11.45 

SVM 19.8 8.7 1.152 11.65 

SAE 19.72 8.65 0.9985 10.89 

Proposed 
Method 

17.23 7.1 0.9966 9.1 

B. Discussion 

A thorough assessment of the suggested hybrid CNN-RNN 

architecture for real-time traffic prediction in smart cities can 
be found in the results and discussion section. After a 1.6 GB 

low-resolution dataset from important intersections in Guntur 

and Vijayawada was systematically collected and 
preprocessed, the hybrid model, which combines the spatial 

extraction skills of CNN with the temporal capture capabilities 
of RNN was assessed. The model's capacity to learn complex 

patterns and adapt effectively to new data is demonstrated by a 
gradual increase in testing and training accuracy over 

subsequent epochs. The performance metrics provide 
quantitative information on the correctness and dependability 

of the model. These measures include MSE, MAE, MAPE, 
and RMSE. Lower MSE, MAE, MAPE, and RMSE values 

highlight how well the recommended strategy performs in 

comparison to current approaches such as LSTM, SAE, GRU 
and SVM [21], highlighting its ability to reduce prediction 

errors and enhance real-time traffic predictions. The success 
of the hybrid model is ascribed to its ability to manage both 

static and dynamic elements, which improves traffic flow, 
lowers congestion, and increases road safety in smart city 

environments. The outcomes highlight the suggested 

architecture's potential as a useful instrument for improving 
traffic management systems and boosting the effectiveness of 

intelligent transportation networks. 

Utilizing FL for enhanced real-time traffic prediction in 

smart urban environments offers several advantages compared 
to other methods and models in similar fields. Firstly, FL 

enables decentralized model training, allowing for the 

utilization of locally generated data on clients without the 
need for data centralization, thereby addressing privacy 

concerns associated with centralized approaches. This 
decentralized nature also enhances scalability, as FL can 

accommodate a large number of distributed nodes without 
significantly increasing computational overhead. Additionally, 

FL can adapt to dynamic urban environments by continuously 

learning from diverse data sources without the need for 
centralized retraining, ensuring that traffic prediction models 

remain up-to-date and accurate. Furthermore, FL facilitates 
efficient model aggregation and communication among 

distributed nodes, resulting in lower latency and reduced 
bandwidth consumption compared to traditional centralized 

approaches. Overall, FL represents a promising approach for 
real-time traffic prediction in smart urban environments, 

offering improved privacy, scalability, adaptability, and 

efficiency compared to alternative methods and models. 

VI. CONCLUSION AND FUTURE WORKS 

The study concludes by introducing hybrid CNN-RNN 

architecture and demonstrating how well it can capture 

temporal and geographical data for real-time traffic prediction 
in smart cities. Reduced MSE, MAE, MAPE, and RMSE 

values show that the suggested model, trained on a 
methodically gathered and preprocessed dataset, performs 

better than current techniques. The findings suggest that it has 
the ability to improve traffic flow in dynamic urban contexts, 

reduce congestion, and improve road safety. The research 

presents a new contribution by highlighting the model's 
effective integration of federated learning and highlighting its 

privacy-preserving characteristics. Subsequent research 
endeavours may go into additional refinement of federated 

learning parameters, evaluate the model's adaptability to more 
extensive datasets and varied urban environments, and 

examine its practical implementation. To improve the model's 

prediction skills in intricate urban settings, the suggested 
architecture may also be expanded to meet multimodal data 

sources, such as input from IoT sensors. In order to meet the 
changing needs of smart metropolitan transportation networks, 

the study establishes the groundwork for sophisticated traffic 
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management systems that make use of cutting edge 
technology. 

Future work in utilizing federated learning for enhanced 
real-time traffic prediction in smart urban environments could 

focus on several key aspects to provide a clearer roadmap for 

potential developments and advancements. Firstly, there's a 
need for research into refining federated learning algorithms to 

effectively handle the complexities of real-time traffic data, 
including heterogeneous data sources and dynamic urban 

environments. Secondly, exploring innovative techniques to 
enhance model aggregation and communication efficiency 

among distributed nodes without compromising privacy and 

security is essential. Additionally, investigating strategies to 
integrate federated learning with other emerging technologies 

such as edge computing and blockchain for improved 
scalability, reliability, and transparency could further enhance 

the efficacy of traffic prediction systems. Furthermore, 
conducting extensive real-world deployment studies and 

collaborations with city planners and transportation authorities 

to validate the practical viability and societal impact of 
federated learning-based traffic prediction solutions is crucial. 

Finally, addressing ethical and regulatory considerations 
surrounding data privacy, bias mitigation, and algorithmic 

transparency will be paramount for the successful adoption 
and deployment of such systems in smart urban environments. 
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