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Abstract—With the increasing demand for personalized 

travel, traditional travel route planning methods are no longer 

able to meet the diverse needs of users. In view of this, on the 

ground of the analysis of user trajectory data at the temporal and 

spatial levels, a new scenic spot recommendation model is 

proposed by combining personalized recommendation 

algorithms. Meanwhile, improved genetic algorithm and 

minimum spanning tree algorithm were introduced to adjust the 

structure of the personalized recommendation model. After 

matching the visit sequence of scenic spots, the final new 

personalized tourism route recommendation model was 

proposed. The experiment demonstrates that the optimal pause 

time for the personalized scenic spot recommendation model is 45 

minutes, the pause distance is 15 meters, and the clustering 

radius is 500 meters. And the model has the highest accuracy in 

the Tok-10 testing environment, with a maximum value of 90%. 

In addition, the new personalized tourism route recommendation 

model has the highest accuracy of 85.6%, the highest recall rate 

of 88.7%, the highest F1 value of 92.4%, and an average 

convergence rate of 88.9%. In summary, the new scenic spot and 

route recommendation model proposed in the study can achieve 

more intelligent and personalized travel route planning, 

providing new guidance for the intelligent development of travel 

route recommendation. 
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I. INTRODUCTION 

As the boost of intelligent technology and people's 
increasing pursuit of personalized experiences, personalized 
recommendations have become an indispensable part of smart 
travel route planning to enhance the travel experience of 
travelers [1]. Many domestic and foreign researchers have 
conducted varying degrees of exploration to address the 
problems in this field. And relevant researchers have 
successively developed route planning techniques using global 
positioning systems and geographic information systems, and 
proposed personalized recommendation models for travel 
route planning [2]. These technical models can to some extent 
meet the line planning requirements of users. But with the 
diversification of demand, these technologies have also 
exposed issues such as slow real-time performance, poor 
accuracy, and low interactivity [3]. With the continuous 
development of trajectory mining technology, it is widely used 
in location services, logistics management, and other areas due 
to its superior real-time data monitoring and efficient 

data-driven characteristics [4]. In view of this, the study 
attempts to innovatively introduce user data trajectory mining 
technology on the basis of existing personalized 
recommendation algorithms. By analyzing the trajectory 
changes of users in time and space and adjusting the structure 
of recommendation algorithms, a new intelligent travel route 
planning model can be achieved. The rationale for this 
initiative lies in the lack of solutions in the current market that 
can provide personalized travel advice by taking into account 
users' historical behavioral data and real-time location 
information. Its significance is reflected in its ability to greatly 
enhance the user's travel experience and plan more 
personalized and reasonable travel routes for travelers through 
intelligent data analysis. The core research questions and 
objectives are closely centered on how to effectively use 
trajectory mining techniques to achieve personalized 
recommendations, as well as to improve algorithms to 
optimize the structure of the recommendation model to 
improve the accuracy and applicability of real-world travel 
planning. This directly addresses the core challenges in the 
field of intelligent travel planning, such as dealing with large 
spatio-temporal datasets and providing personalized travel 
recommendations that match user needs. The study first 
outlines the progress and limitations of related research and 
clarifies the research objectives. Then, the process of 
constructing a personalized recommendation model based on 
spatio-temporal trajectories is introduced. The validity of the 
model is verified through experiments. Finally, the research 
results are summarized, its application in the field of smart 
travel planning is discussed, and future research directions are 
proposed. 

II. RELATED WORKS 

With the continuous development of technology, 
intelligence has penetrated into every aspect of people's lives, 
and the travel industry is no exception. Yao Z et al. found that 
existing tourism route planning techniques have lower 
planning accuracy when facing complex environments. In 
view of this, the research team proposed a new travel route 
map matching method by combining mobile phone trajectory 
switching data under 5G networks. The experiment 
demonstrates that this method has high accuracy in planning 
user travel routes, and can switch to view parallel roads with 
smaller spacing at any time through mobile phones [5]. Huang 
F et al. found that existing travel route planning methods 
mainly focus on single planning problems for specific tasks, 
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but cannot be applied to other tasks. In view of this, the 
research team proposed a multi task deep travel route planning 
framework by combining interest attributes, user preferences, 
and historical route data. The experimental results show that 
the framework is more effective in general path planning 
compared to similar planning methods and better meets user 
needs [6]. Khamsing N et al. proposed a novel optimal 
decision model for family tourism route planning by 
combining adaptive large neighborhood search method to 
explore the optimal solution in daily family tourism route 
planning problems. The experiment demonstrates that the 
average total travel cost of the optimal route under this 
decision model is relatively low, and the average travel 
satisfaction is 89% [7]. Zhu S proposed a multi-objective 
mixed linear programming model for circular tourism to 
maximize the utilization of tourist attractions by cyclists and 
minimize the total travel time by combining multi-objective 
algorithms. The experiment demonstrates that the model can 
continuously update the optimal path plan in actual bicycle 
tourism path planning, greatly increasing the service level of 
bicycle tourism path planning [8]. 

With the development of position sensing technology and 
the popularization of smart devices, the acquisition of 
trajectory data has become easier. The application fields of 
trajectory mining technology are also becoming increasingly 
widespread. To achieve accurate prediction of flight delays, 
Shao W et al. proposed a flight prediction model combining 
trajectory mining technology by utilizing various vehicle 
trajectories and related sensor data on the airport apron. The 
experimental results show that the error rate of the test results 
of the model in the simulation environment is only 2.56% [9]. 
Jiang L et al. found that when trajectory data shows low 
quality, the map matching effect cannot achieve satisfactory 
results. In view of this, the research team proposed a trajectory 
data augmentation technique that combines deep learning. The 
experiment demonstrates that this technology, with its superior 
migration mode and high-quality trajectory data expression, 
performs far better than other data augmentation models of the 
same type. With the rapid development of the Internet and the 
explosive growth of information, users often feel confused and 
anxious when facing massive amounts of information. The 
emergence of personalized recommendation algorithms 
provides an effective solution to this problem [10]. Chen et al. 
found that users find it difficult to find resources of interest in 
large capacity interactive calligraphy experience devices. In 
view of this, the research team proposed a hybrid personalized 
recommendation algorithm that combines content and 
coordinated filtering. The experiment demonstrates that the 
algorithm can accurately predict user selection, demonstrating 

certain effectiveness and superiority [11]. Zou F et al. found 
that traditional recommendation systems only ensure the 
accuracy of recommendations and lose the diversity of 
recommendations. In view of this, the research team proposed 
a two-stage recommendation algorithm that combines 
collaborative filtering (CF) and multi-objective teaching 
decomposition. The experiment demonstrates that this method 
is highly effective and efficient on the Movielens dataset [12]. 

In summary, although the previous studies have made 
progress in the field of smart travel planning, they mainly 
focus on static user preferences and do not sufficiently 
consider the complexity of spatio-temporal data, resulting in 
the inability to accurately capture users' real-time behaviors. 
In addition, traditional recommendation algorithms suffer 
from inefficiency when dealing with large-scale 
spatio-temporal trajectory data. And the study proposes a 
personalized recommendation algorithm using trajectory 
mining aims to address these limitations. By deeply analyzing 
users' spatio-temporal trajectory data, the algorithm can 
dynamically capture changes in user preferences. Combining 
the improved genetic algorithm and the minimum spanning 
tree algorithm, the study optimizes the recommendation 
structure, enhances the planning efficiency and accuracy, and 
achieves intelligent and personalized travel route planning, 
overcoming the key gaps in existing research. 

III. CONSTRUCTION OF A SMART TRAVEL ROUTE PLANNING 

MODEL COMBINING TRAJECTORY MODEL AND PERSONALIZED 

RECOMMENDATION ALGORITHM 

To improve the overall performance of the final smart 
travel route planning model, this study first mined user 
trajectory data and obtained a recommendation model for the 
user's target attractions through personalized algorithm data 
analysis. Secondly, on the ground of the personalized 
attraction recommendation model, improvements were made 
and the final personalized intelligent travel route planning 
model was proposed. 

A. Construction of Personalized Recommendation Model on 

the Ground of Spatiotemporal Trajectory 

In this era of information explosion, personalized 
recommendations have become an important way for the 
public to obtain information and enjoy services [13]. Data 
mining is nothing but the best personalized recommendation 
method, among which web scraping technology is the most 
classic. This technology simulates browser behavior by 
writing programs to automatically obtain information on the 
Internet. The working steps are shown in Fig. 1. 
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Fig. 1. Crawler technology workflow. 
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As shown in Fig. 1, the process of web crawling 
technology can be roughly divided into four steps. That is, 
sending HTTP code requests, parsing HTML code, extracting 
target data and storing it in the database. After completing the 
data crawler, the spatiotemporal trajectory analysis algorithm 
can analyze the user's temporal and spatial data, thereby 
strengthening the preference judgment of the user's historical 
data. The general spatiotemporal trajectory analysis uses 
Euclidean distance as a measurement unit to determine two 
similar data objects [14]. For different time nodes on two 
trajectories, it calculates the corresponding Euclidean distance 
meanwhile. The calculation formula for this process is shown 
in Eq. (1). 

1
( , ) ( , )




n

i ii
Dist P Q dist p q    (1) 

In equation (1), ip  and iq  represent the nodes on the 
p  and q  trajectories at time point i , respectively, and n  

represents the total time point. The specific calculation of 

( , )i idist p q  is shown in Eq. (2). 

2 2( , ) ( ) ( )   i i ix ix iy iydist p q p q p q     (2) 

In equation (2), ( , )ix iyp p  represents the two-dimensional 

coordinates of node ip , and ( , )ix iyq q  represents the 

two-dimensional coordinates of node iq . For the convenience 
of analysis, the Euclidean distance is converted into similarity 
calculation, as shown in Eq. (3). 
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      (3) 

In equation (3), m  and n  represent the length values of 

trajectories p  and q . Therefore, the similarity value 

interval after conversion can be determined as (0,1) , and the 
larger the value, the greater the similarity between the two 
trajectories. However, when faced with relatively large 
computational data, spatiotemporal trajectory analysis 
algorithms still face certain challenges. Therefore, the study 
focuses on scenic spots as recommendation objects and 
introduces the Mean Shift clustering algorithm to construct the 
user core access matrix [15]. It takes the location and time of 
each user's stay as a pause point, and after connecting all the 
pause points, it generates the user's travel path. The reasoning 
process of the pause point is shown in Eq. (4). 
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In equation (4), iL  represents all pause records of the 

user, and nl  represents the pause location at time n . nlong  

and nlatt  represent the longitude and latitude of the pause 
point, respectively. To avoid the calculation of the maximum 
number of nearest pause points, the study first excludes pause 
points for users with shorter time and distance, as shown in 
Eq. (5). 
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In equation (5), s  represents all pause points of shorter 
time and shorter distance. After excluding these pause points, 
the corresponding clustering labels are established using the 
Mean Shift clustering algorithm, and a user core access matrix 
is constructed [16]. The process of this matrix is shown in the 
Fig. 2. 
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Fig. 2. User core access matrix flow. 

As shown in Fig. 2, it first collects user access data and 
performs pause point analysis. It then establishes clustering 
labels for pause data in both temporal and spatial dimensions. 
In addition, it establishes a dataset of urban tourist attractions 
and classifies them through longitude and latitude coordinates 
[17]. Finally, it matches the pause data points after the label 
with tourist attractions, and the user access point at this point 
is the target point. It assumes that the vector of any point in 

the d -dimensional space after Mean Shift offset is shown in 
Eq. (6). 
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In equation (6), ix  is the i -th point, x  represents any 

point, hS  is a low latitude sphere with a radius of h , T  

represents the number of iterations, and k  represents the 
convergence center value. The entire algorithm obtains the 
final position that stabilizes the sphere by continuously 
approximating the offset vector towards any point x . The 
vector representation of the optimal point position at this time 
is shown in Eq. (7). 
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In Eq. (7), h  represents an element in a positive definite 

diagonal matrix, and ih  represents an element. ( )iw x  

represents sample weight, ( )G x  represents unit kernel 
function. To match the format of label data for the established 
visit sequence of scenic spots, the study abstracts any scenic 
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spot, and the expression for this process is shown in Eq. (8). 
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In Eq. (8), l  represents any pause point, and ( `, `)x y  

represents the coordinates of any scenic spot iS . If the 
coordinate interval of the pause point is exactly within this 
range, it indicates that the pause point has visited scenic spot 

iS . After similar frequent mining, a large number of tourist 
attraction visit sequences can be established, as shown in 
Eq. (9). 
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In equation (9),   represents the critical threshold, ck  
represents the clustering sequence with many pause points, 

vk  represents the clustering sequence with many pause points 

visiting scenic spot iS , and 
i

ckl  represents the clustering 

pause point with time i . In summary, the personalized 
recommendation model combining user spatiotemporal 
trajectory data is shown in Fig. 3. 

As shown in Fig. 3, the model structure can be roughly 
divided into five parts. The first part is the target users, who 
have unique ideas about tourist attractions and path planning 
and prefer intelligent recommendations. Secondly, through 
spatiotemporal trajectory analysis, the second part can be 
obtained, which is the user pause data sequence, which 
records the user's spatiotemporal historical browsing data. 
After analyzing these pause point data through clustering 
algorithms, the third part, namely the user access matrix, was 
obtained. Meanwhile, it establishes visit sequences for 
frequently followed attractions, and finally personalized 
recommendations are made by matching the similarity 
between the two. 

B. Construction of Travel Route Planning Model Combining 

Personalized Recommendation Algorithm and Improved 

Genetic Algorithm 

In practical life, to improve the functionality of 
personalized recommendation algorithms, this study not only 
needs to construct a recommendation model for scenic spots, 
but also needs to substantially propose route planning methods 
for these scenic spots [18]. To avoid user resistance caused by 
the large number of personalized recommended attractions 
and the scattered distribution of attractions, the study 
introduced the Minimum Spanning Tree (MST) clustering 
method to prioritize the segmentation of attractions. The 
schematic diagram of MST is shown in Fig. 4. 

Fig. 4 shows that after MST segmentation, the distance 
between recommended tourist attractions within the 
established range is significantly reduced, enabling users to 
visit multiple tourist attractions within a specific time range, 
improving the quality of travel and saving time. In addition, 
unlike recommending tourist attractions, the problem of 
recommending tourist routes is complex and variable, that is, 

there are multiple possibilities for planning a route to a certain 
location [19]. Therefore, the study introduced an improved 
genetic algorithm (GA) on the ground of personalized 
recommendation algorithms. The traditional GA is shown in 
Fig. 1. 

Fig. 5 shows that the traditional GA in tourism route 
planning can be roughly divided into nine steps, including 
recommending a set of tourist attractions, encoding 
recommended attractions, determining the population, 
calculating individual fitness, cross mutation, selecting the 
best individual, updating the population, condition judgment, 
and outputting the best route. Traditional GAs tend to 
construct initial populations randomly. If a smaller initial 
population appears, it will affect the convergence of 
subsequent algorithms, leading to lower individual fitness. 
Therefore, the study introduced the Greedy Algorithm to 
improve the initialization process of the population. The 
improved initialization population calculation formula is 
shown in Eq. (10). 

( ),  it random T T S       (10) 

In Eq. (10), it  represents a randomly selected attraction, 

T  represents a set of all attractions, and S  represents the 
initial population. At this point, the selection of nearby 
attractions is shown in Eq. (11). 
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In Eq. (11), jt  represents other attractions that are closer 

to the first attraction, and . ( )jS insert t  represents all the best 
individual attractions. At this point, to stabilize the 
individual's fitness value, the study introduced a fitness 
function with multiple constraints. This function includes two 
parts: the shortest route and the optimal access time. The 
fitness function calculation for the shortest route problem is 
shown in Eq. (12). 
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Fig. 3. Personalized recommendation model structure diagram. 
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Fig. 4. MST schematic diagram. 
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In Eq. (12), C  represents the collection of scenic spots, 
`n  represents the number of paths that satisfy user 

preferences, and 1( , )i id c c  represents the sum of distances 

between ic  and 1ic  paths. The optimal visit time needs to 
be planned in conjunction with the designated opening hours 
of the scenic spots. Due to the different opening hours of each 
scenic spot, the study divided the optimal visit time into three 
different visit times as dividing points [20]. The expression is 
shown in Eq. (13). 
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In Eq. (13), iot  represents the opening time of the 

attraction, ict  represents the closing time of the attraction, ic  

represents the attraction, and the user's visit time is it . 
Although the user's stay time at each attraction cannot be 
estimated, the visit time can be calculated on the ground of the 
popularity of the attraction. The calculation formula for 
conversion estimation is shown in Eq. (14). 
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count c count c count c
   (14) 

In equation (14), ( )icount c  represents the number of 

popular searches for attraction ic , and NT  represents the time 
constant. By using this formula, the visit time and stay time of 

each attraction in a set of attractions C  can be calculated. 
The optimal fitness function of the GA at this time is shown in 
Eq. (15). 
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In Eq. (15),   and   represent the limiting weights of 
the fitness function for the shortest route and optimal access 
time, respectively. The best individual selected, crossed, 
mutated, and determined through GA is the optimal travel 
planning route for user needs. In summary, a new intelligent 
travel route recommendation model has been proposed by 
combining personalized recommendation algorithms and 
improved GAs. The structure of the model is shown in Fig. 6. 
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Fig. 6. Smart travel route recommendation model structure diagram 

Fig. 6 shows that the entire smart travel route planning 
model consists of six parts. Firstly, it obtains the trajectory 
data information of the target user and their preferences. 
Secondly, it filters the target node set that best meets the user's 
needs through a personalized recommendation model. Then, 
the MST algorithm is used to divide the collection of scenic 
spots into regions, to reduce the recommended target. After k 
repeated reductions, multiple path planning schemes were 
finally obtained to determine the distance between scenic 
spots. Finally, an improved GA algorithm was used to select 
the optimal path set and output the best route. 
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IV. RESULTS 

To verify the performance of the proposed new intelligent 
personalized recommendation model, this study first tested the 
scenic spot recommendation model and determined the 
optimal operating parameters of the algorithm. Then it was 
compared with similar recommendation algorithms. In 
addition, the new tourism route recommendation model was 
tested to determine its optimal iteration times and fitness 
function values. It was also compared with similar 
recommendation models. 

A. Test Results of Scenic Spot Recommendation Model 

To verify the performance of the personalized scenic spot 
recommendation model proposed in the study, which 
combines trajectory data mining, the Windows 10 operating 

system was used, with an Intel Core 2.5Hz dual core CPU and 
16GB of memory. To ensure the authenticity of the test, this 
study used a global dataset of tourist attractions and routes. 
This dataset contains information on various tourist attractions 
and related routes from around the world, totaling 
approximately 100000 pieces. It divides the dataset into 
training and testing sets in an 8:2 ratio, and the training set 
sample data is used to train personalized recommendation 
models. The study introduced two variables, dwell time and 
dwell distance, to analyze the pause points of users. 
Meanwhile, to prevent model training caused by too large or 
too small variables, the study sets the dwell time to within 1 
hour and the dwell distance to within 50 meters. In addition, 
the Mean Shift clustering radius is used as a variable to detect 
changes in the number of clusters. The specific test results are 
shown in Fig. 7. 
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Fig. 7. Pause point analysis and cluster analysis parameter testing. 

Fig. 7(a) shows the changes in the pause time and pause 
distance parameters of the pause point, and Fig. 7(b) shows 
the changes in the clustering radius parameters of the 
clustering analysis. As shown in Fig. 7, the pause change 
curve is most stable when the pause time is 45 minutes, and 
the maximum number of pauses at this time is 6000 when the 
pause distance is 18 meters. In addition, as the clustering 
radius increases, the average number of clusters gradually 
decreases, while the number of pause points gradually 
increases. When the clustering radius is 500m, that is, at the 
intersection, the number of the two performs best. Therefore, 
in subsequent research, the set parameters include a pause 
time of 45 minutes, a pause distance of 15 meters, and a 
clustering radius of 500 meters. To verify the performance 
difference between the personalized recommendation model 
proposed in the study and existing models of the same type, 
Tok-k accuracy was used as a reference indicator. This 
indicator represents the proportion of the top k results with the 
highest probability in the prediction results that contain correct 
labels, for example, Tok-5 is a test environment with 5 
recommended sets. Meanwhile, the content attribute 
personalized recommendation model (Item based), rating 
personalized recommendation model (Mark based), and image 
personalized recommendation model (Graphics based) were 
introduced. The test results are shown in Fig. 8. 

Fig. 8 shows that the personalized recommendation 
method proposed in the study generally has high accuracy in 
three testing environments. The highest accuracy rate in Tok-5 
is 88% for the study of the proposed model, 90% for the study 
of the proposed model in Tok-10, and 84% for the study of the 

proposed model in Tok-15. In Tok-10, the accuracy of the 
proposed model is 33% higher than that of the content 
attribute personalized recommendation model and 31% higher 
than that of the rating personalized recommendation model. In 
summary, it can be concluded that the personalized scenic spot 
recommendation model proposed in the study, which 
combines temporal and spatial data trajectory mining, has the 
best performance. In addition, with accuracy, recall, F1 value, 
and recommendation similarity as reference indicators, 
comparative tests were continued on the four models, and the 
test results are shown in Table I. 
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Fig. 8. Comparison results of Tok-k accuracy of different recommendation 

models. 
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TABLE I. COMPARATIVE TEST RESULTS OF PERSONALIZED 

RECOMMENDATION MODELS 

Model Precision/% Recall/% F1/% 
Recommended 

similarity/% 

Item based 64.8 65.3 67.1 68.5 

Mark based 68.4 71.6 74.8 77.9 

Graphics based 74.2 75.3 76.7 79.5 

Our method 82.4 84.6 85.9 89.3 

As can be seen from Table I, the Item based model has 
generally low indicators in various categories, with its highest 
P value of 64.8%, highest R value of 65.3%, highest F1 value 
of 67.1%, and highest recommendation similarity of 68.5%. In 
contrast, the study proposes that the recommendation model 
performs the best, with the highest accuracy of 82.4%, the 
highest recall of 84.6%, the highest F1 value of 85.9%, and 
the highest recommendation similarity of 89.3%. The values 

rose 17.6%, 19.3%, 18.8% and 20.8% respectively compared 
to the lowest Item based model. In summary, it once again 
proves that the model proposed in the study is more in line 
with user choices, with higher recommendation and usage 
rates. 

B. Test Results of Route Recommendation Model 

Due to the introduction of an improved GA on the ground 
of personalized recommendation algorithms, this study first 
tested the iterative performance of the improved GA. It 
determines the optimal number of iterations and fitness 
function values to facilitate subsequent model testing. In 
addition, to enhance the reliability of testing, traditional GAs, 
CF, and Particle Swarm Optimization (PSO) were introduced 
in the study. These algorithms were tested separately on the 
training and testing sets, and the test results are shown in 
Fig. 9. 

0.2

0.3

0.4

0.5

0.6

0.7

0.1

0

0.8

0 100 200 300 400 500 600 700 800 900 1000

F
it

n
e
s
s 

fu
n

c
ti

o
n

 v
al

u
e

0 100 200 300 400 500 600 700 800 900 1000
Iterations

Our method

GA

PSO

(a)Training set

CF

F
it

n
e
s
s 

fu
n

c
ti

o
n

 v
al

u
e

(b)Test set

0.2

0.3

0.4

0.5

0.6

0.7

0.1

0

0.8

(200,0.16)
(400,0.2)

Our method

GA

PSO

CF

 

Fig. 9. Iterative performance testing of different optimization algorithms. 

Fig. 9(a) shows the iterative performance test results of 
four optimization algorithms in the training set. Fig. 9(b) 
shows the iterative performance test results of four 
optimization algorithms in the test set. Fig. 9 shows that as the 
number of iterations increases, the fitness function values of 
all four algorithms decrease, but then tend to stabilize. The 
results of the training set show that the lowest fitness function 
value of the proposed model is 0.2 when the number of 
iterations is 400. In the test set, when the number of iterations 
is 200, the fitness function value at this point is as low as 0.16. 
Therefore, it is necessary for subsequent research to use the 
number of iterations and fitness function values as 
benchmarks for performance testing of similar algorithms. It 
conducts 50 repeated experiments on four algorithms and 
takes the average of the ratio of the optimal solutions obtained 
each time as the average convergence degree of the algorithm. 
Meanwhile, it continues to introduce three reference indicators: 
accuracy, recall, and F1 value. The test results are shown in 
Table II. 

As can be seen in Table II, the GA algorithm has the worst 
performance in the metrics test, with the highest accuracy of 
54.2%, the highest recall of 57.6%, the highest F1 value of 
64.5%, and an average convergence of 58.8%. This is 
followed by PSO algorithm and CF algorithm, while the 

personalized recommendation algorithm proposed in the study 
has the highest accuracy of 85.6%, the highest recall of 88.7%, 
the highest F1 value of 92.4%, and the average convergence of 
88.9%. To more accurately reflect the performance of the 
personalized tourism route recommendation model proposed 
in the study, the top 10 popular tourist attractions in Chengdu 
were selected as the target locations. They are 1) Dujiangyan 
Irrigation Project Water Conservancy Project, 2) Chengdu 
Happy Valley, 3) Qinglong Lake Park, 4) Huanglongxi 
Ancient Town, 5) Sansheng Flower Town Scenic Spot, 6) 
Giant Panda Base, 7) Qingcheng Mountain, 8) Eastern Suburb 
Memory, 9) Wenshu Academy and 10) Du Fu Thatched 
Cottage. The actual results of comparing the traditional 
personalized recommendation route and the new personalized 
recommendation route are shown in Fig. 10. 

TABLE II. PERFORMANCE TEST RESULTS OF DIFFERENT OPTIMIZATION 

ALGORITHMS 

Model Precision/% Recall/% F1/% 
Mean 

Convergence % 

GA 54.2 57.6 64.5 58.8 

PSO 68.4 73.2 79.5 73.7 

CF 74.2 77.7 83.8 78.6 

Our method 85.6 88.7 92.4 88.9 
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Fig. 10. Comparison results of personalized recommended routes. 

Fig. 10(a) shows the traditional personalized 
recommendation route, and Fig. 10(b) shows the new 
personalized recommendation route. As shown in Fig. 10, the 
traditional personalized recommendation route connects 10 
scenic spots in pairs, resulting in a total of nine moving paths, 
represented by black arrows. The red arrow represents the new 
recommended path, while the red circle tends to indicate the 
clustering range of scenic spots. Considering the actual 
situation, the maximum daily travel itinerary for users is three 
scenic spots. Therefore, under traditional methods, the longest 
crossing path for the same day's itinerary takes more time and 
is not conducive to users choosing fixed accommodation. The 
new personalized recommendation path can select at least one 
and at most seven stopping points within the established 
stopping range, and set accommodation at the center of each 
circle for the most convenient. In summary, the new 
personalized tourism path recommendation model proposed in 
the study performs better. 

V. CONCLUSION 

Traditional travel planning methods are usually static, only 
considering the user's departure and destination, without 
considering the user's actual behavior and real-time location. 
In view of this, the study established a personalized 
recommendation model through mean shift clustering and 
trajectory analysis after decomposing user trajectory data in 
time and space. After introducing an improved GA, a new 
intelligent personalized tourism route recommendation model 
was proposed. The experimental results show that when the 
pause time is 45 minutes, the pause distance is 15 meters, and 
the clustering radius is 500 meters, the performance of the 
personalized scenic spot recommendation model is the best. 
Compared to personalized recommendation models of the 
same type, the proposed model has the highest accuracy in the 
Tok-10 testing environment, with a maximum value of 90%. 
The highest model accuracy is 82.4%, the highest recall is 
84.6%, the highest F1 value is 85.9%, and the highest 
recommended similarity is 89.3%. In addition, testing the 
personalized travel recommendation route model found that 
compared to other models, the new route recommendation 
model proposed in this study has the lowest iteration number 
of 200 and a fitness function value of 0.16. The highest 
accuracy of model recommendation is 85.6%, the highest 

recall is 88.7%, the highest F1 value is 92.4%, and the average 
convergence is 88.9%. Simulation tests have shown that the 
new model can plan more reasonable and suitable routes for 
the public's actual tourism, save time on route expenses, and 
facilitate accommodation arrangements. In summary, the new 
personalized attraction and route recommendation model 
proposed in the study can improve the effectiveness and 
experience of travel planning and meet user needs. However, 
this study only analyzed user trajectories from time and space 
sequences. Further research can add more user characteristic 
information analysis, such as subjective requirements and 
preferences, to enhance the completeness of the study. 

VI. DISCUSSION 

The study successfully constructed a novel attraction 
recommendation model and travel route recommendation 
model by introducing improved genetic algorithm and 
minimum spanning tree algorithm. These two personalized 
recommendation models perform well in several performance 
metrics, highlighting their potential in the field of intelligent 
travel route planning. First, the optimal stopping time of the 
personalized attraction recommendation model is set to 45 
minutes, the stopping distance is 15 meters, and the clustering 
radius is 500 meters when these parameters are optimized to 
ensure that the model can accurately capture the actual user 
behaviors and deviations. In particular, the model achieves 90% 
accuracy in the Tok-10 test environment, which is much 
higher than traditional personalized recommendation models, 
such as content attribute personalized recommendation model, 
rating personalized recommendation model, and image 
personalized recommendation model. This result emphasizes 
the importance of spatio-temporal trajectory data analysis in 
improving recommendation accuracy, and also demonstrates 
that the performance of recommender systems can be 
significantly improved by fine-grained user behavior analysis. 
In addition, the personalized travel route recommendation 
model has the highest accuracy of 85.6%, recall of 88.7%, F1 
value of 92.4%, and average convergence of 88.9%. These 
metrics not only reflect the model's efficiency and accuracy in 
the field of travel route recommendation, but also show the 
effectiveness of the improved genetic algorithm in dealing 
with complex route planning problems. By introducing the 
greedy algorithm to optimize the initial population and 
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adopting the fitness function with multiple constraints, the 
study successfully improves the convergence speed of the 
algorithm and the quality of recommendations. However, 
there are still some potential challenges and limitations of 
these models. First, although the studies have achieved 
significant results in specific datasets and environments, their 
generalization capabilities still need to be validated in a wider 
range of scenarios and complex user behavior patterns. In 
addition, the performance of the model relies heavily on 
high-quality spatio-temporal trajectory data, and thus, it may 
face challenges of privacy protection and data security in data 
collection and processing. In response to the above discussion, 
future research could further explore the application of the 
model in different cultural and geographic contexts to validate 
its generalization ability. Second, considering the importance 
of data privacy and security, future work should focus more 
on the anonymization of user data and the application of 
encryption techniques. Finally, given the diversity and 
dynamics of user preferences, the development of more 
flexible and adaptive models will be the key to improving the 
accuracy and user satisfaction of recommender systems. 
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