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Abstract—This paper discusses the critical relevance 

of precise forecasting in liver disease, as well as the need for early 

identification and categorization for immediate action and 

personalized treatment strategies. The paper describes a unique 

strategy for improving liver disease classification using 

ultrasound image processing. The recommended technique 

combines the properties of the Extreme Learning Machine 

(ELM), Convolutional Neural Network (CNN), along Grey Wolf 

Optimisation (GWO) to form an integrated model known as 

CNN-ELM-GWO. The data is provided by Pakistan's Multan 

Institute of Nuclear Medicine and Radiotherapy, and it is then 

pre-processed utilizing bilateral and optimal wavelet filtering 

techniques to increase the dataset's quality. To properly extract 

significant visual information, feature extraction employs a deep 

CNN architecture using six convolutional layers, batch 

normalization, and max-pooling. The ELM serves as a classifier, 

whereas the CNN is a feature extractor. The GWO algorithm, 

based on grey wolf searching strategies, refines the CNN and 

ELM hyperparameters in two stages, progressively boosting the 

system's classification accuracy. When implemented in Python, 

CNN-ELM-GWO exceeds traditional machine learning 

algorithms (MLP, RF, KNN, and NB) in terms of accuracy, 

precision, recall, and F1-score metrics. The proposed technique 

achieves an impressive 99.7% accuracy, revealing its potential to 

significantly enhance the classification of liver disease 

by employing ultrasound images. The CNN-ELM-GWO 

technique outperforms conventional approaches in liver disease 

forecasting by a substantial margin of 27.5%, showing its 

potential to revolutionize medical imaging and prospects. 

Keywords—Liver disease prognosis; convolutional neural 

network extreme learning machine; grey wolf optimization; patient 

care 

I. INTRODUCTION 

The liver, which is the most significant internal organ in 
the human body, is essential to many physiological functions. 
It is situated under the diaphragm in the upper-right region of 
the abdomen. The liver possesses a special capacity for 

regeneration and carries out a variety of essential tasks that 
maintain the body healthy [1]. It has a role in digestion, 
detoxification, metabolism, and the control of several 
biochemical procedures. The major functioning cells of the 
liver are called hepatocytes, and they are responsible for the 
organ's extensive blood supply [2]. Numerous vital processes 
that the liver performs are necessary to preserve homeostasis. 
It handles nutrition from the food people eat, which is one of 
its main metabolic functions. When glucose is required, the 
liver releases glucose from storage and manages its production 
of glycogen for energy. It produces albumin, which aids in 
maintaining blood pressure and volume, and blood-clotting 
components [3]. It also processes down lipids into energy or 
accumulates them as triglycerides through metabolism. In 
addition, the liver breaks down medications, detoxifies 
hazardous compounds, and changes ammonia into urea, which 
the kidneys may then eliminate. Additionally, it is essential to 
digestion because it produces bile, which facilitates the 
dissolution of lipids [4]. 

Hepatitis, Cirrhosis, and non-alcoholic fatty liver disease 
are among the most common illnesses classified under the 
category of liver diseases. Hepatitis, which often comes on by 
viral infections (such as Hepatitis A, B, or C), damages and 
inflames the liver [5]. The primary feature of cirrhosis is the 
damage of the liver cells, which is often caused by viral 
hepatitis, chronic drinking, or other conditions. As the 
designation implies, non-alcoholic fatty liver disease 
is characterized by the build-up of fat in liver cells and has the 
potential for progression [6]. Chronic liver illnesses can lead 
to the development of liver cancer, particularly hepatocellular 
carcinoma.   Numerous symptoms, such as weariness, 
jaundice (a yellowing of the skin and eyes), stomach 
discomfort, black urine, and unexplained weight loss, might 
be indicative of liver disease. If these medical conditions are 
not addressed, they might deteriorate and have a significant 
impact on general health [7]. For instance, cirrhosis can result 
in liver failure and its complications, which include hepatic 
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encephalopathy and bleeding from oesophageal varices [8]. 
Liver fibrosis and an increased probability of liver cancer are 
two outcomes of hepatitis. It's essential to have an early 
diagnosis and treatment for these illnesses in order to prevent 
them from becoming fatal.  Establishing a healthy routine with 
a balanced diet, using alcohol in moderation, and receiving a 
hepatitis virus vaccination are preventive strategies for liver 
illnesses [9]. 

In contemporary medicine, the ability to detect liver 
disorders early and accurately is critical. Liver diseases are a 
broad category of illnesses [10]. The quality of life and 
consequences for patients can be significantly improved by 
immediate treatment and diagnosis. Furthermore, because 
liver illnesses have a significant negative impact on society 
and healthcare systems, early detection is a practical and life-
saving approach [11].  The application of several cutting-edge 
technology and data analysis techniques is necessary for 
predicting liver disorders. In this field of study, machine 
learning and artificial intelligence approaches have become 
more popular [12]. A growing number of academics and 
medical professionals are analysing clinical and patient 
information utilizing machine learning methods, such as 
support vector machines, logistic regression, and artificial 
neural networks, to produce accurate predictions [13]. To 
determine the probability of liver diseases, these models take 
into consideration a variety of factors, such as previous 
medical information, outcomes of blood tests, imaging 
information, and more. There are significant clinical 
consequences for accurate liver disease prediction. It makes it 
possible to create individualized treatment programs and for 
early intervention [14]. For instance, individuals that are 
particularly susceptible to liver disease may benefit from 
attentive observation, lifestyle counselling, and hepatitis virus 
immunization recommendations. In situations of end-stage 
liver diseases, early identification can also help ensure a 
timely liver transplant. Predictive models lessen the overall 
load on healthcare systems by helping recognize at-risk 
patients and allocating healthcare resources optimally [15]. By 
utilizing predictive analytics, healthcare professionals may 
proactively address the international problem of liver disease. 

Current liver disease prediction approaches are unable to 
fully capitalize on the promise of cutting-edge technology like 
deep learning and metaheuristic optimization since they 
frequently rely on conventional machine learning techniques. 
Conversely, the paper Liver Disease Prediction utilizing 
Convolutional Extreme Learning Machine offers a novel 
strategy that gets over the drawbacks of traditional techniques. 
The research leverages the capabilities of deep learning and 
non-adjustable hidden nodes by utilizing a hybrid model that 
includes an ELM for rapid categorization and a CNN for 
feature extraction. This integration takes advantage of ELM's 
faster learning rate while also improving prediction accuracy. 
In addition, by fine-tuning the hyperparameters with GWO, 
the models become more appropriate for the particular 
position. 

The key contributions of the paper are given as follows: 

 The paper presents a unique pre-processing technology 
for liver disease prediction that combines the 

capabilities of Combination Wavelet as well as 
Bilateral Filter. This hybrid technique seeks to 
efficiently decrease noise and increase significant 
characteristics in medical pictures or data connected 
with liver illness, providing a stable platform for 
additional investigation. 

 The research contains innovative feature extraction 
algorithms that take advantage of Convolutional Neural 
Networks (CNN) capabilities. By using CNNs' 
structured and spatial learning abilities, the study 
improves the extraction of complicated patterns and 
discriminative characteristics required for effective 
liver disease categorization. 

 For categorization tasks, Extreme Learning Machines 
(ELM) are used. ELMs are noted for their high 
efficiency in learning and clarity, making them ideal 
for dealing with big datasets commonly found in 
clinical studies. The use of ELM provides an efficient 
and accurate categorization of liver disease according 
to extracted characteristics. 

 The study uses the Grey Wolf Optimization technique 
to improve the classification model's accuracy. This 
optimization strategy, influenced by the social structure 
of grey wolves, attempts to improve the ELM model's 
convergence speed and accuracy, hence increasing the 
overall efficiency and efficacy of the liver disease 
forecasting system. 

 The study assesses the suggested approach for 
detecting liver illness using important metrics such as 
precision, sensitivity, accuracy, and the F1 score. It 
employs 10-fold cross-validation to ensure robustness 
and gives a thorough grasp of the model's performance 
in various phases and settings, offering vital insights 
into its dependability and adaptability in everyday life 
medical contexts. 

The rest of the section is organized as shown below. 
Section II illustrates literature works on liver disease 
prediction. Section III gives the Problem Statement. Section 
IV covers the proposed framework for the liver disease 
prediction. Section v illustrates the performance measures and 
summarizes the findings. Section VI provides the conclusion. 

II. RELATED WORKS 

Methods involving machine learning are being used more 
and more frequently in the modern day in the fields of medical 
research to identify numerous disorders, such as liver disease. 
This fatal illness claims a significant number of lives around 
the world [16]. Early therapy can be beneficial to the patient's 
recovery if the condition is diagnosed when it is in its early 
stages. Utilizing supervised machine learning categorization 
methods to detect liver disease is provided in the study article. 
In order to recognize the features of liver illness that are most 
significantly linked together, the study also used a least 
absolute contraction and selection operator characteristic 
selection approach on the dataset it had access to. The 
algorithms' estimations for the illness are evaluated 
for preciseness, sensitivity, accuracy, and f1-score values 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 15, No. 2, 2024 

710 | P a g e  

www.ijacsa.thesai.org 

using 10-fold cross-validation. With LASSO included, it has 
been found that the decision tree approach performs optimally. 
A comparison with contemporary studies is also made to 
demonstrate the relevance of the suggested system. The 
possible difficulties of applying the results to various patient 
demographics or medical environments are not discussed in 
the research, though. It is critical to recognize the study's 
relevance to actual clinical practice's limits. 

Individuals with chronic liver illness may experience 
acute-on-chronic liver failure, a clinical condition 
characterized by sudden hepatic decompensation and a 
significant short-term death rate. Organ failure, severe 
generalized inflammation, and a terrible outcome are its 
defining features  [17]. Triaging and prognosticating patients 
with ACLF is feasible with certain liver-specific prognosis 
ratings and organ dysfunctions. The purpose of the research is 
to determine how well artificial neural networks, which 
functionally resemble biological neural systems, are capable 
of predicting the mortality associated with liver disease after 
ninety days. In the study, ANN was assessed in ACLF 
patients. A significant factor in accurately forecasting patients' 
short-term mortality is artificial neural networks. Its use with 
ACLF individuals can be beneficial since it simplifies and 
automated the process for recognizing individuals who are 
more likely to die. Artificial neural networks have a great deal 
of promise to help doctors make decisions, prioritize patients 
who need liver transplants right away, and forecast death and 
side effects. Even while the ANN model shows excellent 
precision, it might not be very interpretable. Understanding 
the variables that affect forecasts is essential for anyone 
working in the medical industry. Insufficient interpretability 
could undermine the model's acceptability and confidence 
among clinicians [18]. 

Even with the most recent and advanced equipment, 
medical professionals still have difficulties in accurately and 
early predicting liver disease in their patients. In the medical 
field, support vector machines are extensively utilized. Its 
effectiveness in generating quality diagnostic variables has 
been demonstrated. Support vector machine hyperparameter 
optimization may additionally enhance these outcomes. The 
suggested approach is predicated on using the crow search 
technique to optimize support vector machines. With the use 
of an improved support vector machine classifier, liver illness 
information from India may be accurately diagnosed. To 
demonstrate the effectiveness of the suggested method, a 
comparison with other comparable state-of-the-art algorithms 
is made. For every metric used for comparison, the efficacy of 
CSA-SVM is determined to be exceptional when compared to 
all other techniques. On the other hand, the dataset, code, and 
repeatability model are not made available in the work. In 
research related to science, repeatability and transparency are 
crucial [19]. 

Accessible medical facilities are essential for individuals 
in today's world, since healthcare is becoming an increasingly 
crucial component of daily life. The primary goal of this work 
is to use feature selection and categorization techniques in 
software engineering to forecast liver disease. The 
liver patient's dataset's various characteristics are utilized to 
forecast the degree of risk for liver disease. The Liver Patients 

dataset is used to test the accuracy of many methods of 
categorization. Numerous classifiers outputs are compared, 
both with and without the utilization of characteristic selection 
methods. Selection of characteristics and categorization 
estimation approaches based on software engineering concept 
are used in the creation of smart liver disease detection 
software. The article addresses using several 
categorization algorithms; however, it refrains from going into 
detail on how these algorithms' hyperparameters were adjusted 
or improved. Optimizing the parameters of the algorithm is 
crucial to attaining optimal outcomes [20]. 

Any condition that has the potential to damage, destroy, or 
impair the liver's normal function is referred to as liver 
disease. The death rate from liver illness has increased 
significantly in the world community. Numerous variables, 
including human behaviours, awareness problems, inadequate 
medical care, and delayed discovery, might be responsible for 
this. Early identification is essential to lower dangers and 
enhance treatment outcomes in order to address the ever-
growing hazards posed by liver disease. As demonstrated in 
the present research, modern technologies like machine 
learning might be used to help improve its detection and 
diagnosis. To help in early identification, evaluation, and 
lowering of dangers and mortality related to the illness, a more 
effective approach for timely estimation of liver disease 
utilizing a hybrid extreme Gradient Boosting algorithm that 
includes hyperparameter adjustment is presented. The findings 
showed that the accuracy levels attained by the regression 
trees and chi-square automated interaction identification and 
categorization models were significantly higher than the 
traditional approach. The proposed treatment would help 
doctors and patients address the issue of liver damage, making 
sure that instances are identified earlier to avoid cirrhosis and 
to improve patient survival. The study demonstrated machine 
learning's assure in the medical field, particularly in the areas 
of illness monitoring and predictions [21]. 

The reviews of the literature investigate several machine 
learning techniques for the diagnosis and prognosis of liver 
disease. Stressing the value of early diagnosis, they address 
issues with interpretability and accuracy. Promising outcomes 
are demonstrated by strategies including CNN-ELM-GWO 
integration, CSA-SVM optimization, artificial neural networks 
for acute-on-chronic liver failure, and feature selection in 
intelligent software engineering applications. Even though 
these techniques show improved predictive power, there isn't 
much talk on how to apply these methods to specific 
demographics, how to interpret models, how to make code 
transparently available, and how to optimize algorithm 
parameters. Overall, the research highlights the promise of 
machine learning in enhancing the identification of liver 
illness, underscoring the necessity of more development and 
thorough investigation in clinical settings. 

III. PROBLEM STATEMENT 

 Conventional machine learning algorithms for liver 
disease prediction have constraints concerning accessibility, 
transparency, and adaptation to a wide range of patient 
profiles and medical settings. These models frequently lack 
the potential to give useful information into ways to make 
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decisions, limiting their use in clinical practice. Furthermore, 
more robust solutions are required to overcome the difficulties 
of noise as well as transparency in information from medical 
imaging [17]. The suggested technique, a hybrid CNN-ELM 
with GWO optimization, seeks to address these drawbacks. 
The CNN-ELM hybrid takes use of the capabilities of feature 
extraction and classification, while GWO optimization refines 
model hyperparameters. This comprehensive strategy 
enhances prediction accuracy while simultaneously addressing 
interpretability and transparency problems. Although the 
methods used with machine learning seem promising, there 
are certain obstacles that must be overcome before they can be 
successfully incorporated into clinical practice.  The hybrid 
method's emphasis on optimizing learning and picture quality 
makes it a viable solution for obtaining accurate, early 
diagnosis of liver disease, eventually contributing to better 
outcomes for patients and lowering the worldwide effect of 
this life-threatening condition. 

Existing methods for forecasting liver disease often rely 
solely on either CNNs or ELMs, but each approach has its 
limitations. CNNs excel at extracting hierarchical features 
from image data but may struggle with non-image data and 
require large amounts of labeled data for training. On the other 
hand, ELMs offer fast learning and good generalization but 
may not capture complex spatial relationships in image data 
effectively. Thus, there is a need for a hybrid approach that 
leverages the strengths of both CNNs and ELMs to improve 
the precision of liver disease forecasting. However, integrating 
these two disparate techniques poses challenges in terms of 
model architecture design, feature extraction, and optimization 
to ensure effective fusion of information from both modalities 
while mitigating overfitting and computational complexity. 

IV. LIVER DISEASE PREDICTION USING CONVOLUTIONAL 

EXTREME LEARNING MACHINE 

In the paper, an experimental analysis is conducted to 
thoroughly investigate the proposed method of employing a 
hybrid CNN and ELM for precision liver disease forecasting. 
To begin, a comprehensive dataset comprising a diverse range 
of liver disease cases, including various imaging modalities 
such as MRI, CT scans, and ultrasound images, as well as 
clinical data such as patient demographics, laboratory test 
results, and medical histories is curated. This dataset serves as 
the foundation for training, validating, and testing the hybrid 
model, ensuring that it is representative of real-world 
scenarios encountered in clinical practice. 

Subsequently, the experimental setup is meticulously 
designed to systematically evaluate the performance of the 
hybrid CNN-ELM model against baseline methods and 
individual CNN and ELM models. The dataset is partitioned 
into training, validation, and testing sets, ensuring proper 
stratification to maintain the distributional characteristics of 
the data. The hyperparameters of the CNN and ELM 
components are then fine-tuned separately before integrating 
them into the hybrid framework. Throughout the 
experimentation process, rigorous cross-validation techniques 
are employed to mitigate potential biases and ensure the 
robustness of the findings. By systematically varying key 
experimental factors such as the size of the training dataset, 
the complexity of the model architecture, and the choice of 
hyperparameters, insights are gained into the effectiveness and 
scalability of the proposed method for precision liver disease 
forecasting. Ultimately, the experimental results provide 
empirical evidence supporting the utility and efficacy of the 
hybrid CNN-ELM approach, demonstrating its superiority 
over existing methods in accurately predicting liver disease 
outcomes. 

This study's approach includes an extensive procedure for 
predicting liver disease using a dataset of 101 liver ultrasound 
images. In order to decrease noise and improve the clarity of 
the images preprocessing is employed using a hybrid 
technique that combined bilateral filtering and optimum 
wavelet transformation. Then, in order to extract crucial data 
from the ultrasound images, a Convolutional Neural Network 
with six convolutional layers, batch normalization, and max-
pooling was created. Using this CNN as the feature extractor, 
256 discriminant characteristics were produced for the 
prediction of liver disease. In order to take use of an Extreme 
Learning Machine's (ELM) accelerated learning speed and 
non-adjustable hidden node settings, these characteristics were 
subsequently introduced into the machine for categorization. 
By combining the processes of feature extraction and 
categorization, the hybrid CNN-ELM method improves 
accuracy. Lastly, to further enhance the effectiveness of the 
system, the CNN and ELM models' hyperparameters were 
adjusted using the Grey Wolf Optimization (GWO) technique. 
This all-encompassing method uses deep learning, 
metaheuristic optimization and sophisticated image processing 
to accurately forecast liver disease. The general framework of 
the proposed method is depicted in Fig. 1. 

 
Fig. 1. Overall architecture of the proposed method. 
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A. Data Collection 

There are 101 liver ultrasound images in the collection. Of 
them, 57 have liver abnormalities such as FLD or 
heterogeneous liver texture, while 44 images show healthy 
subjects. A Toshiba Aplio 500 B-mode digital ultrasound 
scanner was used to obtain all of the images at the Multan 
Institute of Nuclear Medicine and Radiotherapy, located in 
Multan, Pakistan. For tissue harmonic imaging, a convex 
probe was utilized at a frequency of 5 MHz [22]. Each 
captured image had a resolution of 560 by 450 pixels and was 
stored as a bitmap file. The medical expert chose 114 64×64-
pixel region of interest (ROIs) for categorization into normal 
and abnormal for these 101 images. These chosen ROIs serve 
as the basis for all further processing. 

B.  Hybridization of Optimal Wavelet and Bilateral Filter for 

Preprocessing 

By hybridizing the best wavelet and bilateral filter for 
sophisticated preprocessing, liver disease prediction can be 
optimized, improving diagnostic accuracy and dependability. 
Ultrasound preprocessing is crucial because, in contrast to 
other imaging modalities like CT and MRI, ultrasound images 
are more probable to have noise components. Essentially, a 
speckle noise mostly distorts the ultrasound images. Higher 
categorization and segmentation accuracy cannot be obtained 
from a noisy image. For this reason, removing noise from 
medical ultrasound images is an essential step. For noise 
reduction in the study, bilateral filters and optimum wavelet 
hybridization were employed. The input image is first 
decomposed using the bi-orthogonal 3.7 wavelet transform in 
the study. After then, it produces four sub-bands, including 
LL, LH, HL, and HH. It uses the oppositional gravitational 
search algorithm (OGSA) to ideally acquire the wavelet 
coefficient in order to enhance the overall appearance of the 
denoised image. Newton's law of universal gravity and mass 
interactions serve as the foundation for gravitational search 
algorithms (GSAs), which are evolutionary heuristic 
optimization algorithms. To improve the search performance 
of the GSA algorithm, combining it with an adversarial 
learning method. Following the decomposition, the bilateral 
filter is applied to eliminate any noise from the input image. 
One nonlinear filter that appears to be effective in denoising 
images is the bilateral filter, which provides spatial averaging 
without flattening edges. Two Gaussian filters are combined 

to create this filter. Fig. 2 illustrates the preprocessing 
procedure. 

C. Feature Extraction and Classification Using 

Convolutional Extreme Learning Machine 

1) Feature extraction employing convolutional neural 

network: Feature extraction is the most critical part of the 

categorization issue as a model's achievement is based on how 

effectively the key characteristics from the ultrasound images 

are retrieved. To enhance the model's effectiveness in 

categorization, it is imperative to extract the favourable 

aspects that have enabled discrimination between the two 

classes. Convolutional Neural Network feature extraction 

includes employing a deep architecture including 

convolutional layers to find and highlight relevant patterns and 

features in data, hence improving analysis and classification. 

A method for converting higher dimensional information into 

lower dimensional, useful, and non-redundant information is 

called feature extraction. It makes it possible to process 

information more effectively and handle it better. Because the 

features for these pictures are more complex, a unique deep 

CNN has been developed to extract 256 significant 

characteristics for liver disease predictions utilizing the 

ultrasound images. 

Fig. 3 shows the suggested CNN model. The suggested 
CNN model consists of six convolutional layers, with batch 
normalization and a max-pooling layer applied after two 
successive convolutional layers. Because batch normalization 
re-centres and re-scales the layer inputs, it improves the 
model's stability and speed of operation. In between two 
consecutive convolutional layers, there is a pooling layer. The 
most important elements of the images may be extracted by 
using max-pooling with 2 × 2 filters, which choose the biggest 
value from each cluster's whole neuron at the convolutional 
layers. Since the output is determined through adding the 
filters to each image tuple, the "SAME" padding has been 
added to the first two convolutional layers. Because border 
components frequently include important properties, they have 
been examined. Zero padding was used in the computation of 
the border components. The border components, however, 
were disregarded by the 'VALID' padding. 

 
Fig. 2. Process of pre-processing. 
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Fig. 3. Proposed CNN model. 

ReLU has been used as an activation function in order to 
prevent the gradient from fading. There are two dropout layers 
that have been employed, one after the initial fully connected 
layer and the other after the last max-pooling layer. Both 
dropout layers have a probability of 0.5. Here, the training 
time increases significantly by using the dropout layers to 
reduce overfitting by frequently not training every node in 
every layer during the training stage. Because the Adam 
optimizer operates better while training on huge quantities of 
information and is extremely accurate for CNNs, it has been 
selected. Lastly, the 512 discriminant characteristics from 
each picture have been extracted using the final dense layer. 

2) Classification using extreme learning machine: A feed-

forward neural network with a number of layers of concealed 

nodes is called an ELM, and is typically used for pattern 

learning, regression, clustering, small estimate, compression 

as well, and categorization. It does not require the adjustment 

of hidden node variables, such as biases and weights. 

Conversely, the characteristics of hidden nodes can be 

transmitted down from their ancestors without modification, 

or they can be assigned at random and never altered. 

Comparing these models to networks trained using 

backpropagation, they learn far more quickly. In feed-forward 

neural networks, the learning process that is most frequently 

employed is backpropagation, which allows gradients to 

propagate from the output to the input. Backpropagation, 

however, has a lot of issues. In most applications, the training 

procedure takes an extended amount of time since biases and 

weights must be justified after each iteration. This approach 

ignores the weight magnitude in order to obtain maximum 

accuracy, which leads to decreased output over time. The 

update of weights and biases is no longer a barrier as a result 

of ELM, a feed-forward network. In order to maximize this 

model's overall effectiveness, it additionally concentrates on 

obtaining the lowest weight requirements in addition to the 

least training error. Simple alternatives are used for addressing 

the challenge of catching in local minima, hence eliminating 

such insignificant problems. Fig. 4 shows how ELM 

functions. 

Let   be the arbitrary samples(     ), and let    
[             ]

     and     [             ]
      , 

the standard single- concealed layer feedforward neural 
networks (SLFNs) with H concealed nodes and an activation 
function 𝑓 (·) is expressed using Equation (1). 

∑   𝑓 (  )
 
    ∑   𝑓(        )

 
       (  

       )        (1) 

In this case,    [             ]
  and    

[             ]
    is the weight vector that connects the 

    concealed node to the input nodes.   is the hidden node 
threshold, and    [             ]

   is the weight vector 

connecting the     concealed node to the output node. R is an 

example of an SLFN's     output vector. 

Standard SLFNs with H concealed nodes and activation 
function 𝑓 (·) can estimate these R illustrations with zero 
error, which means that ∑ ‖     ‖   

 
    and that there 

exist              such that 

Using H hidden nodes and an activation function of 𝑓 (·), 
standard SLFNs can calculate these R representations with 
zero error. This implies that ∑ ‖     ‖   

 
    and that 

              exist and it is given in Equation (2). 

∑   𝑓(        )
 
       (         )    (2) 
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Fig. 4. Working of extreme learning machine 

Equation (3), (4), (5) and (6) is an expanded version of the 
equation mentioned previously. 

               (3) 

Where Equation (4), 

 (                       )  
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       (4) 
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        (5) 
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 ]
 
 
 

   

          (6)  

Where, the     column of N represents the outcome of the 

    hidden node based on inputs          , and N is 
referred to as a matrix of outputs of hidden layer. The linear 
technique's solution is given in Equation (7). 

              (7) 

Where, the Moore–Penrose extended inverse of matrix N 
is denoted by    . 

Equation (8) defines the ELM's output function. 

 ( )   ( )   ( )                (8) 

3) Hybrid CNN-ELM algorithm: The Hybrid CNN-ELM 

technique combines the strengths of Extreme Learning 

Machine (ELM) for effective classification and Convolutional 

Neural Network (CNN) for reliable feature extraction from 

liver disease-related data. The combination of the CNN-ELM 

model improves liver disease prediction accuracy by 

combining CNN's effective visual feature extraction with 

ELM's fast learning. Its benefits include increased accuracy, 

faster learning, and more sensitivity, demonstrating efficiency 

in making exact predictions for liver illness and excellent 

performance and dependability. By giving a thorough method 

for identifying relevant characteristics and correctly 

categorizing liver disease a prerequisite for successful medical 

intervention this integration improves prognosis accuracy. Fig. 

5 below provides a representation of the CNN-ELM hybrid 

algorithm. CNN and ELM are the two primary designs; CNN 

was once a characteristic extractor and ELM was a classifier. 

A single convolutional layer and a single pooling layer 

constitute the suggested CNN architecture. The 

study needs one hidden layer for the ELM, which is located 

between the input and output layers. 

The image that reaches the convolutional layer is the first 
step in the CNN-ELM's main flow. Next, the image matrix 
that ReLU activates enters the pooling layer. Every processed 
image matrix then became a one-dimensional vector that could 
be entered into the ELM's input layer. The neural network 
uses a generic computation to generate the flattened image 
information before it enters the ELM concealed layer and is 
stimulated by the sigmoid function. Following the activation 
of values, the procedure proceeds to calculate the ELM from 
the layer that is concealed to the output layer, utilizing the 
following formula to obtain the categorization outcome, which 
is Equation (9). 

     ( 
  )                (9) 
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Fig. 5. CNN-ELM hybrid structure. 

D. Grey Wolf Optimization Framework for Fine-tuning the 

Parameters 

The Grey Wolf Optimization (GWO) framework optimizes 
the Convolutional Neural Network (CNN) and Extreme 
Learning Machine (ELM) components by fine-tuning 
parameters post-Hybrid CNN-ELM algorithm. Through 
appropriate parameter modifications in the feature extraction 
and classification process, the model is gradually enhanced for 
a better prognosis of liver illness, imitating the hunting 
behaviours of grey wolves. This iterative technique also 
improves accuracy. The GWO algorithm mimics the wolf's 
approach to hunting, which consists of circling the target and 
working together to make selections. Specifically, GWO is 
used to improve model hyperparameters including 
regularization factors, network design, and learning rates 
when it comes to parameter modifications. Two primary 
stages comprise the implementation of GWO in this hybrid 
CNN-ELM architecture. The CNN's architecture and 
hyperparameters, such as the number of convolutional layers, 
filter sizes, and learning rates, are first optimized using GWO. 
This ensures that pertinent characteristics are efficiently 
extracted from the ultrasound images by the CNN. The ELM 
model's hyperparameters, including the quantity of hidden 
nodes, activation functions, and regularization terms, are then 

adjusted using GWO. Through methodical parameter space 
exploration and utilizing wolves' cooperative decision-making 
approach, GWO assists in setting the system's feature 
extraction (CNN) and categorization (ELM) components, 
resulting in improved prediction accuracy for diseases of the 
liver. 

GWO, a meta heuristic technique, was proposed [23].  The 
killing tactic and pack organization of grey wolves had an 
impact on the technique. Grey wolves live in packs and have 
an exceptionally hierarchical culture. Decision-making has 
been handed over to the alphas (α), the wolves' rulers. Alpha 
wolves are assisted in their tasks by beta (β) wolves, who fall 
within the following level. The victim in this system is the last 
individual, known as Omega (ω). If a wolf does not fit into 
any of the above-mentioned classifications, it is occasionally 
referred to as a delta (δ) wolf. In line with this well-defined 
hierarchy, grey wolves try to encircle a food supply, attack, 
and kill, then search for other prey. The way that wolves hunt 
is defined as follows: (i) a way to enclose prey; (ii) a way to 
locate and kill animals; and (iii) a way to battle a prey. 
Equations (10) and (11) describe how grey wolves circle their 
prey during a hunting expedition. 

 ⃗⃗  |𝑓  (  ⃗⃗ ⃗⃗  ⃗( )    ( )|  (10) 
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  (   )     ⃗⃗ ⃗⃗  ⃗( )   ⃗   ⃗⃗   (11) 

Where    depicts wolf's location in round configuration; 

  ⃗⃗ ⃗⃗  ⃗is the prey's vector position;   is present time;  ⃗  and 

 ⃗⃗  are effective vectors that have the following definitions is 
shown in Equation (12) and (13). 

Equations (12) and (13), where     represents the wolf's 

location in a circular configuration,   ⃗⃗ ⃗⃗  ⃗ represents the prey's 

vector position, n denotes the current time, and  ⃗  and  ⃗⃗  
represent effective vectors with the corresponding definitions. 

 ⃗        ⃗⃗  ⃗       (12) 

𝑓       ⃗⃗  ⃗   (13) 

Random vectors equally distributed between 0 and 1 are 
included in   ⃗⃗  ⃗ and   ⃗⃗  ⃗ where the element d is progressively 
decreased from 2 to 0. The            wolves are thought to 
comprehend it better since the location of the meal is never 
evident in advance. Equations (14), (15), and (16) are used to 
determine the victim's location by utilizing the wolves' 
positions. 

 ⃗⃗   |𝑓         |  ⃗⃗   |𝑓         |  ⃗⃗   |𝑓         | 

  (14) 

           ⃗                   ⃗     ⃗⃗              ⃗   

  ⃗⃗    (15) 

  (   )  
 ⃗    ⃗     ⃗  

 
    (16) 

Assuming the study have an estimated position, the next 
step is to stalk the victim (exploitation). Since the condition of 
wolves grows closer to the prey's site as p in Equation (11) 

lowers from 2 to 0, the vector  ⃗  can be employed to achieve 
this purpose. Furthermore, variables f and Q both help 
preserve the method's exploring capabilities intact while 
eliminating the need for local averages. The variable f can 
change the location of food and the challenge of foraging, but 
it can also have an impact on a Q value greater than one, that 
is,         which forces the wolves to stray from their food 
and seek it out. After applying the approach to a pack of 
wolves for a predetermined number of repetitions, Equation 
(13) will eventually show the location of the prey or the best 
area in the globe. 

Grey Wolf Optimization (GWO) works in collaboration 
with Extreme Learning Machine (ELM) and Convolutional 
Neural Network (CNN) to forecast liver illness. GWO refines 
ELM and CNN hyperparameters by utilizing grey wolf 
searching algorithms. This two-stage optimization technique 
gradually increases the model's accuracy. By combining the 
capabilities of ELM along with CNN and GWO, the unified 
system of CNN-ELM-GWO obtains improved precision in 
liver disease categorization. The cooperative approach 
collaboration of GWO improves the model's resilience, 
allowing for effective adjustment and optimization, ultimately 
improving the system's overall effectiveness in forecasting. 

V. RESULTS AND DISCUSSION 

The findings of the suggested method have been addressed 
in this section. A comprehensive process for predicting liver 
disease utilizing a collection of liver ultrasound images 
constitutes a component of the methodology used in this 
investigation. Preprocessing is done employing a hybrid 
approach that combines bilateral filtering and optimal wavelet 
transformation to minimize noise and increase the resolution 
of the image. Then, a CNN with six convolutional layers, 
batch normalization, and max pooling was developed in order 
to obtain important information from the ultrasound images. 
256 discriminant features were generated for the prediction of 
liver disease employing this CNN as the feature extractor. 
These features were then added to the machine for 
classification in order to utilize an ELM enhanced learning 
speed and non-adjustable hidden node settings. The hybrid 
CNN-ELM technique enhances accuracy by fusing the feature 
extraction and classification procedures. Finally, the GWO 
approach was used to modify the hyperparameters of the CNN 
and ELM models in order to further improve the system's 
efficacy. This comprehensive approach forecasts liver disease 
accurately by combining deep learning, metaheuristic 
optimization and advanced image processing. 

A. Performance Evaluation 

Evaluation metrics are crucial for evaluating categorization 
performance. The method that is most frequently used for this 
is an accuracy measurement. The accuracy of a classifier for a 
given dataset may be determined by looking at the proportion 
of testing datasets that it properly classifies. Since selecting 
the best decisions is not possible simply by using the accuracy 
measure. Researchers also used a few more criteria to assess 
the classifier's effectiveness.  Metrics including F1-score, 
accuracy, recall, and precision were utilized to evaluate the 
efficacy of the suggested approach.  The following is a 
description of each measure's definition: 

     (True Positive) is used to describe the amount of 

information that has been effectively categorized. 

The term      (False Positive) explains the amount of 
accurate information that was incorrectly categorized. 

False negatives (    ) are situations where inaccurate 

information has been categorized as authentic. 

The erroneous information values are categorized and 
referenced to as      (True Negative). 

1) Accuracy: The classifier's accuracy indicates how 

frequently it arrives at an appropriate conclusion. The ratio of 

accurate estimates to all other possible possibilities is known 

as accuracy. It is demonstrated by Equation (17). 

          
         

                   
             (17) 

2) Precision: The precision, or level of accuracy, of a 

classifier is employed to determine how many results are 

correctly classified. While lower precision results in many 

more false positives, higher accuracy reduces the number of 

false positives. The percentage of instances correctly assigned 
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to all occurrences is known as precision. It is defined by 

Equation (18). 

  = 
    

         
       (18) 

3) Recall: The recall of a categorization defines its 

sensitivity, or the amount of pertinent information it produces. 

The overall amount of      is reduced through recall 

enhancement. The concept of recall is the ratio of correctly 

identified cases to the entire number of expected occurrences. 

This is demonstrable by Equation (19). 

   
    

          
   (19) 

4) F1-Score: The F1-Score, which is the weighted mean 

of recall and accuracy, is the result of combining recall and 

precision measures. It is characterised by Equation (20). 

           
                   

                
       (20) 

5) ROC Curve: In deep learning and machine learning, 

area under the ROC curve, or AUC, is a popular assessment 

statistic for binary categorization issues. The Area under the 

Curve (AOC) is a visual depiction of the Receiver Operating 

Characteristic (ROC) curve that shows how effective the 

binary recognition technique is. In a binary classified issue, 

the classifier determines whether the incoming data is part of a 

positive or negative division. The ROC curve displays the 

     vs. the      for different categorization criteria. AOC 

values are between 0 and 1, where larger values indicate 

higher effectiveness. An optimum classifier has an AOC of 

one, whereas a totally randomized classifier has an AOC of 

0.5. Since the approach takes into account every conceivable 

level of identification and provides just one statistic for 

comparing the effectiveness of various classifiers. 

The training and testing accuracy levels of the suggested 
model throughout several training epochs are shown in Fig. 6. 
The model performed better and better during the course of 
100 epochs of training. The training accuracy was 76.6% and 
the testing accuracy was 74.5% at the beginning, after only 10 
epochs. However, training and testing accuracy levels steadily 
improved as the model learned and adjusted across additional 
training epochs. After 100 epochs of training, the model 
performed admirably, with a testing accuracy of 99.7% and a 
training accuracy of 99.3% towards the end of the procedure. 
With the testing accuracy showing the model's ability to 
produce correct predictions on data that has never been 
observed before and the training accuracy showing how well 
the model matches the training information, the graphic 
illustrates the model's capability to learn and generalize. 

 
Fig. 6. Training and testing accuracy. 

 
Fig. 7. Training and testing loss. 
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The suggested model's training and testing loss values are 
shown in Fig. 7 as it endures several training epochs. It 
displays the effectiveness of the model and its capacity to 
reduce mistake. The training loss was very significant at 0.92 
at the start of training, with only 10 epochs, suggesting that 
the model's projections on the training information had a 
substantial margin of error. Concurrently, the testing loss was 
additionally slightly elevated at 0.93, indicating that the model 
did not perform much better on unobserved information. 
Training and testing losses reduced in an uninterrupted way as 
the model learned additional epochs, indicating that the model 
was getting better at generating predictions. The model 
reached low training and testing loss values of 0.07 and 0.13, 
respectively, towards the end of the training procedure, which 
lasted 100 epochs. These low loss values demonstrate the 
model's capacity to effectively decrease mistakes and 
generalize, since it has trained to generate extremely precise 
forecasts on both the training and testing datasets. 

In terms of accuracy, precision, recall, and F1-Score for 
liver disease prediction, Table I and Fig. 8 provide a thorough 
comparison of the effectiveness of the proposed CNN-ELM-
GWO method with other existing approaches, such as MLP 
(Multi-Layer Perceptron), RF (Random Forest), KNN (K-
Nearest Neighbours), and NB (Naive Bayes). The outcomes 
show that the suggested CNN-ELM-GWO approach performs 
noticeably better than any other methods. 

It demonstrates its capacity to provide incredibly precise 
forecasts by achieving an amazing accuracy of 99.7%. 
Additionally, the approach performs very well in terms of 
accuracy, recall, and F1-Score, all of which are continuously 
above 99%, indicating its resilience in accurately detecting 
liver disease cases. The conventional machine learning 
techniques, on the other hand, show consistently lower 
performance measures. These include MLP, RF, KNN, and 
NB. The table highlights the enhanced predictive capability of 

the suggested CNN-ELM-GWO technique, rendering it an 
exceptionally efficient and dependable solution for the 
categorization of liver illness. 

The True Positive Rate and False Positive Rate for a 
binary classification model are shown at different threshold 
settings in Fig. 9. The fraction of real negative instances that 
the model mistakenly classifies as positive is represented by 
the False Positive Rate, which is displayed in the right 
column. The True Positive Rate shows the percentage of true 
positive cases that the model properly recognized. The True 
Positive Rate increases in conjunction with the incremental 
increase in the threshold from 0 to 0.6 for categorizing 
occurrences as positive, indicating enhanced sensitivity in 
accurately identifying positive situations. Concurrently, as the 
threshold gets more compressed more negative instances are 
mistakenly categorized as positive, according to the growing 
False Positive Rate. The relationship between True Positive 
and False Positive Rates at various categorization thresholds 
can potentially be evaluated using Fig. 9, which is a useful 
tool for choosing the best threshold for a particular 
categorization task. 

TABLE I. COMPARISON OF PERFORMANCE OF PROPOSED METHOD WITH 

OTHER EXISTING APPROACHES 

Methods 
Accuracy 

(%) 

Precision 

(%) 
Recall (%) 

F1-Score 

(%) 

KNN [19] 62.90 56.60 55.80 56.19 

NB [21] 69.20 70.15 60.16 64.53 

MLP [16] 71.59 58.25 70.76 63.89 

RF [17] 72.20 62.10 68.80 65.25 

Proposed 

CNN-ELM-

GWO 

99.7 99.4 99.4 99.2 

 

 

Fig. 8. Comparison of performance of proposed method with other existing approaches. 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 15, No. 2, 2024 

719 | P a g e  

www.ijacsa.thesai.org 

 
Fig. 9. ROC curve. 

 
Fig. 10. Fitness improvement over iterations. 

The progress of fitness improvement attained by the Grey 
Wolf Optimization method over several iterations is shown in 
Fig. 10 shows the Fitness Improvement over Iterations. It 
serves as an indication for how well the GWO algorithm 
improves its results over time. The y-axis denotes the fitness 
level of the algorithm's solutions, which is often a measure of 
how practically the algorithm's output is to the ideal or 
intended outcome. The x-axis shows the number of iterations 
or optimization cycles. The graph's decreasing pattern in 
fitness values as the iterations go on illustrates that the GWO 
algorithm is gradually improving and perfecting its solutions. 
While the decrease in fitness becomes lower in subsequent 
iterations, it indicates that achieving additional improvements 
is becoming more difficult. 

The high decline in fitness early in the iterations shows 
that the algorithm is swiftly converging towards better 
solutions. This graph is crucial for assessing the effectiveness 
and pace of convergence of the GWO procedure. It also aids 
in deciding whether to stop the algorithm when the required 
level of fitness is attained. 

A comprehensive evaluation of many datasets, including 
the Liver Disorder Dataset, Indian Liver Patient Dataset, and 
the Proposed Liver Ultrasound Images, is shown in Table II 
and Fig. 11 when compared to important performance metrics, 
such as accuracy, precision, recall, and F1-Score. The 
accuracy of the Liver Disorder Dataset was 70%, while the 
equivalent values for precision, recall, and F1-Score were 
68%, 68%, and 69%, respectively. On the other hand, the 
Indian Liver Patient Dataset performed better, scoring 81% in 
terms of F1-Score, precision, and recall, and 80% in terms of 
accuracy. The suggested Liver Ultrasound Images dataset 
performed significantly superior to the others, with high 
values for precision, recall, and F1-Score (99.4%, 99.2%, and 
99.7%, respectively). In comparison to current datasets, the 
proposed results demonstrate the higher predictive capabilities 
of the proposed technique when applied to Liver Ultrasound 
Images, indicating its potential as a diagnostic tool for liver 
illness. 
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Fig. 11. Comparison of datasets of proposed method with other existing approaches.  

TABLE II. COMPARISON OF DATASETS OF PROPOSED METHOD WITH 

OTHER EXISTING APPROACHES 

Datasets 
Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F1-

Score 

(%) 

Liver Disorder Dataset 70 68 68 69 

Indian Liver Patient Dataset 80 81 81 81 

Proposed Liver Ultrasound 

Images 
99.7 99.4 99.4 99.2 

B. Discussion 

The suggested liver disease prediction approach uses 
sophisticated preprocessing, bilateral filtering, and effective 
wavelet transformation to improve picture quality. When used 
with an ELM, a six-layer CNN retrieves 256 discriminant 
features, which optimizes learning. GWO improves the 
model's efficacy through hyperparameter tweaking. 
Evaluation measures show remarkable results, with 99.3% 
along with 99.7% accuracy in testing as well as training, 
respectively. Traditional constraints in liver disease 
forecasting include poor accessibility within artificial neural 
networks, feasible prejudices in dataset depiction, and the 
difficulty of current time application [20]. The CNN-ELM-
GWO method surpasses previous approaches in a comparative 
analysis, demonstrating its dependability for liver disease 
categorization. Fitness Improvement across Iterations as well 
as ROC curve evaluations validate the model's effectiveness 
and convergence rate. This integrated technique shows 
potential for reliable liver disease prediction, outperforming 
alternative approaches. Despite its efficacy, the suggested 
liver disease prediction approach is limited. The dependence 
on ultrasound pictures may restrict applicability to other types 
of imaging. The model's effectiveness may be impacted by the 
dataset's consistency from a single medical institute. 
Furthermore, the substantial computational of the CNN-ELM-
GWO method may provide difficulties for real-time 
applications. Further validation on varied datasets, as well as 
consideration of computing efficiency, are critical to assuring 
the method's broad application and usefulness. Future research 
should focus on improving the liver disease forecasting model. 
Exploring varied datasets collected by various medical 
institutes will result in greater application. Integrating with 

additional imaging modalities may increase generalization. 
Reducing computational complexity will improve real-time 
application practicality. Investigating interpretability and 
adding specific patient information might improve customized 
treatment techniques. Validation in clinical settings, as well as 
collaboration with healthcare experts, will help to make the 
model more practical, increasing its influence on liver disease 
detection and treatment. 

VI. CONCLUSION AND FUTURE WORK 

This study proposes a unique technique for identifying 
liver disease based on ultrasound images that takes advantage 
of the combined abilities of an integrated CNN-ELM-GWO 
model. The proposed technique surpasses standard machine 
learning methods with an incredible 99.7% accuracy, 
emphasizing the critical need for rapid and precise detection 
of liver disease, which is critical for effective patient 
treatment. The model provides an effective and innovative 
architecture by combining an Extreme Learning Machine for 
classification, a Convolutional Neural Network for feature 
extraction, and Grey Wolf Optimization for hyperparameter 
tuning. The CNN-ELM-GWO model's outstanding accuracy 
emphasizes the need for early detection, which is required for 
immediate treatment. This result may influence future research 
that employs advanced algorithms based on machine learning 
to enhance the identification of various illnesses, advancing 
the area of medical image evaluation. The findings motivate 
more research and advocate for more extensive deployment 
and development of the approach, which ought to result in 
improved patient outcomes and more informed healthcare 
decisions. Future research paths might include merging CT or 
MRI images alongside other types of imaging to increase 
diagnostic accuracy. Predictions might be made more 
personalized by using patient-specific information and 
medical history. The model's practical use would be enhanced 
if bigger, more diverse datasets were employed for assessment 
and practical clinical application. Obtaining credibility and 
adoption of the proposed technique by healthcare 
professionals necessitates exploring interpretability 
alternatives for the model's findings. Future research should 
focus on expanding the dataset to increase model 
generalization across different populations and medical 
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circumstances. Furthermore, for practical significance, 
ongoing capability and incorporation into clinical processes 
must be studied. Improving the CNN-ELM-GWO model's 
comprehension and removing any biases will assist healthcare 
professionals in accepting and believing in it. 
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