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Abstract—The challenge of accurately detecting and 

identifying individuals within under-actuated zones presents a 

relevant research problem in occupant detection. This study aims 

to address the challenge of occupant detection in under-actuated 

zones through the utilization of the You Only Look Once version 

8 (YOLO v8) object detection model. The research methodology 

involves a comprehensive evaluation of YOLO v8's performance 

across three distinct zones, where its precision, accuracy, and 

recall capabilities in identifying occupants are rigorously 

assessed. The outcomes of this performance evaluation, expressed 

through quantitative metrics, provide compelling evidence of the 

efficacy of the YOLO v8 model in the context of occupant 

detection in under-actuated zones. Across these three diverse 

under-actuated zones, YOLO v8 consistently exhibits remarkable 

mean Average Precision (mAP) scores, achieving 99.2% in Zone 

1, 78.3% in Zone 2, and 96.2% in Zone 3. These mAP scores 

serve as a testament to the model's precision, indicating its 

proficiency in accurately localizing and identifying occupants 

within each zone. Furthermore, YOLO v8 demonstrates 

impressive efficiency in executing occupant detection tasks. The 

model boasts rapid processing times, with all three zones being 

analyzed in a matter of milliseconds. Specifically, YOLO v8 

achieves execution times of 0.004 seconds in both Zone 1 and 

Zone 3, while Zone 2, which entails slightly more computational 

effort, still maintains an efficient execution time of 0.024 seconds. 

This efficiency constitutes a pivotal advantage of YOLO v8, as it 

ensures expeditious and effective occupant detection in the 

context of under-actuated zones. 

Keywords—YOLO; HVAC system; occupant’s position; 

occupant calculation; under-actuated zone 

I. INTRODUCTION 

In recent years, increasing attention has been paid to 
improving the energy security of buildings. The focus has 
shifted to developing innovative concepts and technologies, 
increasing the energy efficiency of building envelopes and 
systems, and optimizing renewable energy sources (RES). 
Approximately 40% of all structures consume residential or 
commercial primary energy, and residential or commercial 
structures consume 40% more energy than others, especially in 
heating, ventilation, and air conditioning (HVAC) [1]. HVAC 
is an important system that must be considered, as it 
significantly. The HVAC system has two zones that must be 
controlled: under-actuated and fully actuated. The first type, 
"fully actuated," comprises a single room in which HVAC 
equipment may be controlled separately [2]. This zone is 
appropriate for areas with a fixed number of inhabitants and 

activities such as classrooms, offices, and auditoriums. 
Meanwhile, under-actuated zones in heating, ventilation, and 
air conditioning (HVAC) systems are areas where ventilation 
systems cannot effectively regulate air exchange rates. As a 
result, these areas can experience substandard air quality, 
adversely affecting the health [3]. 

Managing under-actuated zones in buildings presents a 
complex array of challenges, particularly in controlling the air 
distribution system. A critical factor in this regard is the direct 
impact of occupancy numbers on the cooling load [3]. 
Accurate detection of occupants is therefore essential, as 
variations in occupancy levels can lead to unbalanced cooling 
loads [4]. This imbalance often results in inadequate climate 
control, adversely affecting Indoor Air Quality (IAQ) and 
diminishing the overall energy efficiency of the system [5]. 
Further complicating the issue is the limited capacity of 
ventilation systems in these zones, often characterized by 
inadequate controls. This limitation can significantly hinder the 
distribution of fresh air throughout the occupied spaces, 
exacerbating IAQ issues and potentially impacting occupant 
health and comfort [6]. 

Addressing the challenges in under-actuated zones 
underscores the critical need for precisely adjusting airflow and 
regulating air temperature based on real-time occupancy data. 
These dynamic adjustments are essential for maintaining 
optimal environmental conditions and play a pivotal role in 
reducing unnecessary energy consumption, particularly in 
heating or cooling areas that are not occupied [7]. Furthermore, 
ensuring consistent and high-quality indoor air quality is vitally 
linked to the well-being and productivity of occupants [8]. In 
under-actuated zones, where occupancy levels vary and control 
over environmental conditions is limited, there is an increased 
risk of periods with compromised air quality [9]. The 
implementation of advanced occupant detection systems is key 
to enabling effective HVAC controls [10]. This integration 
facilitates the processing of real-time occupancy data, 
empowering the HVAC system to perform predictive 
adjustments and dynamically tailor its operations to align with 
the actual occupancy needs. Such an adaptive approach is not 
only crucial for maintaining comfortable environmental 
conditions but also has a significant impact on energy 
consumption [11]. By optimizing HVAC operations based on 
real-time occupancy data, buildings can realize substantial 
energy savings [12]. This is achieved by reducing the heating 
or cooling in less occupied areas, while ensuring that comfort 
is maintained in areas with higher occupancy [13][14]. 
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Current study has developed occupant detection in such 
area by utilizing video or image processing. In the context of 
under-actuated zones, the implementation of video-based 
occupant detection systems faces unique and formidable 
challenges, primarily due to the unpredictable and complex 
nature of occupancy patterns in these areas [15]. Occupants in 
such zones display a diverse range of behaviors, from moving 
swiftly through the space to remaining stationary for prolonged 
durations [16][17][18]. This variability significantly challenges 
video-based detection systems, which must efficiently track 
fast-moving individuals and simultaneously accurately count 
and identify stationary occupants, ensuring comprehensive and 
precise occupancy detection [19][20]. Compounding this 
challenge is the intricate physical layout of under-actuated 
zones, often marked by obstructions and blind spots arising 
from furniture, partitions, and varied architectural elements 
[21]. These hindrances substantially reduce the efficiency of 
camera surveillance, leading to zones where occupants might 
remain unnoticed. Additionally, another challenge stems from 
inaccuracies in identifying occupants when utilizing standard 
video input frame rates. For instance, instances may occur 
where multiple occupants are present within a zone, yet the 
identification system detects only a single object. Further 
investigation into optimizing frame rates is warranted to 
enhance the accuracy of occupant detection. To address these 
challenges, camera systems require advanced features and 
optimized frame rates to accurately count and track occupants 
across varied scenarios, from low-activity environments to 
areas with high occupancy and dynamic movement patterns 
[22]. The unpredictability and diversity of occupant dynamics 
in under-actuated zones further necessitate the deployment of 
sophisticated algorithms for data processing and analysis [23]. 
These algorithms must be capable of interpreting complex and 
varied data to ensure effective tracking and counting of 
occupants. This requirement is particularly crucial in under-
actuated zones, where environmental conditions may not be as 
controlled or predictable as those in fully-actuated zones, 
posing additional. 

In this research, we aim to address prevailing gaps by 
developing a methodology that combines computer vision with 
deep learning techniques to detect and classify occupants, 
specifically focusing on quantifying the number of individuals 
in specific areas within under-actuated zones. Occupant 
calculation analysis can aid in optimizing indoor air volume 
distribution in areas with small occupancy HVAC systems. 
This approach can enhance indoor air quality, minimize energy 
consumption, and improve occupant comfort and productivity. 
It is crucial to employ an adept method for analyzing occupant 
calculation in under-actuated zones. The study centers on 
implementing the You Only Look Once (YOLO) method, 
specifically YOLO v8, for detecting occupants in the library 
rooms of Universitas Trilogi, areas typified as under-actuated 
zones. A fundamental aspect of this investigation involves 
analyzing a dataset comprising video input from these under-
actuated zones. To facilitate a comprehensive analysis, the 
dataset was categorized into three types: original, compressed, 
and slowed down versions. For each frame of video input 
within these datasets, Roboflow was utilized to annotate the 
occupants and specific areas of under-actuated zones, thereby 
creating labeled data essential for training the model. The 

YOLO v8 model was then employed for each dataset variant, 
with a focus on investigating the detection confidence 
threshold to enhance the precision of occupant detection and 
quantification. A crucial aspect of this study was the 
comparative analysis of the model's performance, including 
metrics such as mean average precision, accuracy, and 
processing time. This performance was benchmarked against 
state-of-the-art methods like YOLO v5 and Faster R-CNN, 
providing a comprehensive understanding of YOLO v8's 
efficacy in occupant detection within under-actuated zone. 

II. RELATED WORK 

Recent studies have increasingly focused on examining the 
presence and behavior of occupants in specific zones of HVAC 
systems, highlighting a keen interest in the correlation between 
occupancy and system efficiency. Notably, the use of cameras, 
in tandem with computer vision-based technologies for 
occupancy detection and recognition, has emerged as a 
significant area of interest among researchers. This approach is 
particularly effective as cameras can accurately identify 
occupants, even those engaged in minimal movement or 
sedentary activities, a capability crucial for comprehensive 
monitoring in various scenarios. However, its application in 
studying and optimizing HVAC systems represents a novel and 
promising direction in enhancing building energy efficiency. 

Tien et al. [8] developed a region-based Faster 
Convolutional Neural Network (Faster R-CNN) that was 
capable of detecting and recognizing occupancy patterns and 
equipment used in an office area. The model was trained and 
deployed on a regular camera, and field tests were conducted in 
an office setting. The proposed method was evaluated in the 
field by recognizing various individuals performing diverse 
actions in an office environment, such as walking, sitting, and 
standing. A detection model was created by training a CNN 
using a transfer learning-based approach to classify occupancy 
activities. The model was then applied to a camera to enable 
real-time detection. The model's performance was assessed 
using a 15-minute experimental detection test, and across all 
activities, the average detection accuracy was found to be 
98.65%. 

Wei et al. [24] investigated the potential of using a live 
occupancy detection approach to help adjust building HVAC 
system operations to ensure adequate interior thermal 
conditions and air quality while reducing excessive building 
energy loads to improve the overall building energy 
performance. Faster R-CNN models were trained to detect the 
number of individuals (Model 1) and occupancy activities 
(Model 2) and deployed to an AI-powered camera to enable 
live occupancy detection. Model 1 attained an average 
detection accuracy of around 98.9%, which was higher than 
Model 2's accuracy of about 88.5%, owing to Model 1's lower 
complexity. Building energy simulation (BES) model was used 
to perform scenario-based modeling of the case study building 
under four ventilation scenarios during the heating and cooling 
seasons. The results showed that the proposed approach might 
offer a DCV to improve IAQ and address the under-or 
overestimation of ventilation demand when utilizing static or 
fixed profiles. It provides insights into how the proposed 
approach can adjust HVACs based on occupant dynamic 
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changes and the potential of this strategy to improve indoor air 
quality and energy efficiency. 

Papakis et al. [25] developed a method that can recognize 
and classify passengers in a vehicle based on cabin photos. The 
Second Strategic Highway Research Program (SHRP 2) 
naturalistic dataset containing blurred cabin photos was used to 
design and test the system. They proposed a CNN-based 
approach to detect and locate passengers to recognize and 
identify individuals and classify them as drivers, front-seat 
passengers, or rear-seat passengers. After assessing various 
object detection models, to optimize performance, they used 
the Faster R-CNN architecture with a ResNet-101 backbone, 
pre-trained on ImageNet, fine-tuned for person detection using 
SHRP 2 cabin data, and produced the best results. The two 
distinct test sets found occupant detection accuracies of 94.5% 
and 98.1%, respectively. 

Taheri [11] developed detection-based techniques using the 
Kanade–Lucas–Tomasi (KLT) tracker to extract many features 
from video footage. After proposing a conditioning technique 
for feature trajectories, they introduced a trajectory-set 
clustering method for identifying the number of moving 
objects in a scene. Considering these encouraging results, they 
propose extending our method to identify a more complex 
model of the appearance and motion of objects. They also plan 
to investigate the combination of our approach with static 
object counting methods. Further improvements will include 
autocalibration (at least to correct the perspective) and 
background discrimination from objects to ensure the method 
works for handheld cameras. The result of the proposed 
method was conducted on three kinds of datasets (USC, 
Library, and Cells), where the average error of USC was 0.8, 
LIBRARY was 2.7, and CELLS was 24. This indicates that the 
proposed method performs well for the USC dataset. 

Chatista [15] proposed a novel algorithm for dense-crowd 
estimation. The proposed method divides an image into small 
rectangular patches. Each patch underwent a crowd/non-crowd 
SURF feature binary SVM classifier. These labels and CNN-
based head detections were used to estimate the head size in 
each patch. The count for patches without head detection was 
estimated using the weighted average of the neighboring pixel 
counts. This approach was evaluated using three challenging 
datasets. The results show that our approach yielded low error 
rates for high- and medium-density crowd images. Because 
they used a pre-trained head detector trained on totally 
different data, they aimed to train our head detector on similar 
high-density crowd images. This would naturally lead to better 
detection and, thus, better crowd count estimates. Similarly, a 
perspective-aware head detector would also boost detection 
accuracy. In addition, better semantic segmentation of the 
scene for crowd detection is also under consideration. The 
overlaying of the rectangular grid on the entire image does not 
consider the image perspective information; the patch size can 
be modified as the distance from the camera increases to 
achieve better results. For better results, the SURF classifier 
can also be trained on less-dense crowd images, especially 
compared with no weight, with weight having best 
performance. As shown from the MSE value, SURF classifier 
with weight has score 61.4 and with no weight has score 79.8. 

Previous studies have predominantly utilized the Faster R-
CNN method for occupant counting in the realm of computer 
vision. This method enhances the original R-CNN framework 
by accelerating performance through shared computation and 
employing neural networks for region proposal, rather than 
relying on a selective search [20]. While Faster R-CNN marks 
an improvement over R-CNN in terms of speed and accuracy, 
it still falls short in achieving real-time performance, a 
significant limitation for practical applications [21]. One of the 
primary reasons for this shortfall is the extensive number of 
candidate suggestions it generates, approximately 2000, which 
makes processing time-intensive. For instance, analyzing an 
image with the bounding box regressor in Faster R-CNN can 
take around 50 seconds. Moreover, Faster R-CNN is a 
resource-intensive approach, necessitating substantial storage 
for feature maps across all regions [23]. This requirement leads 
to a considerable storage demand, often in the hundreds of 
gigabytes, due to the need to cache extracted features from the 
pre-trained CNN on disk for subsequent SVM training [22]. 
Additionally, being a multi-stage model with distinct 
components, Faster R-CNN cannot be trained end-to-end, 
which adds to its complexity and restricts adaptability. Its 
reliance on selective search algorithms has been critiqued for 
rigidity and lack of flexibility in diverse scenarios. Most 
existing research has been focused on enhancing the detection 
of occupant quantity and distribution in fully-actuated zones. 
However, there has been a notable gap in developing effective 
solutions for under-actuated zones, which pose unique 
challenges due to their variable occupancy and environmental 
conditions. The need for advanced methods that can effectively 
address occupant detection in under-actuated zones remains a 
significant area for further research and development. 

III. MATERIALS AND METHODS 

This case study will be conducted at the Universitas Trilogi 
Library and is shown in Fig. 1. This library consist of five 
rooms of under-actuated zones includes from number 1 to 5. 
Each area of under-actuated zones has several distinct areas. 
The sampling observation and data collection was done in a 
corner room (room number 4) with three area based 
ventilation, each of which is 25 m2. 

 
Fig. 1. Layout of Universitas Trilogi Library. 
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The objective of this research is to determine the arrival 
patterns of occupants in an under-actuated zone and examine 
the efficacy of a proposed vision-based, real-time occupancy 
detection and calculation method. Utilizing YOLO v8, this 
study aims to accurately identify and count the number of 
occupants in real-time within such zones. The research 
methodology is structured into three distinct stages. The first 
stage, data collection, involves the collection of relevant data 
variables and their subsequent adjustment to suit the study's 
needs. The second stage, occupant detection, focuses on 
identifying and detecting occupants within the under-actuated 
zone using the YOLO v8 model. The third stage, involves the 
calculation of the number of occupants present in the zone. The 
final stage of this research involves a comparative performance 
analysis between the YOLO v8 model, used for real-time 
occupant detection in under-actuated zones, and other 
prevalent models such as YOLO v5 and Fast R-CNN. This 
comparative analysis aims to evaluate the efficacy, accuracy, 
and efficiency of YOLO v8 in identifying and counting 
occupants, in contrast to the performance of YOLO v5 and Fast 
R-CNN under similar conditions. 

A. Data Collection 

In our study, we made use of an exclusive dataset that was 
specifically designed to examine occupancy in under-actuated 
zones. This dataset was carefully developed through extensive 
observations that were carried out in three specific areas within 
the student corner room of Universitas Trilogi library. These 
areas were identified as under-actuated zones. The data 
collection process was carried out using three surveillance 
cameras that were placed in each area in the student corner of 
the library. The cameras were capable of capturing footage of 
varying lengths, ranging from 3 to 5 minutes, which resulted in 
a diverse range of visual data. The footage captured by these 
cameras provided a detailed and comprehensive view of the 
occupants and the surrounding environment, such as the tables, 
chairs, and books. This comprehensive visual data is essential 
for developing precise 2D object models. The data from each 
camera offers a unique perspective on the environment, 
allowing for a multifaceted analysis of occupant behavior and 
their interaction with the space. The diversity in camera angles 
and the range of activities captured in the footage ensure a 
robust dataset. 

B. Occupant Detection 

This phase involves occupant detection. We utilized YOLO 
v8 by ultralytics for better throughput with the same number of 
parameters owing to ultralytics changes, demonstrating 
hardware-efficient design reforms. All YOLO models were 
created and used to detect objects. Object detection models 
were trained to recognize the items in the images. When item 
classes are discovered, they are surrounded by bounding boxes 
and are categorized. YOLO is a new algorithm that predicts 
items and their locations in an image with a single glance. It 
detects objects in real time using neural networks. This method 
has evolved over time, beginning with YOLO v1 (or unified), 
which includes various localization issues and progresses to 
YOLO v2, YOLO v3, YOLO v4, YOLO v5, YOLO v6, YOLO 
v7, and YOLO v8(Terven & Cordova-Esparza, 2023). 

YOLO divides an image into grids by using a single 
Convolutional Neural Network (CNN) model. Each grid 
estimates the bounding boxes and confidence scores. The class 
of the object in the bounding box is calculated using the 
predicted confidence score [26]. YOLO v8 variations produce 
a higher throughput with the same number of parameters, 
indicating hardware-efficient design reforms. The fact that 
ultralytics provided YOLO v8 and YOLO v5, with YOLO v5 
providing impressive real-time performance, and based on the 
initial benchmarking results released by ultralytics, it is 
strongly assumed that YOLO-v8 will focus on constrained 
edge device deployment at a high inference speed [27]. 

YOLO v8 is a model that does not rely on anchors. This 
means that it forecasts the center of an object directly rather 
than the offset from a known anchor box [27]. Anchor boxes 
are a very difficult aspect of early YOLO models because they 
can represent the box distribution of the target benchmark, but 
not the distribution of the custom dataset. Anchor-free 
detection minimizes the number of box predictions, which 
speeds up Non-Maximum Suppression (NMS), a complex 
post-processing phase that shifts through candidate detection 
following inference [27]. The first 6 × 6 conv in the stem was 
replaced with a 3 × 3 conv, the primary building block was 
modified, and C2f was replaced with C3. The module is 
depicted below, where "f" represents the number of features, 
"e" is the expansion rate, and CBS is a block composed of 
Conv, BatchNorm, and SiLU. C2f concatenates all outputs 
from the bottleneck (a fancy name for two 3 × 3 convs with 
residual connections). In C3, only the output of the previous 
bottleneck was utilized. The bottleneck is the same as that in 
YOLO v5, but the kernel size of the first convolution increases 
from 1 × 1 to 3 × 3. Based on this data, we can conclude that 
YOLO v8 is beginning to regress to the ResNet block 
described in 2015 [20]. The features were concatenated directly 
into the neck without forcing the same channel dimensions. 

In this study, the YOLO v8 model architecture is utilized 
for detecting and calculating the number of occupants, a 
process meticulously illustrated in Fig. 2. 

 
Fig. 2. YOLO v8 model architecture for occupant detection and calculation. 
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In the sophisticated realm of video-based object detection, 
the intricately designed model under discussion is specifically 
engineered to meticulously analyze video input datasets. This 
analytical journey begins with the critical task of processing 
raw video footage, a foundational step that determines the 
efficacy of all subsequent analyses. The core of this model is 
its head component, which is integral to the complex process of 
occupant identification within the video stream. The model's 
head plays a pivotal role in discerning and isolating occupants 
as distinct entities within the video frames. This task involves a 
series of intricate steps, beginning with the precise adjustment 
of the video frames' resolution. This adjustment is not a mere 
enhancement of visual quality but a strategic decision crucial 
for balancing clarity with computational efficiency. The model 
employs advanced algorithms to assess each frame, 
determining the optimal resolution that ensures clear visibility 
of occupants while simultaneously minimizing the processing 
load. This optimization is paramount, as it directly impacts the 
model's ability to accurately detect and analyze occupants 
without overburdening the system’s computational resources. 
Furthermore, the model incorporates sophisticated techniques 
to handle variations in lighting, movement, and background 
complexity within the video frames. These techniques include 
dynamic contrast enhancement for low-light conditions, motion 
stabilization for dynamic scenes, and background subtraction 
algorithms to isolate occupants from complex backgrounds. 
Each of these techniques contributes to the model’s overall 
efficiency, ensuring that the occupants are detected accurately 
regardless of the varying environmental conditions within the 
video footage. In addition to resolution adjustment and 
environmental adaptation, the model's head also integrates 
advanced object recognition algorithms. These algorithms 
leverage deep learning techniques to discern occupant 
characteristics, differentiating them from other objects in the 
frame. The model is trained on extensive datasets, enabling it 
to recognize a wide range of occupant attributes and behaviors, 
further enhancing its detection accuracy. The processing of raw 
video footage, therefore, is a multifaceted and complex 
endeavor within this model. 

The intricate process of object detection in video analysis 
using the YOLO v8 model consists of several carefully 
orchestrated stages. The first stage is the preprocessing phase, 
an essential component of the process. This stage is focused on 
normalizing video quality and resolution, which lays the 
foundation for optimal detection performance. During this 
stage, each video frame is thoroughly analyzed and adjusted to 
ensure that its quality and resolution are suitable for the 
detection process. It is crucial to maintain a delicate balance 
between preserving essential details necessary for accurate 
identification and optimizing the frames to reduce 
computational load. The preprocessing phase employs 
techniques such as dynamic resolution scaling and adaptive 
bitrate control to maintain the integrity of crucial visual 
information while ensuring that the frames are not excessively 
data-heavy. Once the preprocessing phase is complete, the 
YOLO v8 model moves on to the object detection stage. The 
model's head, a central component in the architecture, plays a 
crucial role in this stage. The model's head is designed to 
efficiently distinguish and identify occupants within the video 
frames as unique entities. This involves deploying advanced 

neural networks that have been trained on extensive datasets to 
recognize human figures and differentiate them from other 
objects in the frame. Bounding boxes are a critical component 
in this phase. For each detected occupant, the model 
meticulously generates a bounding box, carefully encapsulating 
the occupant. This encapsulation is crucial as it isolates the 
occupant from the surrounding environment and other non-
relevant elements within the frame, ensuring that each 
detection is distinctly recognized. The positioning and sizing of 
these bounding boxes are calculated with precision, taking into 
account the contours and dimensions of each occupant. Once 
the bounding boxes are established, the YOLO v8 model 
embarks on a probabilistic assessment to ascertain the 
likelihood that the objects within these boxes are indeed 
occupants. This assessment involves calculating confidence 
levels for each detection, a process that draws upon the model's 
learning from numerous annotated examples. These confidence 
levels serve as a measure of the model's certainty in its 
detections. To enhance the accuracy and reliability of the 
detection process, the model applies a threshold for these 
confidence levels. Detections that fall below this threshold are 
deemed less likely to be accurate and are consequently filtered 
out. This thresholding is a crucial step in ensuring that the 
occupant count is not only precise but also reliable, as it 
effectively eliminates false positives and other erroneous 
detections. In the final stage of the process, the YOLO v8 
model performs the occupant counting task. This involves a 
comprehensive analysis of the detected occupants, considering 
factors such as the varying sizes, positions, and even the 
potential occlusions of the occupants within the frames. 

Intersection over Union (IOU) is a metric that is widely 
regarded for its intuitiveness and effectiveness in the field of 
object detection, particularly in tasks involving bounding box 
predictions [28]. The computation of IOU involves a 
straightforward yet insightful mathematical formula. 
Essentially, it is calculated by taking the area of overlap 
between the predicted bounding box and the ground truth 
bounding box (the actual object's location), and then dividing 
this overlap area by the union area of these two boxes. The 
union area is the combined area covered by both the predicted 
bounding box and the ground truth bounding box, minus the 
overlap area, following in Eq. (1). 

     
               

             
         (1) 

The simplicity of the IOU calculation allows for easy 
visualization and understanding. One can easily picture the 
overlapping areas of the two boxes to comprehend how well 
the predicted bounding box aligns with the actual object’s 
position and size. This visualization aspect makes IOU a 
particularly accessible metric for evaluating the accuracy of 
object detection models. 

C. Occupant Calculation 

In this phase a zone is created by setting the coordinates in 
the frame. The OpenCV library was used to visualize the zone. 
A zone was created by setting the coordinates in the zone. 
Before we can start counting objects in a zone, we must first 
define the zone in which we want to count objects [29]. The 
coordinates of the zones are required. We use these later to 
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determine whether an object is inside or outside the zone. To 
calculate the coordinates inside a zone, we can use Polygon 
Zone, an interactive web application that allows to draw 
polygons on an image and export their coordinates for use with 
supervision. Once we have added points, a NumPy array will 
be made available on the page. This array contained the 
coordinates of the points in the zone [30]. The next step was to 
identify persons in each frame of the movie using a pretrained 
YOLO v8 object detection model. The number of objects in the 
zone is calculated by counting the number of objects with 
unique IDs. Subsequently, a limit was imposed on this zone. 
We begin by importing the necessary dependencies and then 
describe the zone in which to count the items using coordinates 
[27]. Subsequently, we initialized the objects to be used to 
process and annotate the video. The zone object tracks the 
zones in our image, and annotators are used to describe how 
the predictions in our movie should be annotated [27]. We 
filter out all classes by specifying that we only want detections 
with class ID 0. This ID maps to the “person” class. This object 
recognition and tracking system in a specified zone is useful 
for counting occupants in a zone in the HVAC system area and 
for creating several zones to track occupants in an under-
actuated zone region. 

D. Performance Evaluation 

Several indicators were utilized to measure the accuracy 
and efficacy of the suggested method for counting people in a 
certain region. Typical YOLO performance metrics processing 
time mean average precision (mAP), and accuracy [31]. mAP 
is a typical evaluation metric that delivers a single figure as the 
mean of the Average Precision (AP) values for all classes. This 
allows for the evaluation of the performance of a model using a 
single number. As a result, mAP is the most commonly used 
evaluation metric for object detection algorithms. This is 
calculated as follows: 

     
∑        
 
   

 
        (2) 

where, Q is the total number of queries in the set and q is 
the average precision query. Because our study only has a 
"person" class, the number of classes will be one. mAP 
indicates that the confidence threshold (IOU). The Accuracy 
indicates how close the estimation values of the proposed 
method are to the true values, and is excellent if it is high. The 
Accuracy score is calculated by dividing the number of correct 
predictions by the total prediction number [32]. The accuracy 
rate formula was calculated as follows. (TP: True Positive, TN: 
True Negative, FP: False Positive, FN: False Negative): 

          
     

           
          (3) 

IV. RESULT AND DISCUSSION 

A. Result 

The dataset was meticulously compiled through 
observations in the student corner room at Universitas Trilogi, 
which is divided into three zones. It originated from three 
video inputs, each three to five minutes long, capturing detail 
of occupants within the library's student corner. For each of 

dataset was expanded into three distinct subsets: the original, 
compressed, and slowdown. The development environment 
was established using Google Collabs, a platform for Python 
programming, integrating several libraries including numpy, 
ultralytic, and supervisory. Notably, YOLO v8, provided by 
ultralytic, was selected for its enhanced throughput capabilities, 
maintaining efficiency with the same parameter count due to 
ultralytic improvements. The model's third segment was 
dedicated to occupant’s detection and counting. 

Tables I, II, and III provide a detailed overview of the 
datasets used for the training and testing of object detection 
models across three distinct zones. Each table is specifically 
allocated to one zone and further categorizes the datasets into 
three types: Original, Compressed, and Slowdown. These 
categories are indicative of the different forms of video data 
utilized in model development. The objective of dividing the 
three datasets is to evaluate whether the comparison of the 
number of frames in the dataset has an impact on the result. 

The Original Dataset, as represented in these tables, 
adheres to a standard format. It features a default time duration 
and maintains a frame rate of 30 frames per second (fps). This 
dataset serves as a baseline, offering a conventional setting for 
evaluating model performance. In contrast, the Compressed 
Dataset focuses on data efficiency. For each zone, the video 
data is modified by reducing the total frame count to a uniform 
500 frames. This approach is designed to test the models in 
scenarios where full-frame rates are unavailable or 
computationally burdensome, assessing the models' 
performance under data-limited conditions. The Slowdown 
Dataset, on the other hand, is intended to evaluate the models' 
capabilities in handling more extensive frame sequences. This 
is achieved by augmenting the total frame count by 30% 
relative to the original dataset for each zone. Such an increase 
in frames is aimed at simulating situations where detailed 
temporal information is crucial for accurate object detection. 

TABLE I.  DATASET OF ZONE 1 

Dataset Frame Training Testing 

Original 7045 6340 705 

Compressed 285 256 29 

Slowdown 8526 7532 994 

TABLE II.  DATASET OF ZONE 2 

Dataset Frame Training Testing 

Original 2821 2445 376 

Compressed 119 106 13 

Slowdown 3647 3283 364 

TABLE III.  DATASET OF ZONE 3 

Dataset Frame Training Testing 

Original 2925 2630 291 

Compressed 195 175 20 

Slowdown 4248 3819 429 
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For Zone 1, as shown in Table I, the Original dataset 
comprises 7045 frames, predominantly used for training (6340 
frames) with a smaller subset for testing (705 frames). This 
extensive dataset provides a solid foundation for robust model 
training. The Compressed dataset, with a total of 285 frames 
(256 for training and 29 for testing), presents a more condensed 
form of data, posing potential challenges due to the loss of 
detail. The slowdown dataset is the most extensive, with 8526 
frames, where 7532 are used for training and 994 for testing, 
offering a vast range of data to assess the model under various 
temporal conditions. In Zone 2, as per Table II, the dataset 
sizes are smaller compared to Zone 1. The Original dataset 
contains 2821 frames, split between 2445 for training and 376 
for testing. The Compressed dataset, consisting of 119 frames 
(106 for training and 13 for testing), is significantly smaller, 
while the slowdown dataset, the largest in this zone with 3647 
frames, is divided into 3283 for training and 364 for testing. 
This dataset size variation is crucial for evaluating the model's 
adaptability to different data scales and resolutions. Zone 3, 
detailed in Table III, mirrors Zone 2 in terms of dataset sizes. 
The Original dataset has 2925 frames, with 2630 dedicated to 
training and 291 to testing. The Compressed dataset, 
comprising 195 frames (175 for training and 20 for testing), 
and offers a compact data set for model evaluation. The largest 
dataset in this zone is the slowdown category, with 4248 
frames, 3819 for training and 429 for testing, which is 
instrumental in assessing the model's performance over 
extended periods. The assessment of the occupant detection 
model encompassed three distinct areas and four datasets. 
Tables IV through VI provide essential metrics, including 
mean Average Precision (mAP), accuracy, recall, and 
processing time, which are crucial for evaluating the 
performance of the occupant detection model across four 
datasets and three zones, utilizing the YOLO v8. 

TABLE IV.  OCCUPANT DETECTION OF ZONE 1 

Dataset mAP Accuracy Recall Time 

Original 99.2 98.4 98.6 0.004 

Compressed 92.6 90.6 97 0.004 

Slowdown 96.8 96.4 95.5 0.004 

In the realm of scientific research, particularly in the 
evaluation of occupant detection systems within Zone 1 as 
presented in Table IV, a meticulous comparative analysis 
between the Original, Compressed, and Slowdown datasets 
unveils notable differences in their respective performance 
metrics. This detailed examination is pivotal for assessing the 
system's accuracy and efficiency under varying data 
conditions, providing insights into the adaptability and 
robustness of the detection models. The Original dataset 
emerges as the benchmark for performance, demonstrating 
exceptional precision and reliability in occupant detection. It 
boasts a Mean Average Precision (mAP) of 99.2%, signifying 
near-perfect accuracy in distinguishing true positives from 
false positives. Additionally, an accuracy rate of 98.4% and a 
recall rate of 98.6% underscore the model's effectiveness in 
correctly identifying true positives and negatives, with minimal 
instances of false negatives. The rapid execution time of 0.004 
seconds further accentuates the model's swift processing 
capability, a critical factor for real-time applications. In 

comparison, the compressed dataset, designed to assess 
performance under data-limited conditions, shows slightly 
diminished but still robust metrics. It achieves a mAP of 
92.6%, indicating strong precision in a compressed frame 
environment. The accuracy rate stands at 90.6%, and the recall 
rate at 97%, both of which are commendable given the dataset's 
reduced frame count. Notably, the model maintains the same 
execution speed as the Original dataset, evidencing its 
efficiency in handling fewer data frames without 
compromising processing speed. The Slowdown dataset, 
characterized by an increased frame count, displays a 
competent performance, albeit with slight variations from the 
Original dataset. It records a mAP of 96.8% and an accuracy of 
96.4%, indicating effective detection capabilities, though with 
a minor decrease in detecting all actual positives, as reflected 
by a recall rate of 95.5%. Remarkably, the execution time 
remains consistent at 0.004 seconds, demonstrating that the 
model's processing efficiency is not adversely affected by the 
augmented frame count. 

TABLE V.  OCCUPANT DETECTION OF ZONE 2 

Dataset mAP Accuracy Recall Time 

Original 78.3 66.1 84.9 0.024 

Compressed 82.9 84.1 80.9 0.004 

Slowdown 84.4 80.9 68.2 0.013 

In the results section examining occupant detection in Zone 
2, as depicted in Table V, an exhaustive analysis of the 
Original, Compressed, and Slowdown datasets reveals a 
diverse range of performances in terms of mean Average 
Precision (mAP), Accuracy, Recall, and execution Time. The 
Original dataset exhibits a moderate level of detection 
capability, with an mAP of 78.3%, an Accuracy of 66.1%, and 
a notably higher Recall of 84.9%. However, its execution time 
is considerably longer at 0.024 seconds, suggesting a trade-off 
between accuracy and processing speed. In contrast, the 
compressed dataset demonstrates enhanced performance with a 
mAP of 82.9%, a significantly higher Accuracy of 84.1%, and 
a Recall of 80.9%. Notably, this dataset achieves these metrics 
while maintaining a much faster execution time of 0.004 
seconds, indicating enhanced efficiency in processing 
compressed data without compromising detection 
effectiveness. The slowdown dataset presents an interesting 
profile, registering the highest mAP of 84.4% and an Accuracy 
of 80.9%, but a lower Recall of 68.2% compared to the other 
datasets. Its execution time stands at 0.013 seconds, positioning 
it between the original and compressed datasets in terms of 
processing speed. Collectively, these results from Zone 2 
indicate varying levels of effectiveness in occupant detection 
across different datasets. While the compressed dataset stands 
out for its balanced high performance and efficiency, the 
original dataset, despite its slower processing time, excels in 
Recall. The slowdown dataset, on the other hand, offers the 
best mAP but at the cost of a lower Recall rate. This variance 
in performance across datasets highlights the importance of 
dataset selection and optimization in occupant detection 
systems, as each dataset presents its unique strengths and 
limitations in accurately and efficiently detecting occupants in 
Zone 2. 
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TABLE VI.  OCCUPANT DETECTION OF ZONE 3 

Dataset mAP Accuracy Recall Time 

Original 96.2 90.1 93.7 0.004 

Compressed 93.5 91.1 86 0.004 

Slowdown 97.4 94.4 97.1 0.004 

Table VI displays the results of occupant detection in Zone 
3 using three distinct datasets: the original, compressed, and 
slowdown. The original dataset in Zone 3 sets a high 
benchmark in terms of performance. It achieves a Mean 
Average Precision (mAP) of 96.2%, reflecting its high 
precision in correctly identifying true positive detections. The 
accuracy rate of 90.1% further illustrates the model's capability 
in effectively distinguishing between true positives and 
negatives. Additionally, a recall rate of 93.7% indicates the 
model's proficiency in identifying the majority of actual 
positive cases, thus minimizing false negatives. Notably, these 
metrics are attained with a rapid execution time of 0.004 
seconds, underscoring the model's efficiency in processing. In 
contrast, the compressed dataset, while exhibiting a slightly 
lower mAP of 93.5%, demonstrates a high accuracy of 91.1%. 
This suggests that, despite the reduction in data volume, the 
model retains its effectiveness in accurate detection. However, 
the recall rate experiences a decline, dropping to 86%. This 
reduction points to a slight compromise in the model's ability 
to identify all true positives following data compression. 
Despite this, the model maintains the same brisk execution 
time of 0.004 seconds, indicating that the reduction in recall 
does not significantly impact the overall processing speed of 
the system. The slowdown dataset, interestingly, outperforms 
both the original and compressed datasets in Zone 3. It 
registers the highest mAP of 97.4%, suggesting superior 
precision in detection. Alongside, it achieves the highest 
accuracy of 94.4% and the best recall rate of 97.1%, surpassing 
the other datasets in effectively identifying true positives and 
minimizing false negatives. Remarkably, these superior metrics 
are achieved within the same efficient execution timeframe of 
0.004 seconds, indicating that the increased frame count in the 
slowdown dataset enhances performance without 
compromising on processing speed. 

Three zones were measured in pixels using Roboflow 
polygon zone web tools, which can convert meters to pixels. 
These tools are adept at converting measurements from meters 
to pixels, thereby accurately representing the areas of interest 
in square meters. This precise conversion is essential for the 
effective application of object detection techniques, where 
spatial accuracy is paramount. One of the key metrics in object 
detection is Intersection over Union (IOU), which is critical for 
evaluating the accuracy of detection models. IOU quantifies 
the level of overlap between the predicted bounding boxes and 
the ground truth, essentially measuring the accuracy of the 
model's predictions. In this context, the IOU threshold is often 
set at varying levels - 25%, 40%, and 50%. The selection of 
these thresholds is strategic, as they represent different degrees 
of alignment between the model's predictions and the actual 
observed data. Accurate detection is generally considered when 
at least half of the predicted bounding box aligns with the 
ground truth, signifying a 50% IOU threshold. This standard is 
commonly adopted in various object detection tasks, including 

occupant detection, ensuring that the model's predictions 
correspond appropriately to real-world instances. The 
effectiveness of these thresholds and the overall accuracy of 
the object detection models are comprehensively evaluated 
across three different zones. Each zone presents a unique 
scenario with varying occupant numbers: Zone 1 contains 1 
occupant, Zone 2 has 13 occupants, and Zone 3 accommodates 
10 occupants. Tables VII to IX provide an in-depth comparison 
of the accuracy of calculating the number of occupants based 
on the range of IOU thresholds, juxtaposed against actual 
observations from the three datasets. 

In Zone 1, as presented in Table VII, the performance 
metrics, including mean Average Precision (mAP), Accuracy, 
Recall, and processing Time, are examined across three 
datasets: Original, Compressed, and Slowdown. The Original 
dataset demonstrates exceptional performance, boasting a high 
mAP of 99.2%, Accuracy of 98.4%, and Recall of 98.6%, all 
achieved within an impressively rapid execution time of 0.004 
seconds. This signifies the model's ability to accurately detect 
occupants in Zone 1 with both precision and efficiency. The 
Compressed dataset, while still maintaining good performance, 
exhibits a slight reduction in mAP (92.6%) and Accuracy 
(90.6%), although the Recall remains high at 97%. 
Importantly, the execution time remains consistent at 0.004 
seconds, suggesting that data compression does not 
significantly impact processing speed. The Slowdown dataset 
stands out in Zone 1, achieving the highest mAP of 96.8%, 
Accuracy of 96.4%, and Recall of 95.5%, all accomplished 
within the same efficient execution time of 0.004 seconds. 
These results underscore the varying efficacies of the occupant 
detection system across different datasets within Zone 1. 

TABLE VII.  OCCUPANT CALCULATION OF ZONE 1 

Dataset IOU 
Number of 

Occupants 

Accuracy with actual 

(%) 

Original 

0,25 1 100 

0,4 1 100 

0,5 1 100 

Compressed 

0,25 1 100 

0,4 1 100 

0,5 1 100 

Slowdown 

0,25 1 100 

0,4 1 100 

0,5 1 100 

TABLE VIII.  OCCUPANT CALCULATION OF ZONE 2 

Dataset IOU 
Number of 

Occupants 

Accuracy with actual 

(%) 

Original 

0,25 9 69 

0,4 7 53 

0,5 6 61 

Compressed 

0,25 10 76 

0,4 7 53 

0,5 6 46 

Slowdown 

0,25 10 76 

0,4 7 53 

0,5 6 46 
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Zone 2, as detailed in Table VIII, presents a similar 
assessment of performance metrics for Original, Compressed, 
and Slowdown datasets. In the field of object detection, the 
analysis of performance metrics across different datasets is 
essential for understanding the effectiveness of detection 
models. Table VIII offers such an analysis for Zone 2, 
comparing the performance of the original, compressed, and 
slowdown datasets. This comparison is crucial in highlighting 
how different data conditions affect the metrics such as mean 
Average Precision (mAP), Accuracy, Recall, and execution 
Time. The Original dataset in Zone 2 demonstrates respectable 
performance, characterized by a mAP of 78.3%. This figure 
indicates a decent level of precision in the detection model's 
ability to correctly identify true positives. The Accuracy of 
66.1% suggests the model's general effectiveness in correctly 
classifying both true positives and negatives, though it also 
implies room for improvement. A relatively high Recall of 
84.9% is observed, indicating the model's proficiency in 
identifying a large proportion of actual positive cases. 
However, this dataset shows a slightly longer execution Time 
of 0.024 seconds, which, while still efficient, is longer 
compared to other datasets. In the case of the compressed 
dataset, a notable improvement in mAP is observed, reaching 
82.9%. This increase suggests enhanced precision in occupant 
detection despite the reduced data volume. The Accuracy also 
sees a significant rise to 84.1%, demonstrating a considerable 
improvement in the model's overall detection capability. 
However, the Recall drops to 80.9%, indicating a slight 
decrease in the model's ability to identify all true positive cases 
compared to the Original dataset. Despite these variations in 
mAP, Accuracy, and Recall, the compressed dataset maintains 
a rapid execution Time of 0.004 seconds, reflecting efficient 
processing capability. The Slowdown dataset, designed to test 
the model's performance with an increased frame count, 
records the highest mAP of 84.4% among the three datasets. 
This suggests that the augmented frame count contributes to a 
more precise detection capability. However, this dataset 
experiences a drop in Accuracy to 80.9% and a more 
significant decline in Recall to 68.2%, compared to the 
compressed dataset. These results indicate a trade-off between 
the increased precision and the model's ability to accurately 
classify and identify all positive cases. Overall, the analysis of 
Zone 2's performance metrics across these three datasets 
illustrates the inherent trade-offs between various performance 
measures and the characteristics of each dataset. While the 
Compressed dataset shows improvements in mAP and 
Accuracy, it slightly compromises on Recall. On the other 
hand, the Slowdown dataset excels in precision but at the cost 
of lower Accuracy and Recall. 

In the specialized area of object detection within Zone 3, 
Table IX presents a critical assessment of the model's 
performance using three distinct datasets: Original, 
Compressed, and Slowdown. This comprehensive evaluation is 
integral to understanding how different data conditions affect 
key performance metrics such as mean Average Precision 
(mAP), Accuracy, Recall, and execution time. The Original 
dataset in Zone 3 sets a high benchmark in model performance. 

It demonstrates exceptional precision with a mAP of 96.2%, 
indicating its effectiveness in accurately identifying true 
positive detections. This is complemented by an Accuracy of 
90.1%, reflecting the model's overall reliability in 
distinguishing true positives from false positives and negatives. 
Additionally, the Recall of 93.7% is noteworthy, as it signifies 
the model's ability to detect a large majority of actual positive 
cases, minimizing the instances of missed detections. All these 
metrics are achieved within an efficient execution time of 
0.004 seconds, highlighting the model's rapid processing 
capabilities. Conversely, the compressed dataset, designed to 
assess performance under reduced data volume, maintains a 
commendable mAP of 93.5% and an even higher Accuracy of 
91.1% compared to the Original dataset. This suggests that the 
model retains its effectiveness and precision in a compressed 
data environment. However, the Recall experiences a slight 
decrease, dropping to 86%. This reduction indicates a marginal 
compromise in the model's capacity to identify all true positive 
cases in the face of data compression. Despite this, the 
execution time remains impressively swift at 0.004 seconds, 
suggesting that the reduction in data volume does not 
significantly affect the overall processing speed of the system. 
Remarkably, the Slowdown dataset in Zone 3 outshines the 
other datasets in terms of performance. It achieves the highest 
mAP of 97.4%, suggesting superior precision in detection. This 
is further enhanced by the highest Accuracy of 94.4% and the 
best Recall of 97.1% among the datasets, indicating the model's 
heightened capability to accurately classify and detect actual 
positive cases. The attainment of these superior metrics, 
interestingly, does not affect the execution time, which remains 
constant at 0.004 seconds. This underscores the model's ability 
to handle increased frame counts without compromising 
processing efficiency. 

Collectively, these findings illustrate the varying efficacies 
of the occupant detection system across different datasets in 
zone 1, 2, and 3. The original dataset provides a balanced 
combination of precision and efficiency, while the compressed 
dataset reveals that data compression slightly impacts recall but 
with minimal effect on processing speed. The slowdown 
dataset, with its enhanced frame count, demonstrates potential 
for superior performance. 

TABLE IX.  OCCUPANT CALCULATION OF ZONE 3 

Dataset IOU 
Number of 

Occupants 

Accuracy with actual 

(%) 

Original 

0,25 3 100 

0,4 3 100 

0,5 3 100 

Compressed 

0,25 3 100 

0,4 3 100 

0,5 3 100 

Slowdown 

0,25 3 100 

0,4 3 100 

0,5 3 100 
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a. zone 1 

 

b. zone 2 

 

c. zone 3  

Fig. 3. Occupant detection and calculation from original video using YOLO v8. 

Fig. 3 provides a visual depiction of the object detection 
and enumeration process across the three clearly defined zones 
in Zone 3. It effectively illustrates the system's advanced 
capability in accurately measuring occupants within designated 
polygonal regions, corresponding to the zones. The use of the 
optimal Intersection over Union (IOU) threshold for precise 
detection is evident in the figure, showcasing the system's 
proficiency in occupant detection. This visual representation, 
along with the detailed performance metrics, highlights the 
varying efficacies and robustness of the occupant detection 
system across different datasets within zone 1, 2, and 3, 
demonstrating its adaptability and precision in diverse data 
conditions. The dataset was used is Slowdown. 

 

Fig. 4. Performance comparison of zone 1. 

Fig. 4 to Fig. 9 offer a comprehensive comparison of the 
performance metrics for YOLO v8, YOLO v5, and Fast-RCNN 
across multiple datasets, including the Slowdown Dataset and 
others utilizing various occupant detection methods. The 
findings of this research was comparative with Faster-RCNN 
[8][24][25] and YOLO v5 [21]. The objective is to assess the 
effectiveness of these models in different detection scenarios.  
The analysis encompasses several key metrics, such as mean 

Average Precision (mAP), Accuracy, Recall, and execution 
Time, which play crucial roles in evaluating the performance 
of object detection algorithms. These metrics provide nuanced 
insights into the ability of each model to accurately detect and 
track occupants across different environments and datasets. 

 

Fig. 5. Time process comparison of zone 1. 

In Fig. 4 and Fig. 5, the emphasis is on assessing occupant 
detection in Zone 1, utilizing three distinct object detection 
methods. In the original dataset, YOLO v5 and YOLO v8 
perform exceptionally well, both achieving a mAP of 99.2%, 
indicative of highly accurate detection capabilities. YOLO v8 
slightly surpasses YOLO v5 in Accuracy, scoring 98.4% 
against 97.7%, and also demonstrates a marginal edge in 
processing efficiency (0.004 seconds compared to YOLO v5's 
0.005 seconds). However, F-RCNN, despite a decent mAP of 
97.4% and Accuracy of 97.8%, shows a significant deficiency 
in Recall (68.5%), suggesting it misses more true positive 
detections than its YOLO counterparts. Additionally, F-
RCNN's longer processing time (0.027 seconds) may hinder its 
application in real-time scenarios. The compressed dataset 
reveals YOLO v8's adaptability, maintaining a high mAP of 
92.6% and an Accuracy of 90.6%, with a Recall of 97%. In 
contrast, YOLO v5 exhibits a drop in performance, with lower 
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mAP (85%) and Accuracy (76.7%), although it still maintains a 
relatively high Recall of 85.1%. F-RCNN shows some 
improvement in Accuracy (93.2%), but its mAP (85.2%) and 
particularly low Recall (63.6%) underscore persistent 
limitations in comprehensive occupant detection. In the 
slowdown dataset, both YOLO v5 and YOLO v8 continue to 
demonstrate strong performance, with mAP values of 96.4% 
and 96.8% respectively, and Accuracy rates above 95%. Their 
processing times remain impressively low, underscoring their 
efficiency in various data conditions. F-RCNN, while showing 
an improved mAP of 93.8% and Accuracy of 94.2%, continues 
to struggle with a low Recall rate (55.7%). YOLO v5 and 
YOLO v8 consistently outperform F-RCNN across different 
datasets in Zone 1, exhibiting superior mAP, Accuracy, and 
Recall, coupled with faster processing times. 

Fig. 6 and Fig. 7 addresses occupant detection in Zone 2, 
comparing the same object detection methods across distinct 
datasets. YOLO v8 achieves the highest mAP of 78.3%, 
coupled with an Accuracy of 66.1% and Recall of 84.9% in the 
Original dataset. Compressed data still yields high mAP 
(84.1%) and Accuracy (82.9%), although Recall is slightly 
lower at 80.9%. YOLO v5 and F-RCNN exhibit varying 
performance metrics across datasets, emphasizing the dataset-
dependent nature of these methods. In the Slowdown dataset, 
YOLO v8 maintains its superior mAP and Recall, highlighting 
its consistent performance.  

 
Fig. 6. Performance comparison of zone 2. 

 
Fig. 7. Time process comparison of zone 2. 

 

Fig. 8. Performance comparison of zone 3. 

 
Fig. 9. Time process comparison of zone 3. 

Fig. 8 and Fig. 9 focuses on Zone 3, where YOLO v5 and 
YOLO v8 continue to perform well in the original dataset, both 
YOLO v5 and YOLO v8 exhibit remarkably consistent and 
high-performance levels. They each achieve mAP of 96.2%, 
indicating a highly accurate ability to detect and identify 
occupants within this zone. Additionally, these methods 
demonstrate substantial Accuracy and Recall, reflecting their 
precision and reliability in correctly identifying true positives 
without missing significant detections. The analysis of the 
compressed dataset highlights the exceptional adaptability of 
YOLO v8. It achieves a notable mAP of 93.5%, maintaining 
high Accuracy and Recall rates despite the challenges posed by 
data compression. This performance suggests that YOLO v8 is 
particularly suited for scenarios where data integrity might be 
compromised or where bandwidth limitations necessitate data 
compression. In the context of the Slowdown dataset, both 
YOLO v5 and YOLO v8 continue to excel. They demonstrate 
robustness in mAP, Accuracy, and Recall, underscoring their 
effectiveness even under conditions that may affect the speed 
or flow of data input. Their high performance in this dataset is 
indicative of their ability to maintain reliability and accuracy in 
less-than-ideal operational environments. Faster R-CNN, while 
showing competitive performance in certain scenarios, does 
not consistently match the overall performance metrics of 
YOLO v5 and YOLO v8. This observation suggests that while 
F-RCNN can be effective in specific contexts, it may not be the 
optimal choice for all scenarios, particularly those represented 
in Zone 3. 
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In Zone 1, YOLO v8 achieves an outstanding mAP of 
99.2%, indicating its high precision in detecting occupants. The 
Accuracy of 98.4% showcases its ability to correctly classify 
occupants, while the Recall of 98.6% demonstrates its 
capability to capture almost all actual occupants. Furthermore, 
YOLO v8 maintains a swift execution time of 0.004 seconds, 
indicating efficiency in processing. In Zone 2, YOLO v8 
continues to demonstrate its efficacy with mAP of 78.3%, 
reflecting its strong performance in detecting occupants. The 
Accuracy of 66.1% suggests that it correctly classifies 
occupants in the zone. Moreover, the Recall of 84.9% 
underscores its ability to capture a significant portion of actual 
occupants. Despite a slightly longer execution time of 0.024 
seconds compared to Zone 1, it remains efficient. Zone 3 
further emphasizes the efficacy of YOLO v8, with mAP of 
96.2% showcasing its precision in occupant detection. The 
Accuracy of 90.1% reflects its high classification accuracy, and 
the Recall of 93.7% indicates its ability to capture the majority 
of actual occupants. YOLO v8 maintains an efficient execution 
time of 0.004 seconds in this context. Overall, YOLO v8 
demonstrates remarkable efficacy, consistently achieving high 
mAP values across all three zones, signifying precise occupant 
detection. Its competitive Accuracy and Recall values further 
validate its effectiveness. Additionally, its efficient execution 
times indicate that YOLO v8 combines both efficacy and 
efficiency, making it a strong candidate for occupant detection 
tasks in various scenarios. 

B. Discussion 

The study Occupancy Measurement in Under-Actuated 
Zones presents significant results in regards to the effectiveness 
of the YOLO v8 model in accurately detecting and quantifying 
occupants in difficult environments. The research, which was 
conducted through the compilation of a comprehensive dataset 
via video observations in the student corner room at 
Universitas Trilogi, demonstrates the superior performance of 
the YOLO v8 model in occupant detection, particularly in 
dynamic under-actuated zones with varying occupancy patterns 
and complex environmental conditions. The model's real-time 
detection capabilities, high accuracy in identifying occupants, 
and efficient object localization highlight its adaptability and 
robustness in diverse situations. The study's key findings 
include the model's ability to precisely identify and count 
occupants in real-time within the segmented zones of the 
student corner room, showcasing its spatial accuracy and object 
localization proficiency. The research's quantitative metrics, 
including mean Average Precision (mAP), Accuracy, Recall, 
and execution time, highlight the model's effectiveness in 
accurately identifying true positive detections while 
minimizing false positives and negatives. Additionally, the 
YOLO v8 model's swift execution time further emphasizes its 
efficiency in data processing and real-time results delivery. 
Overall, the research findings suggest that the YOLO v8 model 
has the potential to revolutionize occupant detection systems in 
under-actuated zones, offering a promising solution for 
optimizing occupancy monitoring and management in complex 
environments. The study lays the groundwork for future 
research and development in the field of object detection and 
occupancy measurement, specifically focusing on addressing 
the unique challenges presented by under-actuated zones. The 
results of this study provide valuable insights into the 

capabilities of the YOLO v8 model and its potential 
applications in various industries. The research findings are a 
significant contribution to the field of occupancy measurement 
and highlight the potential of the YOLO v8 model as a solution 
for optimizing occupancy monitoring and management in 
challenging environments. The study's results also suggest that 
the YOLO v8 model could be a useful tool for a variety of 
industries, including but not limited to, security, safety 
management, and facilities management. The research findings 
are a valuable resource for academics, researchers, and 
professionals working in the field of occupancy measurement 
and object detection. 

V. CONCLUSION 

This study presents a comprehensive evaluation of 
occupant detection methods across three distinct zones using 
YOLO v8. The quantitative analysis demonstrates the efficacy 
and efficiency of YOLO v8 in occupant detection tasks. In 
Zone 1, YOLO v8 exhibits exceptional performance with a 
high mAP of 99.2%, indicating precise detection. The 
Accuracy of 98.4% and Recall of 98.6% further underscore its 
effectiveness. Additionally, YOLO v8 maintains an efficient 
execution time of 0.004 seconds, making it a suitable choice 
for real-time applications. Zone 2 showcases YOLO v8's 
efficacy with a respectable mAP of 78.3%, suggesting robust 
occupant detection. Despite a lower Accuracy of 66.1%, the 
Recall of 84.9% demonstrates its ability to capture a significant 
proportion of actual occupants. YOLO v8's execution time of 
0.024 seconds in this zone remains efficient. In Zone 3, YOLO 
v8 continues to perform effectively, achieving mAP of 96.2%, 
indicating precise detection. The Accuracy of 90.1% and 
Recall of 93.7% highlight its capability to classify and capture 
occupants accurately. YOLO v8's efficient execution time of 
0.004 seconds makes it a valuable choice for this scenario. The 
results suggest that YOLO v8 is a robust and efficient method 
for occupant detection in various zones. Its high precision and 
competitive recall values make it a promising solution for real-
world applications. Future work in this research can explore 
further optimization of YOLO v8 for occupant detection by 
considering different datasets and environmental conditions. 
Additionally, the integration of advanced deep learning 
techniques and hardware acceleration can enhance both the 
accuracy and speed of occupant detection systems. Further 
research can also focus on addressing challenges related to 
occlusions and multi-object tracking in complex scenarios, 
advancing the field of occupant detection in smart 
environments. 
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