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Abstract—In the field of orthodontics, the accurate iden-
tification of cephalometric landmarks in dental radiography
plays a crucial role in ensuring precise diagnoses and effi-
cient treatment planning. Previous studies have demonstrated
the impressive capabilities of advanced deep learning models
in this particular domain. However, due to the ever-changing
technological landscape, it is imperative to consistently investigate
and explore emerging algorithms to further improve efficiency in
this field. The present study centers around the assessment of the
effectiveness of YOLOv8, the most recent version of the ’You Only
Look Once (YOLO)’ algorithm series, with a particular emphasis
on its autonomous capability to accurately identify cephalometric
landmarks. In this study, a thorough examination was con-
ducted to evaluate the YOLOv8 algorithm efficiency in detecting
cephalometric landmarks. The assessments encompassed various
aspects such as precision, adaptability in challenging conditions,
and a comparative analysis with alternative algorithms. The
predefined proximities of 2mm, 2.5mm, and 3mm were utilized
for the comparisons. By focusing on its potential as a noteworthy
breakthrough, the investigation seeks to ascertain whether the
recent enhancements indeed bring about a significant stride in
the precise identification of cephalometric landmarks.
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thodontics

I. INTRODUCTION

Since its introduction by Broadbent in 1931, the
cephalometer has garnered extensive recognition as a uni-
versally adopted diagnostic instrument within the realms of
orthodontic practice and research [1]. Cephalometry, a field of
study focused on the measurement of cranial dimensions, in-
volves the meticulous quantification of these dimensions using
either direct measurements or radiographic techniques. This
process involves identifying specific anatomical landmarks as
reference points for accurate and standardized measurements.
The incorporation of suitable standards plays a pivotal role
in the assessment of facial growth and development, render-
ing them an indispensable component in the diagnostic and
treatment planning stages of orthodontics. In the realm of
cephalometrics, the arduous task of manually identifying and
annotating cephalometric landmarks on radiographic images
has long been entrusted to proficient experts in the field.
Hand annotation, while a valuable technique, is known for its
labor-intensive nature and vulnerability to human error-induced
discrepancies [2] [3].

The advent of deep learning in the field of medical imag-
ing has brought about a profound transformation in various

diagnostic techniques, such as cephalometric analysis. In this
emerging era of digital diagnostics, machine learning algo-
rithms have taken the lead, paving the way for significant
advancements in orthodontic diagnostic practices and treatment
strategies. Prior research has clarified the impressive potential
of deep learning models in automating this critical procedure,
resulting in significant improvements in both precision and
speed.

In the domain of diagnostic automation, deep learning
has witnessed remarkable progress. However, the quest for
enhanced speed, better precision, and unwavering reliability
remains unyielding. Our research is conducted within the
context of an ongoing pursuit of continuous improvement.

In this study, we aim to evaluate the capabilities of
YOLOv8, the most recent version of the renowned “You
Only Look Once (YOLO)” models, in the realm of automated
cephalometric landmark detection. This inquiry transcends
pure theory and holds significant practical implications for
the field of orthodontics. Previous studies have highlighted its
potential, but a comprehensive exploration of its performance,
especially in diverse clinical scenarios, remains lacking [4].

In our investigation, we delve into the intricate details
of YOLOv8, meticulously examining its precision, speed,
and robustness metrics. Simultaneously, we remain vigilant
in assessing its practicality and suitability for real-world or-
thodontic clinical scenarios. Our main goal in this study is
to find out how well YOLOv8 can bridge the gap between
extremely advanced technology and the practical needs of
orthodontic practice, setting new standards in the field that
have never been seen before.

In this article, we will start by elucidating the underlying
impetus behind our research, thereby furnishing a lucid com-
prehension of the motivation that propelled this work forward.
In the subsequent sections, we shall embark on an in-depth
examination of pertinent literature, thereby furnishing crucial
background information for our research endeavor.

In the sections that follow, we will talk about all of our
materials and methods in detail, including the organized way
we gathered data, how carefully we prepared it, and how
strictly we followed our training procedures. In this section,
we will delve into the intricate methods utilized, providing a
thorough understanding of the meticulous approach undertaken
during the research endeavor.
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In the upcoming parts, we will give the results obtained
from our thorough inquiry, offering a concise summary of
the findings acquired from our analysis of data and exper-
imentation. In the last part of this essay, we will conduct
a thorough examination, combining the results, extracting
meaningful observations, and possibly suggesting avenues for
further research.

II. MOTIVATION

In the field of medical diagnostics, the importance of
cephalometry cannot be emphasized enough. The field of cran-
iofacial imaging has played a vital role in the medical industry
for many years. Its significance lies in its ability to diagnose
craniofacial malformations, facilitate detailed surgical planning
and evaluation, and contribute to essential growth studies.
Cephalometry, a field of study focused on craniofacial analysis,
centers around the meticulous identification of craniofacial
landmarks. This crucial process involves the precise detection
of cephalometric landmarks on the cephalogram, serving as
the fundamental initial stage in conducting any cephalometric
analysis [5] [6] [7]

In the past few years, the field of deep learning has wit-
nessed the emergence of highly sophisticated models that have
demonstrated exceptional capabilities in this particular domain
[8] [9] [10]. The advent of these models has brought about a
paradigm shift in the field, presenting ingenious approaches
to tackle the complex challenge of landmark identification. In
light of the ever-changing technological terrain, it is crucial to
consistently delve into and scrutinize nascent algorithms. The
need to maximize efficiency and precision fuels the relentless
pursuit of advancement in cephalometric analyses.

In our relentless quest for perfection, we embarked on a
comprehensive exploration of the most recent breakthroughs
in the realm of object detection. In our study, we sought to
enhance the accuracy and efficiency of cephalometric landmark
identification by harnessing the advanced capabilities of the
YOLOv8 algorithm. This algorithm has gained widespread
recognition for its exceptional performance in detecting ob-
jects. The YOLOv8 model distinguishes itself in the field of
computer vision with its remarkable precision and efficiency.
The model’s exceptional performance is a result of meticulous
training on an extensive and varied dataset, ensuring its ability
to handle diverse visual scenarios.

The utilization of cephalometry in the medical field is
of utmost importance, and with the constant advancements
in technology, our investigation of YOLOv8 marks a signif-
icant leap forward. Through the utilization of this cutting-
edge algorithm, our objective is to not only augment the
accuracy of cephalometric landmark detection but also make
substantial contributions to the continuous progress in medical
diagnostics.

The motivation behind this research was clearly defined in
this part. In the following section, we will conduct a thorough
examination of the pertinent literature in the topic, providing
useful insights into the existing body of knowledge.

III. RELATED WORKS

In the field of orthodontics, the convergence of cutting-edge
machine learning and computer vision, specifically through the

utilization of deep learning techniques, presents a remarkable
opportunity for an upheaval. The precise diagnosis of cephalo-
metric landmarks can be significantly improved through the
implementation of automated detection techniques [11].

In the realm of orthodontics, the lack of medical imaging
data presents an immense barrier. However, the imperative
for collaboration between orthodontic professionals and skilled
data scientists remains essential. The integration of specialized
datasets and advanced techniques holds great potential in
bridging the gap between deep learning algorithms and the
intricacies of orthodontic imaging. The integration of advanced
technologies in dental healthcare not only enhances the effi-
ciency of diagnosis and treatment planning but also serves as
a catalyst for innovation in the field [12].

Acknowledging the importance of automatic landmark de-
tection, The ISBI, which stands for the International Sympo-
sium on Biomedical Imaging, has led the organization of a
number of challenges related to the matter, namely in 2014
[13], in 2015 [14], and is set to continue its impact in the year
of 2023 [15].

Over the past few decades, extensive research has been
conducted on a multitude of automated techniques aimed at
detecting landmarks. In first studies, Wang et al. [13] [14]
spearheaded pioneering initiatives that involved the organiza-
tion of public challenges. These challenges served as platforms
to exhibit innovative algorithms that are at the forefront of
scientific advancement. Researchers have successfully utilized
random forests, a machine learning technique, to classify inten-
sity appearance patterns with remarkable accuracy. Moreover,
they have employed statistical shape analysis to gain insights
into the complex spatial relationships among landmarks. This
innovative approach has yielded impressive results, showcas-
ing the potential of these cutting-edge techniques in various
scientific domains.

In another study, Ibragimov and colleagues [16] have pre-
sented impressive findings by harnessing the power of Random
Forest and Game Theoretic techniques. Researchers such as
Chu et al. have successfully utilized tree-based methods in
their studies. These methods include hierarchical random forest
regression and binary pixel classification with randomized trees
[17].

In same vein, Lee et al. and Arik et al. have made signif-
icant strides in the field of pixel classification by leveraging
convolutional neural network (CNN) concepts. Their work has
paved the way for the development of cutting-edge algorithms
in this domain [18], [19]. Subsequent studies delved into the
realm of deep learning, utilizing U-shaped deep convolutional
neural network (CNN) structures to achieve accurate landmark
estimation [20] [21].

Mehmet Ugurlu and Alshamrani Khalaf, two researchers,
have achieved significant progress in the field of automated
cephalometric landmark detection implementing an altered
architecture known as the Feature Aggregation and Refinement
Network (FAR Net) (Ugurlu, 2022) [22], and an Inception-
based neural network layers [23].

In the upcoming chapter, we will conduct a thorough
examination of the essential components of our research. This
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examination will comprehensively investigate the methodolog-
ical framework that underpins our research. We will primarily
concentrate on the specifics of our data gathering procedure,
the methodology we have utilized, and the meticulous prepa-
rations undertaken for our training data.

IV. MATERIALS

This chapter provides a comprehensive analysis of the
complexities involved in our study technique. In the first stage
of our study, we will provide a thorough examination of our
data collection process, with a detailed explanation of the
methods used and the sources of our data. The dataset is
thoroughly documented, offering a strong foundation for our
upcoming investigations.

After the comprehensive discussion on the process of
data acquisition, we now delve into the intricate preparations
that were meticulously carried out to enhance the quality of
our dataset for the purpose of training. The methodology
encompasses various essential components, such as prepro-
cessing techniques, data cleansing methodologies, and neces-
sary transformations implemented to guarantee the dataset’s
appropriateness for the intended research.

In the culmination of this chapter, we embark upon
the fundamental essence of our investigation—the proposed
methodology. In this article, we will explore the cutting-
edge methodologies and techniques that underpin our research
efforts. By the conclusion of this chapter, readers will have
acquired a thorough comprehension of the meticulous proce-
dures and approaches that form the foundation of our research
methodology.

A. Data Acquisition

In a meticulous and all-encompassing investigation, a col-
lection of lateral cephalograms was procured from a hetero-
geneous group consisting of 400 individuals. The subjects
covered a wide age range, from 7 to 76 years, with an average
age of 27.0 years. The sample comprised 235 females and 165
males, ensuring a balanced representation of both genders. The
cutting-edge Soredex CRANEXr Excel Ceph machine, situated
in Tuusula, Finland, was employed to capture all images in
the TIFF format. These images were subsequently processed
using the advanced Soredex SorCom software, specifically
versions 3.1.5 and 2.0. The captured images exhibited an
impressive resolution of 1935×2400 pixels, accompanied by a
pixel spacing of 0.1mm, thereby guaranteeing an exceptional
level of precision and meticulousness in capturing even the
finest details [24]. The dataset utilized in this study, sourced
from the ISBI 2015 challenge, consisted of distinct collections
of data obtained from a total of 400 subjects. Each subject’s
data encompassed a lateral cephalogram, as well as two sets
of landmark points that were meticulously plotted by skilled
orthodontic specialists. Notably, both a junior and a senior
specialist contributed to the manual plotting of these landmark
points. Significantly, the average intra-observer variability for
these specific landmarks was found to be 1.73 mm and 0.90
mm, respectively, indicating a high level of precision [19]. In
the captured images, every individual pixel corresponded to a
precise 0.1 mm square region. These pixels were characterized
by grayscale values spanning from 0 to 255. In order to ensure

a good training phase, a total of 150 images were subjected
to augmentation techniques, the test1 set was merged to the
training set, resulting in an increase to over 900 images. These
augmented images were then carefully allocated for rigorous
training purposes. Additionally, the remaining 100 images
underwent meticulous testing. This comprehensive approach
provided a robust assessment of the overall performance of
the system. See the annotated image below in Fig. 1.

Fig. 1. Annotated image.

B. Data Preparation

In the pursuit of scientific inquiry, we diligently under-
took a comprehensive analysis of the data preparation phase,
breaking it down into various discrete stages. This approach
diverged significantly from the methodologies employed in
previous studies. In our study, we departed from traditional
methodologies and instead, we embraced a simultaneous de-
tecting approach across all data points.

The dataset being examined, as previously discussed, was
burdened with limitations due to its size. In order to over-
come these limitations, the incorporation of data augmentation
techniques became crucial (Fig. 2). In our study, we have
discovered that while mosaic augmentation possesses inherent
advantages within the framework of YOLOv8, it unfortunately
falls short in meeting our specific requirements. In pursuit of
enhancing the dataset, our research endeavors prompted us to
extract supplementary images from our preexisting repository
of unprocessed visual data.

In the quest for enhancing data quality, we employed
three pivotal techniques for augmentation. Color jittering has
emerged as a powerful tool that is widely employed in the
fields of computer vision and image processing. Through the
intentional introduction of controlled randomness into the color
attributes, our augmented dataset has successfully attained a
heightened level of diversity, in term of saturation,contrast,
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brightness, and hue. The process of diversification has played
a crucial role in enabling machine learning models to adapt and
generalize effectively across a wide range of real-world situ-
ations. This adaptability is particularly evident in the models’
ability to handle changes in lighting conditions and variations
in color.

Furthermore, our study carefully utilized Gaussian noise,
a fundamental augmentation technique deeply rooted in the
fields of machine learning and computer vision. Through the
careful manipulation of noise intensity and the introduction of
stochastic perturbations into the input data, our augmentation
methodology has successfully attained a remarkable level of
precision. This includes the ability to accurately account for
subtle differences in lighting conditions and address inaccura-
cies in sensor measurements.

Moreover, we used another technique on the experimental
procedure, Random contrast, which involved the manipulation
of image contrast through the expansion or compression of the
range of pixel intensity values. The process of diversification
played a crucial role in effectively addressing the challenge of
analyzing images taken under different lighting conditions. By
incorporating this approach, our model was able to successfully
adapt to and manage the diverse levels of contrast encountered
in various real-world situations. The implementation of random
contrast adjustment has resulted in a notable improvement in
the robustness of our model.

Another crucial aspect of our data preparation process was
the transformation of labels. The recorded labels, originally in
the form of coordinate dataframes, underwent a transformation
to conform to the YOLO annotation format. The utilization
of this particular format offers an additional advantage in
the form of its inherent normalization feature. The successful
outcome of this endeavor led to the smooth incorporation of
our image data into the system, eliminating the necessity for
additional adjustments such as resizing, scaling, or normal-
ization procedures. The incorporation of this particular aspect
has demonstrated itself to be a significant time-saving element
within our data preparation procedure.

Fig. 2. Data augmentation.

V. EXPERIMENTAL RESULTS

After establishing the underlying motivation behind our
research and presenting a thorough summary of the existing
literature in the field, we now proceed to explore the core

aspects of our study. In this section, we introduce our proposed
methodology that centers around leveraging the advanced
functionalities of the most recent release of the state-of-the-art
object detection algorithm, YOLOv8. Present the experiment’s
results, and conclude with a comparison with relevant findings
from the previous studies.

A. The Proposed Approach

In our study, we adopted YOLOv8 as the base model,
employing a meticulous approach to effectively tackle the com-
plexities inherent in our research goals. The decision to utilize
this particular choice was driven by its well-documented track
record of high efficiency, exceptional accuracy, and remarkable
adaptability. These qualities render it an optimal platform
for conducting our scientific investigations. In the subsequent
sections, we expound upon the intricate intricacies of our
methodology, shedding light on the alterations, advancements,
and refinements we incorporated to customize YOLOv8 for
the precise challenges presented by our research inquiries.

Prior methods frequently employed sliding windows cou-
pled with a classifier, necessitating hundreds or thousands of
iterations per image, or employed more refined techniques that
divided the task into two steps. The initial phase would identify
prospective regions containing objects (referred to as “regions
of interest”), and the subsequent phase would evaluate the
presence of objects in these proposed regions using a classifier.
Our model, only requires a single pass of the network to
perform the detection task.

The structure of our model consists of multiple essential
components, as illustrated in Fig. 3. The Conv block, also
known as the beginning block, is composed of a conv2d
layer, batch normalization, and a SiLu activation function.
The parameters for this function include the input channels
(c1), output channels (c2), kernel size (k), and stride (s). The
following block, referred to as the c2f block, comprises Conv
blocks in which the generated feature maps are distributed
between the bottleneck block and the concat block. The param-
eters for this block consist of c1, c2, the quantity of shortcuts
(n), and a boolean value indicating the utilization of shortcuts.
The third block, known as the Spatial Pyramid Pooling Fast
(SPPF) block, combines a Convolutional (Conv) block with
three Max pooling layers. Significantly, every resultant feature
map is merged together prior to the completion of the Spatial
Pyramid Pooling Function (SPPF). The parameters accepted
by this block include c1, c2, n, and a shortcut indicator. The
last component, known as the Detect block, consists of many
Conv blocks that have two separate tracks—one for bounding
box data and another for class data. The combination of these
blocks is detailed in Table I and visually depicted in Fig. 3.

In the field of deep learning research, much attention is typ-
ically given to the design of model architecture. However, it is
imperative to recognize the significant impact that training pro-
cedures. The neural network model used in our study had 295
layers, with a total of 25,867,321 parameters and 25,867,305
gradients. We meticulously adjusted a set of hyperparameters
in order to get optimal performance. Mosaic augmentation was
activated, which introduced a dynamic element to the training
data by merging numerous pictures. To optimize the process,
we utilized the AdamW optimizer with a designated learning
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Fig. 3. YOLOv8 Architecture.

TABLE I. MODEL SUMMARY

Params per layer Module Block Arguments
1392 ultralytics.nn.modules.conv.Conv [c1=3,c2= 48, k=3, s=2]
41664 ultralytics.nn.modules.conv.Conv [c1=48, c2=96, k=3, s=2]
111360 ultralytics.nn.modules.block.C2f [c1=96, c2=96, n=2, shortcut=True]
166272 ltralytics.nn.modules.conv.Conv [c1=96, c2=192, k=3, s=2]
813312 ltralytics.nn.modules.block.C2f [c1=192, c2=192, n=4, shortcut=True]
664320 ultralytics.nn.modules.conv.Conv [c1=192, c2=384, k=3, s=2]
3248640 ultralytics.nn.modules.block.C2f [c1=384, c2=384, n=4, shortcut=True]
1991808 ultralytics.nn.modules.conv.Conv [c1=384, c2=576,k= 3, s=2]
3985920 ultralytics.nn.modules.block.C2f [c1=576, c2=576, n=2, shortcut=True]
831168 ultralytics.nn.modules.block.SPPF [c1=576, c2=576, k=5]
0 torch.nn.modules.upsampling.Upsample [size=None, scale factor=2, mode=’nearest’]
0 ultralytics.nn.modules.conv.Concat [dimension=1]
1993728 ultralytics.nn.modules.block.C2f [c1=960, c2=384, n=2]
0 torch.nn.modules.upsampling.Upsample [size=None, scale factor=2, mode=’nearest’]
0 ultralytics.nn.modules.conv.Concat [dimension=1]
517632 ultralytics.nn.modules.block.C2f [c1=576,c2= 192, n=2]
332160 ultralytics.nn.modules.conv.Conv [c1=192, c2=192,k= 3, s=2]
0 ultralytics.nn.modules.conv.Concat [dimension=1]
1846272 ultralytics.nn.modules.block.C2f [c1=576, c2=384, n=2]
1327872 ultralytics.nn.modules.conv.Conv [c1=384,c2= 384, k=3, s=2]
0 ultralytics.nn.modules.conv.Concat [dimension=1]
4207104 ultralytics.nn.modules.block.C2f [c1=960,c2= 576, n=2]
3786697 ultralytics.nn.modules.head.Detect [nc=19, [192, 384, 576]]
Summary : 295 layers, 25867321 parameters, 25867305 gradients.

rate of 0.000435, along with a momentum of 0.9. The training
phase consisted of 60 epochs, with batches of size 20, which
enhanced the overall resilience of the model.

After presenting a thorough clarification of the fundamental
components of our methodology, our attention now shifts
towards the results yielded by our endeavors. In the following
sections, we shall now proceed to unveil the outcomes derived
from the implementation of this particular methodology. The
empirical evidence presented not only serves to confirm the
strength and reliability of our methodology, but also provides
valuable insights into the practical implications of our re-
search in real-world scenarios. By conducting a meticulous
examination and subsequent interpretation, we aim to elucidate
the profound implications of these discoveries, effectively
establishing a connection between theoretical knowledge and
its real-world implementation.

B. Results

A distinctive feature of our research is the smooth inte-
gration of both unprocessed and meticulously enhanced data
throughout the training stage of our YOLOv8 model. The com-
bination of traditional imaging methods with augmented data
has transformed the sector, presenting thrilling opportunities
for enhanced precision and efficiency, ultimately resulting in
notable progress in landmark detection. Our algorithm cor-
rectly recognized 19 anatomical landmarks on lateral cephalo-
metric radiographs, proving its efficiency.

In order to assess the system’s performance, we employed
the Successful Detection Rate (SDR) score, a vital metric for
quantifying its level of success. The SDR metric quantifies the
accuracy of predicted landmarks by measuring the percentage
of these landmarks that fall within a predetermined threshold
distance from the ground truth.

Our system demonstrated exceptional performance in terms
of average Successful Detection Rate (SDR) scores, operating
within the specified range of 2 mm, 2.5 mm, and 3 mm. In
the test set, the recorded scores were 86.31, 87.69, and 90.84,
respectively. The findings show that the system’s performance
is consistently maintained throughout various settings, demon-
strating its reliability and efficacy.

Through a rigorous examination of the data, a compre-
hensive analysis has unveiled captivating patterns that warrant
further investigation. The ‘S’ point, scientifically referred to
as Sella, the ‘Po’ point referring to the Pogonion, ‘Gn’
point and othres, has garnered significant attention due to
the outstanding performance the model in prediction them in
the threshold of 2mm.For other points, such as the lower lip,
the precision of the model experienced a remarkable increase
between the different thresholds, reaching a flawless 100.00
Successful Detection Rate within the specified thresholds of
2.5 mm and 3 mm, respectively. The Porion, A-point, and
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Gonion point on the hand, have presented significant obstacles,
according to the findings. The detection of these landmarks in
lateral cephalometric radiographs has proven to be remarkably
elusive, highlighting the complicated process of their identifi-
cation (see Fig. 4 to 8).

Fig. 4. Normalized confusion matrix for 2mm SDR.

Fig. 5. Normalized confusion matrix for 2.5mm SDR.

To gain a comprehensive grasp of our findings and enhance
our expertise, we did a meticulous study by meticulously com-
paring our results with those of previous studies that used the
same dataset and followed the same data splitting techniques.
The inclusion of a comparative analysis in our research has
proven to be highly informative, as it has provided us with
valuable context that allows us to assess the significance of our
findings in relation to the existing body of knowledge (Table
II, and Fig. 9).

Fig. 6. Normalized confusion matrix for 3mm SDR.

TABLE II. COMPARISON OF RESULTS

2mm 2.5mm 3mm
Ibragimov et al.[25] 62,74 70,47 76,53
Lindner et al. [26] 66,11 72,00 77,63
Arik et al.[19] 67,68 74,16 79,11
Qian et al. [27] 72,40 76,15 79,65
Oh et al. [28] 75,90 83,40 89,30
CephaX [29] 74,58 83,40 89,30
Our Model 86,31 87,69 90,84

After a thorough presentation of our findings and a meticu-
lous examination of existing literature, our attention now turns
towards a deeper exploration and analysis. In the forthcoming
section, we embark on a more profound exploration of the
complexities inherent in our discoveries. The primary objective
of this discussion chapter is to provide a comprehensive
context for our findings within the wider realm of established
knowledge, elucidating the intricacies and ramifications of our
research outcomes.

C. Discussion

The progressive assimilation of deep learning-driven ar-
tificial intelligence (AI) algorithms in the realm of medical
image analysis has established a paradigm-shifting domain,
particularly within the discipline of orthodontics. At the core
of this metamorphosis lie cephalometric images, which serve
as a crucial diagnostic instrument in assessing the complex
interconnections among the mandible, maxilla, dentoalveolar
structures, and in identifying dental and skeletal irregularities.
The indisputable significance of cephalometric analysis in the
field of orthodontics cannot be overstated. Nevertheless, it is
imperative to acknowledge that this particular procedure is a
complex and laborious undertaking, as its results are prone to
fluctuations due to inherent variances in individual anatomical
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Fig. 7. Predicted batch sample.

Fig. 8. Loss function.

structures.

The potential impact of AI algorithms in this particular con-
text should not be underestimated. Numerous studies present
in current scholarly literature provide substantial evidence
supporting the effectiveness of diverse artificial intelligence
(AI) techniques in facilitating and optimizing cephalometric
analysis. The present study serves to augment the expanding
reservoir of knowledge in this field. The YOLOv8 model
exhibited varying levels of performance within the specified
range of dimensions, specifically 2 mm, 2.5 mm, and 3 mm.
Notably, the average SDR scores achieved were 86.31, 87.69,
and 90.84, respectively. These results underscore the model’s
promising capabilities and aptitude in the given context.

Yet, a dive into literature and our observations indicate
challenges in the automated detection of certain cephalometric

landmarks. Specifically, points like A point, Go, Pg’, and Or
have traditionally posed challenges, often recording higher
error rates or comparatively lower SDR scores. The Soft tissue
pogonion point , as alluded to in [28], further exemplifies this
challenge.

Notably, the A-point position being susceptible to varia-
tions based on head positioning, often complicates its precise
tracing. This vulnerability of the A-point, corroborated by prior
studies, underscores it as a landmark frequently marred by
identification errors [5].

Notwithstanding the valuable insights provided by our
research, it is imperative to duly recognize and address the
limitations associated with our study. The images utilized in
this study were obtained exclusively from a single source,
ensuring consistency in terms of exposure parameters.

Furthermore, the labeling of these images was performed
by an orthodontist, thereby ensuring accuracy and expertise in
the categorization process. Moreover, it should be noted that
the lack of external dataset validation and the restricted range
of cephalometric landmarks examined could potentially impact
the applicability of our results.

The story does not culminate at this juncture, as there exists
an additional salient aspect necessitating a comprehensive
examination. In the realm of orthodontics, the soft tissue
paradigm [30] has ushered in a new era of comprehensive
analysis, where the influence of facial soft tissue is taken into
account in various jaw and tooth movements. Cephalometric
studies encompass a range of soft tissue parameters, including
but not limited to facial convexity, nasolabial angle, the po-
sitioning of the upper and lower lips, the mentolabial sulcus,
as well as the positioning of the soft tissue chin and lower
anterior face height [2].
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Fig. 9. Comparison of results.

The aforementioned characteristics are crucial in the field
of orthodontics for making well-informed decisions on whether
to pursue extraction or non-extraction treatment [31]. They
play a crucial role in determining the degree of anterior teeth
retraction, assessing growth changes, and evaluating surgical
movements of the maxilla and mandible. In a recent investiga-
tion, it has come to light that the currently accessible datasets
for soft tissue cephalometric analyses suffer from a notable
limitation. These datasets only provide a small number of four
soft tissue landmarks, making them insufficient for undertaking
thorough analysis of soft tissue structures.

Soft tissue cephalometric analyses play a crucial role in
various fields, including orthodontics, plastic surgery, and
facial reconstruction. These analyses involve the examination
and measurement of soft tissue landmarks to assess facial
proportions, symmetry, and other relevant parameters. How-
ever, the limited number of soft tissue landmarks available
in publicly accessible datasets severely hampers the accuracy
and comprehensiveness of such analyses. The scarcity of soft
tissue landmarks in these datasets poses a significant challenge
for Furthermore, it is noteworthy that the existing datasets
lack crucial occlusal landmarks, which play a pivotal role
in the establishment of the occlusal plane. This plane holds
significant implications in orthodontic diagnosis and treatment
planning, as it has the potential to undergo alterations through-
out the course of treatment. Consequently, a pressing demand
arises for a novel dataset focused on cephalometric landmark
detection. This dataset would efficiently address the current
constraints and assist academics in developing sophisticated
algorithms that might greatly improve cephalometric decision-
making processes.

It is also worth noting that, Cephalometric analysis stands
as a cornerstone in both orthodontics and orthopedics, rely-
ing on accurately identifying cephalometric landmarks. These
landmarks are crucial reference points for a variety of measures
and evaluations essential for diagnostic processes [32]. Steiner
analysis and Tweed analysis are approaches that use several
cephalometric landmarks to assess facial proportions, jaw con-
nections, and dental inclinations. Dr. Tweed’s research focused
on the prognostic significance of landmark configurations [33].

Cephalometric study is useful not only for assessing dental
parameters but also for evaluating upper airway dimensions
and potential blockages. Precise recognition of landmarks is
essential for assessing parameters like nasopharyngeal airway
(NPA) depth and width, soft tissue thickness at various airway
levels, and the relationship between the hyoid bone and the
mandible, all of which impact airway openness and diagnostic
precision.

VI. CONCLUSION

The integration of deep learning and artificial intelligence
(AI) algorithms in medical image analysis, particularly in or-
thodontics, offers a promising approach to improve diagnostic
precision and operational efficiency. The study examining the
application of YOLOv8 for cephalometric landmark identifi-
cation has strengthened the potential of these technical devel-
opments. The algorithm exhibited notable levels of accuracy
within certain thresholds. However, it still faces persistent
challenges, particularly in consistently detecting specific land-
marks. Moreover, the variations in experimental procedures
and inherent constraints of the study emphasize the need for
wider and more varied testing environments.As the interaction
between artificial intelligence (AI) and orthodontics becomes
increasingly prominent, it is crucial for the technology and
clinical sectors to work together to improve the effectiveness
and usefulness of these technologies. Research such as ours is
crucial in shaping the future of orthodontic diagnostics, which
holds the potential for a harmonious integration of human
expertise and technical proficiency.
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