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Abstract—Cloud computing provides pay-per-use IT services
through the Internet. Although cloud computing resources can
help scientific workflow applications, several algorithms face the
problem of meeting the user’s deadline while minimising the cost
of workflow execution. In the cloud, selecting the appropriate type
and the exact number of VMs is a major challenge for scheduling
algorithms, as tasks in workflow applications are distributed
very differently. Depending on workflow requirements, algorithms
need to decide when to provision or de-provision VMs. Therefore,
this paper presents an algorithm for effectively selecting and
allocating resources. Based on the workflow structure, it decides
the type and number of VMs to use and when to lease and release
them. For some structures, our proposed algorithm uses the
initial rented VMs to schedule all tasks of the same workflow to
minimise data transfer costs. We evaluate the performance of our
algorithm by simulating it with synthetic workflows derived from
real scientific workflows with different structures. Our algorithm
is compared with Dyna and CGA approaches in terms of meeting
deadlines and execution costs. The experimental results show
that the proposed algorithm met all the deadline factors of each
workflow, while the CGA and Dyna algorithms met 25% and
50%, respectively, of all the deadline factors of all workflows.
The results also show that the proposed algorithm provides more
cost-efficient schedules than CGA and Dyna.

Keywords—Workflow scheduling; workflow structure; cloud
computing; resource provisioning; deadline constrained; infrastruc-
ture as a service

I. INTRODUCTION

Cloud computing has become a significant platform for
executing workflows as it allows the rental of resources on
demand. It uses a pay-as-you-go billing model to provide
IT resources over the internet [1]. This is done by renting
virtual machines (VMs) with predefined CPU, memory, storage
and network bandwidth capacities. To meet a wide range of
application needs, customers can access various computing
resources (i.e. VM sets) at different prices. Clouds offer infinite
computing resources with different configurations that can be
rented and used as needed. This architecture requires resource
provisioning heuristics that run concurrently with a scheduling
algorithm, which determines the amount and type of VMs
to request from the cloud and the optimal time to rent and
provision them.

Cloud computing today enables the execution of scientific
applications consisting of hundreds or thousands of interde-
pendent tasks [2]. Montage [3], CyberShake [4] and LIGO
[5] are scientific workflow applications used in astronomy,

earthquake science, and gravitational physics, respectively. A
task does not begin its execution until all its predecessor tasks
have been completed. Most of these scientific applications
are built as workflows, which are groups of computational
tasks linked by control and data dependencies. Each workflow
phase consists of a different number of tasks, each requiring
a different amount of computing resources. Depending on the
application, a workflow can be extremely CPU-intensive and/or
data-intensive. The complexity of task execution can vary from
sequential execution to highly parallel execution with many
inputs from different tasks.

The objective of the workflow scheduling problem in the
cloud is to map tasks to resources to maintain task precedence
while achieving certain performance metrics [6]. In the cloud,
faster and more powerful computing resources are often more
expensive than slower ones. As a result, using powerful com-
puting resources can increase execution costs by shortening
workflow execution time. Consequently, the trade-off between
time and cost is a major challenge for cloud-based workflow
scheduling [7]. Two typical approaches are used to solve this:
reducing the total execution time under a budget constraint [8]
and reducing the financial cost under a time constraint [9]. This
study presents an approach to the problem of time-constrained
workflow scheduling. The objective is to develop a workflow
schedule for a given workflow that reduces the monetary cost
of running the workflow in the cloud within a given time limit.

Creating an optimal schedule in a heterogeneous cloud
environment is NP-hard [10]. On the other hand, workflow
scheduling aims to reduce the overall time. Consequently, no
algorithm can achieve an ideal solution in polynomial time,
while certain algorithms can provide approximate results in
polynomial time. Therefore, heuristics are required to find
near-optimal solutions effectively.

In a cloud computing environment, it is challenging to
select the type and amount of resources to use for the cost-
effective execution of scientific workflows [6]. A shorter
execution time can be achieved using many resources, but this
could come at a significant financial cost. In recent years, a sig-
nificant amount of research has been conducted on algorithms
for scheduling scientific workflows, which are essential for
maximising the benefits of cloud computing. However, these
algorithms must focus not only on assigning tasks to resources
but also on determining the amount and type of resources to be
used (i.e., provisioning resources) during the execution of the
workflow [11]. Moreover, it is necessary to determine when
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these resources should be provisioned and when they should
be de-provisioned during the workflow execution.

In this study, we present a Deadline and Structure-Aware
Workflow Scheduler (DSAWS), which is a heuristic. The
algorithm is a static assignment of tasks to VMs with an elastic
VM pool that provisions and de-provisions VMs for scheduling
tasks as the workflow executes. The algorithm analyses the
workflow structure to determine the type and amount of VMs
to deploy and when to provision and de-provision them.
The algorithm’s first phase (the planning phase) selects the
number and type of VMs to be used and the allocation of
tasks to these resources. In the second phase, the algorithm
provisions the VMs selected in the planning phase at the
specified times. It also releases these VMs based on the times
set in the first phase, considering the delay in provisioning/de-
provisioning a VM in the cloud. Its main objective is to
use these resources effectively to keep costs down without
compromising deadlines.

We evaluated our algorithm using well-known workflows
such as Montage, CyberShake, Inspiral, and Epigenomics, as
this makes our results comparable to future studies. Finally, the
experimental results of the DSAWS algorithm are compared
with different scheduling algorithms such as Dyna[12] and
CGA[16].

This approach reduces the overall execution cost of a
workflow while meeting a user-defined deadline. Experimental
results show that DSAWS outperforms other state-of-the-art
algorithms in terms of meeting workflow deadlines while
reducing execution costs. The experiments have shown that
DSAWS delivers more cost-efficient schedules for various
workflow applications than Dyna and CGA.

The remainder of the work is arranged as follows: Sec-
tion II provides background information and reviews related
work on workflow scheduling. The details of the design and
implementation of the DSAWS algorithm are described in
Section III. The experiment results are shown and discussed
in section IV. Section V concludes the paper and future work.

II. BACKGROUND KNOWLEDGE AND RELATED WORKS

In this section, the presentation of scientific workflows is
presented first. Then, related work on workflow scheduling
with a problem statement on the clouds.

A. Background Knowledge

A workflow can be represented as a directed acyclic
graph (DAG) consisting of a collection of atomic tasks. As
shown in Fig. 1, the vertices of the workflow are a set of
tasks {t1, t2, ..., tn}, while the workflow edges represent data
dependencies between these tasks. For example, during the
execution of the workflow, the successor task t4 waits for its
predecessor task t1 to complete its processing and produce its
output data. When t1 finishes, some of its data outputs become
input dependencies for t4. When t4 is scheduled, its data input
dependencies are sent to its target host to enable the successful
execution of t4.

t3 t2 t1

t6 t5

t9

t4

t7t8

Fig. 1. A sample workflow.

B. Related Works

Many scheduling algorithms have focused on reducing the
execution time of workflow applications in cloud computing.
Heuristics and meta-heuristics-based approaches have been
studied for the workflow scheduling problem.

Genetic algorithms (GA) [13] and Particle Swarm Optimi-
sation (PSO) [14] are well-known meta-heuristic techniques.
Moreover, meta-heuristic techniques such as GA and PSO
can be found in the literature for workflow scheduling in
the cloud. Verma et al. [15] presented a genetic algorithm
that schedules cloud-based workflows depending on their
importance to reduce the execution cost while meeting the
workflow deadline. However, this algorithm does not consider
the virtual machines’ start-up time in the cloud. The paper [16]
presents a genetic algorithm for deadline-constrained schedul-
ing of workflows using the co-evolution technique to modify
crossover and mutation probabilities to accelerate convergence
and prevent prematurity. These approaches have the potential
to be implemented in a cloud environment, although the
waiting time might require the use of a computationally inten-
sive meta-heuristic optimisation technique. The pre-processing
duration may increase as the workflow size increases, leading
to significant queuing delays.

Several heuristic algorithms [17], [18], [19], [20], [21] in
the cloud computing environment are presented for workflow
scheduling. Saeid et al. [20] presented a deadline-constrained
approach for scheduling workflows that allocates an entire
critical path to a single VM instance to reduce data transfer
time between successive jobs. This technique does not consider
allocating jobs from a single path to many VM instances in
search of better scheduling options. This technique also does
not consider the time it takes a provisioned VM instance to
send all output data to the local storage of the VMs running
the child tasks before it is de-provisioned. This is not practical
during the period of process execution.

Xiumin et al. [22] have proposed a technique for extending
HEFT [23]. It uses a two-step approach to reduce workflow
makespan and execution costs simultaneously. However, it
does not consider the startup time of a VM instance or
the actual data transfer time between successive jobs. This
algorithm selects the final scheduling solution from the K best
solutions. However, the optimal determination of the value
of K is not addressed. In the meantime, comparing the K
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scheduling solutions to choose the best one results in the
scheduling algorithm’s inefficiency.

The Coevolutionary Genetic Algorithm (CGA) [16] was
proposed based on the biological evolutionary method (genetic
algorithm), where the adaptive penalty function for strict
deadlines was introduced. It assigns partial deadlines to each
task and executes them on currently rented or existing VMs
to reduce the total cost. CGA was chosen for comparison
in our evaluation because of its static approach, which has
the potential to generate optimal solutions. Nevertheless, our
main interest is to compare DSAWS with CGA when both
algorithms can meet deadlines. Moreover, by considering these
algorithms, we can evaluate the adaptability of our results and
show how DSAWS can meet deadlines while other algorithms
fail to meet deadlines.

Dyna [12] is a scheduling technique developed with auto-
scaling capabilities for the cloud to dynamically provision and
de-provision VMs depending on the current state of tasks. It
was presented to develop a scheduling system that reduces
the expected monetary cost under user-defined probabilistic
scheduling constraints. It selects VM types for each workflow
task based on an A-star search to reduce costs. It is designed to
schedule many workflows simultaneously but can also be mod-
ified to schedule only one. Dyna was chosen for comparison in
our evaluation because the algorithm is periodically improved
by adjusting the number of VMs requested in each category
to ensure timely completion of tasks at a lower cost. The aim
is to show how the static component of DSAWS enables the
creation of schedules that outperform the Dyna algorithm in
terms of meeting workflow deadlines while reducing execution
costs.

ARPS [24] is an algorithm for adaptive resource provi-
sioning and scheduling for scientific workflows in Infrastruc-
ture as a Service (IaaS) clouds. It was designed to address
cloud-specific issues such as unlimited on-demand access,
heterogeneity, and pay-per-use (i.e., per-minute billing). Con-
sequently, their strategy was also designed to consider a
user’s deadline and reduce the cost of the environment by
using the resource provisioning and scheduling service. Finally,
the experimental results show that they perform a workflow
more effectively than other sophisticated algorithms to meet
deadlines and reduce costs.

Mao et al. [25] proposed a workflow scheduling heuristic
for the cloud environment that allows them to dynamically
generate the lowest schedule while meeting the user’s deadline.
They investigated multiple VM types and cloud characteristics,
such as alternative pricing models and acquisition delays.
However, they did not consider data transfer time between
linked jobs, which is one of the most important criteria and
significantly impacts data-intensive workflows.

By analysing the workflow structure, [30] proposes a
resource provisioning and scheduling technique that deter-
mines the required number and configuration of VMs. They
claimed that their approach addresses data-intensive workflows
to minimise data transfer. However, they did not consider
the data transfer time between tasks during the execution
of the two examples presented, which is one of the most
important factors and significantly impacts workflow execution
time. In addition, they neglected resource provisioning and de-

provisioning delays in their experiments.

Researchers in [26] have presented a two-step method for
provisioning cloud resources for workflows by minimising
makespan and wastage of resources based on their structural
characteristics. The proposed method considers the nature
of the tasks, which may be computational, memory-, or
storage-intensive. The performance of the presented algorithm
is evaluated using five scientific workflows as benchmarks.
Simulation results show that the proposed method outperforms
two existing algorithms for each workflow.

Although there are several workflow scheduling techniques,
there is a need for resource estimation for workflow execution
because the above approaches have not analysed the workflow
structure in depth. In this paper, we propose DSAWS, which is
a complete full-ahead scheduling algorithm that considers the
structure of the workflow. We discuss a method to deal with
under- and over-provisioning issues.

III. THE PROPOSED SCHEDULING ALGORITHM

Several objectives associated with task scheduling issues
need to be addressed. The approach suggested in this paper fo-
cuses on running workflow applications in a cloud environment
to lower overall execution costs while still meeting the user-
set deadline. The proposed technique analyses the workflow
structure, determines the number of tasks at each level, and
provides a rank value for all workflow tasks. To determine the
quantity and configuration of resources needed to complete
the workflow execution by the user-set deadline, use this rank
value.

Two approaches are discussed. First, in the planning phase,
the exact number and configuration of VMs that need to be
rented from cloud service providers are determined based on
the deadline constraint and the ranking value of the tasks. It
also uses the remaining time (leftover time) in the current
billing period to avoid wasting resources. The plan to reuse
cloud resources can eliminate the need for further provisioning
and deployment costs.

The second approach concerns the execution phase (the
second phase). It aims to provision or de-provision the re-
sources of the selected services for tasks in the planning phase.
These resources are maintained until they have completed all
the previously assigned tasks. However, if some resources are
not needed for the subsequent tasks, they are terminated imme-
diately after the output data is transferred. This significantly
reduces execution time and resource costs, which is crucial
for workflow users. We will explain the steps of Algorithms 1
and 2 in the next paragraph using Table I, which contains the
notations used in our algorithms.

Algorithm 1 calculates the rank value of each task, starting
with the exit tasks (tasks without any child). First, the runtime
of each exit task became its rank value for those tasks that have
no child tasks (lines 2-6), and then the rank value is assigned
to the parent tasks of the exit tasks (lines 7-15), which involves
calling Algorithm 2 (line 11).

Second, Algorithm 2 assigns to each parent task the maxi-
mum rank value of the rank values of its child tasks (lines 2-8)
with the maximum data size of the data sizes of its child tasks
(lines 9-12). Algorithm 2 continues assigning the rank value
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TABLE I. NOTATIONS FOR THE SYMBOLS USED IN THE ALGORITHMS

Notations Meanings
T (G) Set of tasks in workflow graph.
D User-defined deadline of the workflow.
E Set of edges between tasks in workflow.
tentry Task without any parent.
texit Task without any child.
tEST Earliest Start Time of task t.
tp Predecessors (parents) of task t.
pp Predecessors of predecessor p.
tch Successors (children) of task t.
truntime Runtime of task t.
trank Rank value of task t.
readyList List of the ready tasks in workflow.
rankList List of all tasks in descending order of their rank

values.
sspeed Performance capacity of service type s.
vmspeed Performance capacity of virtual machine vm.
VMsList List of selected VMs with scheduled tasks on them

during the planning phase.
m Number of VM types.
n Number of currently leased VMs.
vmstart Start time of virtual machine vm.
vmstop Stop time of virtual machine vm.
vmidleTime Idle time of virtual machine vm.
vmbillingPeriod Billing period of virtual machine vm.
ttransferTime Transfer time of all output data of task t to the

VMs of its successors ch.

for each task recursively until it reaches the entry tasks that
have no parent tasks (lines 15-19). Finally, after Algorithm 2
completes its steps, Algorithm 1 sorts all tasks in descending
order according to their rank values to determine the order in
which workflow tasks should be scheduled (line 16). In the
next paragraphs, we will explain the steps of the Algorithms 3
and 4.

Algorithm 1 Workflow Ranking

1: procedure ASSIGNRANKING(T (G))
2: for all t ∈ T (G) do
3: if t has no children then
4: trank:= truntime

5: end if
6: end for
7: for all t ∈ T (G) do
8: if t has no children then
9: for each parent p of t do

10: if p has no rank value then
11: call TaskRank(p)
12: end if
13: end for
14: end if
15: end for
16: Arrange all tasks in the list rankList in decreasing

order of rank values.
17: end procedure

The pseudocode of the entire DSAWS algorithm for work-
flow scheduling is shown in Algorithm 3. The proposed
algorithm uses the rank value to support each task by selecting
the appropriate VM to execute it within the deadline. In the
first phase, the algorithm selects the appropriate type and the
exact number of VMs needed to execute workflow tasks to
meet the deadline set by the user. After the basic initialisation
in lines 2-8 of Algorithm 3, it receives the workflow tasks
arranged from Algorithm 1 while the deadline D is set by the

Algorithm 2 Task Ranking

1: procedure TASKRANK(p)
2: chmaxRank := 0
3: chmaxData := 0
4: for each child ch of p do
5: if ch has rank value then
6: if chrank > chmaxRank then
7: chmaxRank := chrank

8: end if
9: if chdata > chmaxData then

10: chmaxData := chdata

11: end if
12: end if
13: end for
14: prank:= pruntime+maxRank+maxData
15: if p has parent then
16: for each parent pp of p do
17: call TaskRank(pp)
18: end for
19: end if
20: end procedure

user. Line 2 identifies the available instance types of VMs the
service provider offers. In line 3, the rented set rentedVMs
is empty at the beginning of the execution of the algorithm.
We have initialised a variable called success that changes
when a task finds its matching VM to meet the deadline. In
line 6, vmminTime is the earliest available VM time in the
currently leased VMs. In line 7, although all tasks are arranged
in descending order of their rank values, Algorithm 3 selects
ready tasks from the rankList and adds them periodically to
the readyList in order. In line 8, timeLine is the difference
between the earliest available time of the VM or the earliest
start time of a task and a deadline D. The while loop in
line 9 is used to find a suitable VM for each task in the
workflow. In line 12, the timeLine is the difference resulting
from subtracting vmminTime from the deadline because the
task begins its execution by selecting a VM instance that has
already been rented. First, the ready tasks check the available
rented VMs to meet the deadline. If a task does not find a
suitable VM to meet the deadline, it selects a new suitable
VM to meet the deadline. At the beginning of the execution
of the algorithm, there are no rented VMs in line 13. Therefore,
the algorithm skips lines 13-20. In line 22, the timeLine is
the difference resulting from subtracting the earliest start time
of a task (tEST ) from the deadline since the task begins its
execution by selecting a new VM instance. Line 23 tries to
select a new VM by comparing timeLine with the task’s rank
value divided by the VM speed (lines 13 and 23). For cost-
effective task scheduling, the task searches for a VM at the
service provider, starting with the slowest VM until it reaches
the appropriate VM that meets the deadline (lines 24-25). In
line 26, the task is removed from the unscheduled readylist,
while in line 28, the selected new VM is added to the set of
rented VMs (rentedVMs). The algorithm updates the EST
for all successors of a task (line 16 or 27) after finding a
suitable resource in line 15 or 25. This update may change the
readiness of the tasks based on the completion time of their
predecessor tasks. When all tasks are assigned to VMs, the
algorithm calls Algorithm 4 in line 33.
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Algorithm 4 shows the pseudocode of the TimelineVMS
algorithm for provisioning and de-provisioning resources. In
the second phase, the algorithm first determines the time for
provisioning the VMs and the time at which each VM is de-
provisioned by taking into account the delays in provisioning
and de-provisioning a VM in the cloud. Second, the algorithm
determines the idle time between two scheduled, consecutive
tasks on each VM. During the execution of the workflow, the
algorithm dynamically adds and removes resources from its
pool.

Algorithm 3 The DSAWS scheduling algorithm

1: procedure DSAWS(G(T ,E),D)
2: m= available instance types of VMs (S)
3: rentedVMs = ∅ the currently leased virtual ma-

chines
4: success = false.
5: vmbooting = the booting time of VM
6: vmminTime = the earliest available time of vm in

rentedVMs.
7: readyList = receives repeatedly ready tasks from

rankList.
8: timeLine = represents the difference of subtracting

vmminTime or tEST from the deadline D.
9: while (there exists unscheduled t in readyList) do

10: t = find the earliest EST in readyList
11: vmminTime= find the earliest available time of vm

in rentedVMs.
12: timeLine := D - vmminTime

13: for all vmj ∈ VM do where j = 1, 2, . . . , n
14: if timeLine >= trank

vmspeed
j

then

15: select vmspeed
j to run t

16: update EST for all successors of t
17: remove t from readyList
18: success := true
19: end if
20: end for
21: if success==false then
22: timeLine := D - tEST

23: for all si ∈ S do where i = 1, 2, . . . ,m
24: if timeLine >= ( trank

sspeedi

) then

25: select a new instance vmspeed
i to run t

26: remove t from readyList
27: update EST for all successors of t
28: add vmspeed

i to rentedVMs
29: end if
30: end for
31: end if
32: end while
33: call TimelineVMs(VMs)
34: end procedure

Algorithm 4 represents the second phase, where workflow
tasks are scheduled on the selected resources (VMsList)
during the planning phase. It receives from Algorithm 3 a
schedule for all tasks about the types and number of their
VMs (VMsList). After initialisation in lines 2-5, the booting
and shutdown times of resources and the VM’s billing period
are set. In line 5 of the algorithm, vmidleT ime is used to find

the idle time between any two scheduled consecutive tasks on
a VM to shut down this VM.

Algorithm 4 Provisioning resources

1: procedure TIMELINEVMS(VMsList)
2: vmbooting = the booting time of VM
3: vmshutdown= the de-provisioning time of VM
4: vmbillingPeriod = the billing period for VM
5: vmidleT ime= the idle time between two consecutive

tasks on the VM.
6: for all vm ∈ VMsList do
7: for each task t on vm do
8: if vm has not provisioned then
9: vmstart=(tstart − vmbooting)

10: if vmstart < 0 then
11: vmstart=0
12: end if
13: provision vm on the time of vmstart

14: end if
15: vmidleT ime= vmidleT ime - vmshutdown

16: if vmidleT ime >= vmbillingPeriod then
17: transfer output data of t to the VMs of its

successors.
18: vmstop= tend+ttrasferT ime

19: de-provision vm on the time vmstop

20: end if
21: end for
22: transfer output data of t to the VMs of its succes-

sors.
23: vmstop= tend+ttrasferT ime

24: de-provision vm on the time vmstop

25: end for
26: end procedure

To do this, the VM’s billing period is taken into account
to determine whether the idle time is greater than the billing
period of a VM. For example, if workflow tasks are scheduled
on VMs in the first phase, the algorithm determines when to
start a VM and when to shut it down in the second phase by
checking the schedule of the tasks on their VMs. This reduces
the idle time of VMs and gaps in scheduling between workflow
tasks. In lines 6 and 7, the algorithm identifies the tasks of
each VM by reading the start and end times of each task on
it. The algorithm then attempts to prepare tasks’ resources
before the tasks begin their execution (lines 9-12), as the
provisioning process is still significant due to the overhead
associated with leasing virtual machines (lines 8–14). The
consequences of VM provisioning and de-provisioning delays
are greatly mitigated and are much easier to manage.

First, the algorithm uses resource elasticity to meet the
user’s deadline but knows when to rent and release resources. If
a new VM needs to be provisioned during the execution of the
workflow, the algorithm can start VMs earlier before the task
starts by taking into account the delay in provisioning a VM
instance to speed up the execution of the workflow because
provisioning a VM takes time. Secondly, it uses the cloud
billing model to optimise resource utilisation while reducing
the number of rented resources. It also tries to schedule tasks
on currently rented VMs to reduce the need for further VM
provisioning costs.
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Furthermore, the algorithm checks the timeline of each VM
to see if the idle time is greater than the instance’s billing
period (lines 16-20). It then sends the output data to the VMs
performing the successor tasks (line 17) before de-provisioning
that VM instance in line 19. Finally, it sends the output data to
the VMs executing the successor tasks, if any (line 22), before
de-provisioning that VM instance in line 24 because the VM
has completed its tasks.

A. An Illustrative Example

To illustrate how the proposed algorithm works, we apply
its steps to a sample workflow shown in Fig. 2. The workflow
consists of nine tasks in the nodes of the graph: t1 − t9. The
value within the node of each task indicates the estimated time
of its execution (in seconds), while the number in parentheses
represents the rank value. The estimated time for data transfer
between VMs is also shown on the edges between nodes.

The following sections explain how to use the new algo-
rithm to perform the workflow. Before the algorithm starts, the
rank value for all tasks should be calculated using Algorithms 1
and 2. Then the tasks are sorted in descending order of their
rank value. We assume that the cloud provider offers three
types of VM computing services (vm1, vm2 and vm4) to
execute the workflow tasks. The billing period for computing
services is set to 10 seconds, and the costs for vm1, vm2 and
vm4 are 2, 4 and 6 respectively. The speeds for vm1, vm2 and
vm4 are 1, 2 and 4, respectively. The VM instance provisioning
and shutdown delays are set to 2 and 1 second, respectively,
and the workflow deadline is set to 35, which is the maximum
rank value (32) in the workflow, plus the provisioning (2) and
de-provisioning delays (1).

For the example workflow in Fig. 2, we call the DSAWS
scheduling algorithm, i.e., Algorithm 3. At the beginning of the
workflow execution, t1− t3 are the ready tasks that need to be
scheduled and steps 13-20 of Algorithm 3 are not applied since
no VMs have been provisioned yet. Therefore, steps 21-31 are
executed, running the for loop in line 23 one or more times
until each task finds its appropriate resource (s11) to execute
that meets the user’s deadline. The value EST is calculated for
the successor tasks of t2 in step 25.

Steps 13-20 can be executed if some resources are avail-
able. A task checks the available rented resources (vm1

1),
starting with the slowest and then the fastest (in ascending
order by speed). If a task (t1) does not find a suitable resource
that completes execution within the deadline, it decides to start
a new instance of available services (s12) considering the speed
of the resource in step 24. Similarly, t3 will select a new
instance (s13) that can complete execution within the deadline.
Table II shows the scheduled tasks, the selected VMs, and the
execution time (in seconds) of each task.

Step 1: First, the DSAWS algorithm assigned t2, t1, and
t3 to vm1

1, vm1
2, and vm1

3, respectively. The algorithm started
three VMs to meet the user’s deadline, and the current simu-
lation time was two due to the VM booting time.

Step 2: The algorithm assigned t5 to the available instance
vm1

1, so no data transfer occurred. The same is occurred for
steps 3 and 4: t4 and t6 were assigned to the instances of
their predecessor tasks vm1

2 and vm1
3, respectively. Finally,

6 (30) 
t3

4 (32) 
t2

5 (31) 
t1

3 (20) 
t6

9 (25) 
t5

14 (14)
t9

8 (25) 
t4

10 (10)
t7

12 (12)
t8

1324

5243

Fig. 2. A sample workflow.

the last three steps used the same available instances of their
predecessor tasks without data transfer. After all, tasks have
been scheduled. The next step is called Algorithm 4 in step
33 to provision and de-provision the resources of the services
assigned to the tasks during the previous phase (the planning
phase).

Finally, Algorithm 4 receives from Algorithm 3 the sched-
ule (e.g., Table II) indicating the time of execution of each
workflow task on each resource of the service type. In lines
2-5, the algorithm sets several variables, e.g., the periods for
starting up (e.g., 2) and shutting down (e.g., 1) of the resource.
The variable in line 4 is the instance’s billing period (e.g., 10).
In line 5, this variable will check the idle time between any
two consecutive tasks on each VM. The for loop in line 6
is executed for all VMs assigned during the planning phase
(vm1

1 − vm1
3). Then, the for loop in line 7 is executed for all

tasks on each VM (e.g., t2, t5 and t8 on vm1
1). Since no VM

is provisioned at the beginning of the workflow execution, the
delay in booting the VM cannot be avoided (lines 8-14).

However, the other tasks (t4−t9) that start at a time greater
than the booting delay can start executing and thus avoid the
VM booting delay. The algorithm provisions VMs (vmstart)
in advance of the tasks’ start times (line 9), taking into account
the VM provisioning delay (vmbillingPeriod). Finally, if a VM
has subtracted the shutdown delay time from the VM idle
time (line 16) and the difference is greater than or equal to
the instance’s billing period (line 16), the VM is terminated
immediately after the output data is transferred to the VMs of
its successors (lines 15-19).

Furthermore, if no more tasks are running on a VM, the
VM is also terminated immediately after the output data has
been transferred to the VMs of its successors (lines 22-24).
The makespan for the workflow with the selected VMs (vm1

1−
vm1

3) is 30 seconds. Taking into account the data transfer time
and the delay times for booting and shutting down the VM
instances, the total cost of the sample workflow is 18.
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TABLE II. THE SCHEDULING OF THE WORKFLOW TASKS FOR EACH STEP OF EXECUTING DSAWS ON THE SAMPLE WORKFLOW OF FIG. 2

Step Task Rank Current Sim
Time

timeLine trank

vm
speed
j

VM selec-
tion

Start End VM cy-
cle

1 t2 32 2 32 32 vm1
1 2 6 1

1 t1 31 2 32 31 vm1
2 2 7 1

1 t3 30 2 32 30 vm1
3 2 8 1

2 t5 25 6 28 25 vm1
1 6 15 2

3 t4 25 7 27 25 vm1
2 7 15 2

4 t6 20 8 26 20 vm1
3 8 13 2

5 t9 14 13 21 14 vm1
3 13 27 3

6 t8 12 15 19 12 vm1
1 15 29 3

6 t7 10 15 19 10 vm1
2 15 25 3

TABLE III. THE CHARACTERISTICS VALUES FOR EACH WORKFLOW
APPLICATION

Workflow type Number
of levels

Number
of tasks

Number
of depen-
dencies

Mean
runtime
(sec.)

Mean
data size
(MB)

Montage 9 1000 4485 11.37 3.21
CyberShake 5 1000 3988 22.75 102.29
LIGO 6 1000 3246 227.7 8.9
Epigenomics 8 997 3228 3866.4 388.59

IV. EVALUATION

Our experiment evaluated DSAWS with other competitive
algorithms like CGA and Dyna for scheduling the selected sci-
entific workflow applications. The experiment was conducted
in the DISSECT-CF-WMS [27] simulator, which is an exten-
sion of the DISSECT-CF simulator. It is useful for running
scientific workflows on cloud resources. DISSECT-CF-WMS
focuses on the user-side behaviour of clouds, while DISSECT-
CF focuses on the internal behaviour of IaaS systems. It
also supports dynamic provisioning to meet the resource
requirements of the workflow application while running on
the infrastructure, taking into account the provisioning and de-
provisioning delays of a cloud-based VM.

We used a library of realistic workflows introduced by
Bharathi et al. [28] to evaluate our scheduling algorithm.
We evaluate our algorithm by simulating it with synthetic
workflows based on real scientific workflows with different
structures. We selected four realistic workflows from different
scientific applications, which are Montage from the field of
astronomy, CyberShake from the field of earthquake science,
Inspiral (LIGO) from the field of gravitational physics, and
Epigenomics from the field of biology. Fig. 3 shows the
structure of each workflow. All relevant characteristic values
required for the above algorithms are listed in Table III for
the analysis of experiments. We have used these values to
obtain the rank values and assign the corresponding VM to
each task. The performance of the four workflows in DSWAS
is compared with Dyna and CGA approaches.

We created a model of the cloud infrastructure of Google
Cloud Engine1 with different VM configurations selected from
the predefined machine types of the cloud. An IaaS provider
with a single data region and seven types of VMs was set
up. Table IV shows the VM setup type based on Google
Compute Engine offerings. For Google Cloud Engine, the
core of Compute Engine CPU provides a minimum processing
capacity of 2.75 GCEUs (2.75 ECUs), or about 2750 MIPS

1https://cloud.google.com/compute/all-pricing

Text

Montage

CyberShake

LIGO

Epigenomics

Fig. 3. The structure of the Montage, CyberShake, LIGO and Epigenomics
workflows [28].

TABLE IV. TYPES OF VM BASED ON GOOGLE COMPUTE ENGINE
OFFERING

Name Memory (GB) Google
compute
engine units

Price per minute($)

n1-standard-1 3.75 2.75 0.00105
n1-standard-2 7.5 5.5 0.0021
n1-standard-4 15 11 0.0042
n1-standard-8 30 22 0.0084
n1-standard-16 60 44 0.0168
n1-standard-32 120 88 0.0336
n1-standard-64 240 176 0.0672

[29]. A billing slot of 60 seconds was modelled, as service
providers such as Google Compute Engine and Microsoft
Azure offered. Provisioning delay was set to 30 seconds [31]
and de-provisioning delay to three seconds [25] for all types
of VMs. The bandwidth between VMs was set to 1 Gbit.

To evaluate the ability of each approach to achieve a valid
solution that meets the deadlines, we set the success rate
metric, which is calculated as the proportion of the current
execution times to the given deadlines. For the evaluation, we
set three deadline factors based on the maximum rank value
of each workflow. The maximum rank value represents the
strict deadline factor (1), as shown in Table V. In addition, the
moderate and relaxed deadlines are obtained by multiplying
the maximum rank values by (1.5) and (2), respectively.

Fig. 4, 6, 8, and 10 show the results of the success ratios for
each workflow with the three algorithms. On the other hand,
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TABLE V. THE MAXIMUM RANK VALUES IN SECONDS FOR EACH
SCIENTIFIC WORKFLOW

Workflow type The maximum rank value (strict Deadline factor)
Montage 369 seconds
CyberShake 736 seconds
LIGO 625 seconds
Epigenomics 27232 seconds
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Fig. 4. The makespan of the three algorithms with the montage application.

Fig. 5, 7, 9, and 11 show the execution costs (in $) for each
workflow with the same algorithms.

In the case of Montage workflow, all algorithms completed
the execution of the workflow within the deadline, except
CGA, with the strict deadline factor, as shown in Fig. 4. Dyna
met all deadline factors, as shown in Fig. 4. The DSAWS
approach met all deadlines with the lowest cost compared to
the other algorithms, as seen in Fig. 5. The Montage workflow
has many parallel tasks with a short execution time in the
second level. This drastically increases the overall cost of the
workflow as more resources are consumed by Dyna, as shown
in Fig. 5. However, DSWAS overcomes this disadvantage by
using the leftover time of resources to save costs. Furthermore,
Montage has nine levels and six of these levels are controlled
by the single-thread jobs with a total execution time of 332
seconds. Levels 3 and 4 have 142 seconds, which is more than
two instance cycles, with the billing period being 60 seconds.
Levels 6-9 have 190 seconds, which is equivalent to three
instance cycles. Therefore, the DSAWS algorithm keeps only
one VM during these periods to reduce the execution cost and
meet the deadline.

In the case of the CyberShake workflow, which has a
data transfer bottleneck for most scheduling algorithms. This
drawback is eliminated by the DSAWS described in this
paper, which allocates resources to all tasks based on their
rank value. It guarantees that all tasks are completed within
the deadline and starts new instances only when needed.
Therefore, DSAWS reduces data transfer by assigning tasks
to the same set of resources. The CGA scheduler could not
meet the deadline for all deadline factors successfully. While
Dyna met the relaxed deadline factor, it failed to meet the other
deadline factors. DSAWS, on the other hand, meet all deadlines
with the lowest execution cost, as shown in Fig. 6 and Fig. 7,
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Fig. 5. The execution cost of the three algorithms with the montage
application.
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Fig. 6. The makespan of the three algorithms with the CyberShake
application.

respectively. CyberShake has five levels, with most tasks at
levels 2 and 3 totalling 994 tasks out of 1000. This results
in high concurrency and a large amount of data transfers.
CyberShake is a compute- and data-intensive workflow. In
addition, level two has 497 tasks with 95.35% of the total
execution time of the workflow tasks. As a result, the Dyna and
CGA algorithms launched many instances of the computation
service, and this has led to an increase in the makespan and
execution cost of the workflow due to the increase in data
transfers between resources.

In LIGO, DSAWS successfully met all deadline factors,
while CGA failed to meet all deadline factors. Dyna met the
relaxed deadline factor but failed to meet the other deadline
factors, as shown in Fig. 8. CGA and Dyna perform badly
because fewer resources are available for tasks with long
execution times. LIGO is a data and CPU-intensive workflow,
and this slowed down the execution of the workflow signifi-
cantly. However, the proposed technique analyses the workflow
structure, determines the number of tasks at each level and
provides a rank value for all workflow tasks. The algorithm
then assigns the appropriate type of resources to these tasks
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Fig. 7. The execution cost of the three algorithms with the CyberShake
application.
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Fig. 8. The makespan of the three algorithms with the LIGO application.

in the workflow and executes them to meet the user-specified
deadline, as shown in Fig. 8. Also, unlike the other algorithms,
DSAWS achieved the cheapest cost among all schedules, as
shown in Fig. 9. LIGO has 483 tasks with runtimes greater
than the mean execution time (e.g. 227.7). The time difference
between tasks can be up to 3 times the mean runtime of the
workflow tasks. This results in idle time for other resources
and gaps in scheduling between workflow tasks in the case of
CGA and Dyna.

In the case of the Epigenomics workflow, the CGA sched-
uler did not successfully meet the deadline for the strict and
moderate deadline factors, but it was able to meet the relaxed
deadline factor. Similarly, Dyna has met the relaxed deadline
factor but failed to meet the moderate and strict deadline
factors. For some Epigenomics tasks, there are significant
differences in execution times of 15000 times or even more.
Therefore, the CPU performance reduction will significantly
impact the processing time of these tasks and lead to delays
for CGA and Dyna. The DSAWS algorithm, on the other hand,
met all deadlines, as shown in Fig. 10. Furthermore, unlike the
other two algorithms, DSAWS has the lowest execution cost,
as shown in Fig. 11. This pattern is repeated in Epigenomics
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Fig. 9. The execution cost of the three algorithms with the LIGO application.
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Fig. 10. The makespan of the three algorithms with the Epigenomics
application.

experiments, but the time difference can be up to 7 times
of the average runtime of the workflow tasks (e.g. 3866.4).
Epigenomics has eight levels, with most tasks at level 5 com-
prising 245 tasks and 99.8% of the total workflow execution
time. These differences show that there is a significant need
for resources at this level of the workflow for CGA and Dyna.

Finally, the DSAWS algorithm met all the deadline factors
of each workflow, while the CGA and Dyna approaches met
25% and 50% of all the deadline factors of all workflows,
respectively. These results are consistent with what was ex-
pected for each algorithm. The static heuristic (e.g., CGA) was
not more successful in meeting deadlines, but the adaptability
of Dyna allows it to meet its aim more frequently. The
experiment’s results also show the efficiency of DSAWS in
terms of its ability to produce more cost-effective schedules.
DSAWS outperformed all other algorithms we compared it
with in all situations. DSAWS succeeds at the lowest cost
compared to CGA and Dyna algorithms, regardless of whether
the deadline was met or not. Moreover, CGA showcases its
ability to generate more cost-effective schedules and surpasses
Dyna about 92% regardless of whether the deadline was met or
not. For some structures (e.g., CyberShake and Epigenomics),
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Fig. 11. The execution cost of the three algorithms with the Epigenomics
application.

our proposed algorithm uses the initial leased VMs to schedule
all tasks of the same workflow to minimise data transfer costs.
Other structures (e.g., Montage and LIGO) have many tasks
with a short execution time, and many instances of the com-
putation service are launched while only a small part of their
time interval is used. Therefore, the proposed algorithm uses
the remaining time in the current billing period of the VMs
to avoid wasting resources. An additional feature of DSAWS
evident in the results is its ability to increase the time required
to execute the workflow incrementally. The significance of
these relationships is that many users are willing to trade off
execution time for lower costs, while others are willing to pay
higher costs for faster execution. The algorithm must behave
within this logic so that the deadline number is perceived as
fair by the users.

V. CONCLUSION AND FUTURE WORKS

When scheduling workflows in the cloud, resource alloca-
tion is important. A good resource estimation method helps
the user to reduce the cost and time of workflow execution.
Numerous algorithms face the challenge of meeting the user’s
deadline requirements while minimising the cost of running
the workflow. The DSAWS scheduler presented in this paper
analyses the structure of the incoming workflow and assigns
an optimal resource provisioning mechanism based on the
deadline constraint and the rank values of the tasks in the
workflow. The main implementation of this algorithm is to
make the second phase follow the schedule of the first phase
(scheduling of workflow tasks on selected resources). We
evaluate the performance of our algorithm by simulating it with
four synthetic workflows based on real scientific workflows
with different structures. For some structures (e.g., CyberShake
and Epigenomics), our proposed algorithm uses the initial
leased VMs to schedule all tasks of the same workflow to
minimise data transfer costs. Other structures (e.g., Montage
and LIGO) have many tasks with a short execution time, and
many instances of the computation service are launched while
only a small part of their time interval is used. Therefore,
the proposed algorithm uses the remaining time in the current
billing period of the VMs to avoid wasting resources. The
proposed algorithm reduces the overall execution cost of a

workflow while achieving a deadline set by the user. Experi-
mental results show that DSAWS outperforms the Dyna and
CGA algorithms in terms of meeting workflow deadlines while
reducing execution costs. DSAWS met all the deadline factors
of each workflow, while CGA and Dyna met 25% and 50%,
respectively, of all the deadline factors of all workflows.

In the future, we plan to improve our algorithm to consider
the user’s deadline and other Quality of Service (QoS) ob-
jectives, such as resource utilisation and energy consumption,
simultaneously.
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