
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 15, No. 2, 2024

Optimizing Bandwidth Reservation Decision Time in
Vehicular Networks using Batched LSTM

Abdullah Al-khatib1, Klaus Moessner2, Holger Timinger3
Institute for Data and Process Science, Landshut University of Applied Sciences, Germany1,3

Professorship for Communications Engineering, Technical University Chemnitz, Germany2

Abstract—Time-sensitive and safety-critical networked vehic-
ular applications, such as autonomous driving, require determin-
istic guaranteed resources. This is achieved through advanced in-
dividual bandwidth reservations. The efficient timing of a vehicle
decision to place a cost-efficient reservation request is crucial,
as vehicles typically lack sufficient information about future
bandwidth resource availability and costs. Predicting bandwidth
costs often using time-series machine learning models like Long
Short-Term Memory (LSTM). However, standard LSTM models
typically require longer durations of multiple input data sets to
achieve high accuracy. In certain scenarios, quick decisions must
be made, even if the vehicle means sacrificing some accuracy.
We propose a batched LSTM model to assist vehicles in placing
bandwidth reservation requests within a limited data for an
upcoming driving path. The model divides data during training
to enhance computational efficiency and model performance.
We validated our model using historical Amazon price data,
providing a real-world scenario for experiment. The results
demonstrate that the batched LSTM model not only achieves
higher accuracy within a short input data duration but also
significantly reduces bandwidth costs by up to 27% compared
to traditional time-series machine learning models.

Keywords—Networked vehicular application; time-sensitive net-
working; network reservation; batched LSTM

I. INTRODUCTION

In recent years, significant efforts have been made by
academia and industry to leverage powerful onboard com-
puting resources for applications such as self-driving [1],
[2]. These applications are typically computation-intensive,
safety-critical, and time-sensitive, requiring immediate action
and reaction to ensure safety. However, the limited onboard
computing resources of a single vehicle may not be sufficient
to handle the demands of these applications. To address this,
application data can be offloaded to cloud servers or edge cloud
servers via 5G Vehicle-to-Infrastructure (V2I) connections [3],
[4]. A prominent challenge is the execution of computation-
intensive tasks within strict time constraints, often with a
maximum latency threshold of 100 ms ∼ 1s [5].

To ensure the essential network resource requirements (i.e.,
bandwidth) between vehicles and fog/edge networks for safety,
a reservation approach is employed. This approach guarantees
timely access to scarce bandwidth resources. The conventional
approach, network-side reservation [6], [7], [8], involves the
MNO allocating bandwidth for various Quality of Service
(QoS) classes. However, this approach provides probabilistic
rather than deterministic guarantees for individual vehicles ac-
cessing network bandwidth. Vehicle-side and individual band-
width reservation has proven to be a more efficient solution,
where vehicles reserve the necessary resources in advance and

make reservations based on their specific requirements and
resource costs rather than relying on the MNO to allocate
resources on their behalf [9], [10], [11], [12], [13]. Another
focus of this approach is the economical aspect, which is being
minimized by the expenditure for guaranteed access to the
network upon reservation.

From the viewpoint of business, MNOs have various tradi-
tional pricing options for allocating resources. These involve
network service reservation (i.e., subscription) [14] and the
Pay-As-You-Go (PAYG) option [15]. However, these pricing
strategies may not always effectively manage peak-time and
real-time network conditions while ensuring sufficient QoS.
Recently, dynamic pricing has emerged as a promising solution
for resource management in edge computing [16], [17]. This
method dynamically adjusts prices based on network condi-
tions, aiding in managing congestion and ensuring QoS. How-
ever, many individual reservation methods overlook dynamic
pricing set by MNOs [9], [10], [11], leading to overpriced
reservations or insufficient resources.

As a result, vehicles face various challenges, such as the
timing of place reservation requests, leading to higher costs or
missed opportunities for cost savings in this dynamic environ-
ment. Companies like Amazon Web Services (AWS), MTN,
China Telecom, and Uninor utilize this method, adjusting
prices in response to supply and demand [18], [19], [20]. In
a prior study [12], we introduced a concept called a smart
request, which is a strategically placed reservation request
that allows vehicles to optimize bandwidth costs and mitigate
potential risks associated with dynamic pricing and resource
unavailability from MNOs. We employed machine learning
techniques, specifically LSTM and Transformers, which have
proven effective in temporal prediction tasks. However, the
conventional LSTM model required a long time interval of
input data to achieve high precision, which is not always
feasible in some scenarios where vehicles often need to make
quick decisions, even if it means sacrificing some accuracy.

To address this, we proposed the batched LSTM model.
This model divides data into batches during the training
process, which can help improve computational efficiency
and model performance. It optimizes the decision time for
bandwidth reservation requests within a multiple time interval
for predicting bandwidth costs for an upcoming driving path.
The major contributions of our article can be summarized as
follows:

• We formulate the optimization problem for bandwidth
reservation with the primary objective of minimizing
the comprehensive cost over a specified time interval.

www.ijacsa.thesai.org 963 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 15, No. 2, 2024

• We propose a batched LSTM model, which is utilized
to optimize decision time by efficiently handling mul-
tiple requests concurrently within a short time.

• Through simulations based on the historical dataset
of Amazon [18], we show that the proposed model
achieves higher accuracy for a given time interval of
data and also reduces bandwidth costs compared to
traditional models.

The remaining sections of the paper have been arranged
as follows: Section II reviews relevant work on cost-effective
resource reservation. Section III covers the system model.
Section IV provides a formulation for the bandwidth reser-
vation problem. In Section V, we propose to optimize band-
width reservation decision time and the implementation of the
batched LSTM model in this work. In Section VI, we carry out
a comparison of the performance of the proposed model with
state-of-the-art methods. Section VII concludes the article.

II. RELATED WORK

Many studies have explored problems in resource reserva-
tion, focusing on network-side resource reservation in mobile
networks[6], [7]. However, few studies have considered the
economic implications of vehicle-side reservations with a
focus on minimizing resource consumer expenditure. This is
becoming a growing area of interest in edge computing [9],
[10], [11], [12], [13].

Generally, most studies related to reservation requests
mainly put emphasis on the onsite competition [21],[22] or
immediate request mode. The main difference between those
two types of requests is that in competition requests, users
compete for the resource through various game theoretic ways,
such as auctions, Stackelberg game, etc. [21], [23], [22].
This results in only a limited number of winners acquiring
the resources, leading to a risk of failure for some users
and a violation of QoS. Furthermore, onsite requests fre-
quently exhibit volatile pricing and inherent inequity due to
the stochastic nature of resource availability and demand. In
contrast, immediate requests, as discussed in [10], the authors
developed an approach based on meta-learning to assist in
reserving resources for computing with the goal of minimizing
the cost of using edge services. Zang et al. proposed a smart
online reservation framework to minimize the cost of reserving
resources for an individual user [9] or multiple users [11].
Based upon their settings, the approaches discussed above for
reservations mainly operate on an immediate request basis.
As a result of limited resources, the corresponding vehicles
need to carry out the schedule reservation well in advance
in order to ensure they are able to acquire the necessary
resources on time. As a consequence, the immediate requests
entail high costs and low guarantees. Planning reservations
efficiently is a challenge as users lack knowledge about cost
trends and available resources, making it difficult to ensure
cost-effectiveness.

Motivated by challenges incurred by competition and im-
mediate requests, an advanced reservation solution [12] has
been introduced. This solution enables the advanced reserva-
tion of mobility locations at specific time intervals, achieving
commendable cost-effectiveness and time efficiency. However,
this study lacks an in-depth discussion of the challenges

Formatvorlage des Untertitelmasters durch klicken bearbeiten
...

Fog

….

𝑫𝑷𝒉

Timeline

𝒗𝒉

Fog…

𝑷𝑻𝟎−𝒁

𝑷𝑻𝟎−𝒁+𝟏

𝑷𝑻𝟎−𝟏

…

𝑿𝒁

𝑩𝑺𝟏 𝑩𝑺𝟐 𝑩𝑺𝒊

𝝉𝒌 𝝉𝒘𝝉𝟎 𝝉𝑫

z

𝑺𝟎
𝑺𝑵

... 𝑻𝟎

Fig. 1. System model.

and complexities associated with making reservation decisions
within short time intervals. To enhance the reservation decision
time, we leverage batched LSTM, which is often more effective
for quick decisions with limited data than standard LSTM due
to its ability to process multiple input sequences concurrently.

III. SYSTEM MODEL AND FORMULATION PROBLEM

A. System Model

In this paper, the urban vehicular network is composed of
vehicles and Base Stations (BSs), which include Macro Base
Stations (MBSs) and Road Side Units (RSUs). The driving
path (DP) is partitioned into road segments (RS), each BS
associated with a single MNO. This MNO establishes wireless
connections between edge routers and participating vehicles
within the core network. In each segment of the road, a BS is
strategically located (Fig. 1).

In order to meet the strict latency demands of vehicular
applications, a Fog/Edge server node is intricately integrated
into the infrastructure of each BS. At the initial time τ0,
vehicle vh (h = 1, 2, ..., V) initiates a reservation request
to the MNO for a specific RS along the DPh. This request
provides detailed information about the bandwidth time period
∆th required to successfully traverse the intended DPh.

The specified time duration, denoted as ∆th, is carefully
divided into reservation time intervals represented by the range
[τk, τw]. Each of these intervals corresponds to a specific RSi,
which is entirely covered by a BSi and the ith road segment.
τk denotes the entry time into the designated RSi, while τw
marks the exit time from that specific RSi. The determination
of these intervals depends on the length of DPh and the speed
of the vehicle vh, both of which are computed based on data
obtained from the navigation system.

Vehicle vh divides its desired departure interval [T0, TR]
into |St| small intervals, each representing a discrete time step.
For each time step, vehicle vh requests the cost associated
with its designated route DPh. The resulting list of costs,
pT0 ,..., pTR

, forms a session (S0). This process is repeated
at regular intervals of ∆tsv , up to a maximum of N times,
resulting in a sequence of pricing sessions (S0, S1,..., SN), as
illustrated in Fig. 1. The session validity time (∆tsv) is the
duration for which the pricing sessions remain valid. This is a
predetermined parameter set by the MNO.

www.ijacsa.thesai.org 964 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 15, No. 2, 2024

B. Formulation Problem

The optimization problem for bandwidth reservation aims
to minimize the comprehensive cost associated with reserving
bandwidth over the time interval [τk, τw] for all RSi in Dh. In
this approach, the RSi is transformed into discrete cost areas
using a function φ. Each cost area, denoted as A, is associated
with a time interval [τk, τw].

φ : R2
+ → RN×R

+ : (τk, τw) 7→ A (1)

where R = TR − T0 and A is a matrix holding the
information about the prices:

A =

 p11 · · · p1R

...
. . .

...
pN1 · · · pNR

 (2)

This matrix has SN rows (representing sessions) and TR

columns (representing the desired time departure [T0, TR]),
where pn,r denotes the price corresponding to the n-th session
and the r-th desired departure time. The θ function is utilized
to establish a relationship between a designated area A and its
comprehensive reservation cost:

θ : RN×R
+ → R+ (3)

Additionally, the function ω = θ ◦ φ , where θ and φ are
distinct functions, is used to map:

ω : R2
+ → R+ (4)

Ultimately, the objective function J is formulated as fol-
lows:

J =
∑
τk,τw

ω(τk, τw) (5)

The sum operates over all pairs (τk, τw) of start and end
times. The function ω assigns these time intervals to an overall
reservation cost based on the previously defined composite
function, incorporating both φ and θ. The objective is to
minimize this overarching objective function.

min
τk,τw

J(τk, τw) (6)

The implementation of an optimization technique requires
a sophisticated prediction model for accurate decision-making.
The process begins with a proficient time-series model, ensur-
ing high prediction accuracy. This forms the basis for effec-
tively applying the optimization technique, using the insights
from the prediction model to guide decisions. The model uses
historical average prices, XZ , from the interval [T0−Z, T0−1]
(as per Eq. 7) to predict the price at time t. Here, Z is
the number of time steps before the first price request (τD).
Optimal Z values can be found by searching for a δt that
yields satisfactory accuracy. Hence, the prediction model can
be expressed as:

(x̂Z+1 = f
(
XZ ; θ

)
) (7)

where,

XZ = [PT0−Z , PT0−Z+1, · · · PT0−1]

f is the model with trainable parameters θ, which re-
turns the expected future price, P̂T0

, for reserving in the
following t time steps. The expected price P̂T0

is then
pushed into XZ , forming a constant size buffer as follows:
XZ =

[
PT0−Z+1 · · · P̂T0

]
. Subsequently, the value P̂T0+1 is

obtained by repeating the process of predicting and updating
the buffer. This process continues until the expected future
price P̂TR

is obtained, as shown in Fig. 2. The method for
finding the minimum expected price is as follows:

(p̃ = min(P̂T0
, P̂T0+1, · · · P̂TR

)) (8)

In order to calculate the optimal reservation time, we
introduce the concept of a decision threshold function, denoted
as DE. This function uses the output (the expected minimum
future price) to advise a vehicle on its reservation strategy.
Specifically, it determines whether the vehicle should reserve at
the minimum price in the current session (reserve) or consider
postponing the reservation by requesting a new session (wait).
The decision action is computed using Eq. (9):

DE =

{
reserve : p̃Sn

≤ p̃− ε(n)

wait : otherwise
(9)

where,

ε(n) =
c

n
, n ∈ [1, N]

In our model, N represents the maximum number of
sessions that can be requested. The hyper-parameter c should
be tuned to maximize benefits. The expected minimum future
price, denoted as p̃, is derived from Eq. (8). Our model
anticipates session prices for the time interval [T0, TR]. The
term p̃Sn represents the lowest price at the current requested
session, which includes prices p̃Sn

T0
, p̃Sn

T0+1, . . . , p̃
Sn

TR
in the time

interval [T0, TR]. This is defined in Equation (10):

(p̃Sn
= min(p̃Sn

T0
, p̃Sn

T0+1, · · · p̃
Sn

TR
)) (10)

The proposed model suggests the optimal reservation time
for the vehicle by returning the time associated with the lowest
price. The steps of this algorithm are detailed in Algorithm
1. In the context of Formula 9, determining the optimal risk
level is of substantial importance. This is because the proposed
strategy aims to minimize overall costs while reducing the risk
of rejecting valid sessions. The goal is to find an optimal
balance that maximizes efficiency and minimizes negative
outcomes. This strategy is based on the concept that the
risk is lower at the beginning, but as the maximum number
of sessions is approached, the risk begins to increase. The

www.ijacsa.thesai.org 965 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 15, No. 2, 2024

Formatvorlage des Untertitelmasters durch klicken bearbeiten

…

…

…

… …

… …

𝑷𝑻𝟎

𝑷𝑻𝟎

𝑷𝑻𝟎

𝑷𝑻𝑹

𝑷𝑻𝑹

𝑷𝑻𝑹

…S0

S1

𝑇0 𝑇𝑅

𝑇𝑅

Expected Prices

𝒑 = 𝒎𝒊𝒏(𝑷𝑻𝟎 ,
𝑷𝑻𝟎+𝟏, ⋯

𝑷𝑻𝑹)

History of Prices

𝑷𝑻𝟎−𝒁 …

𝑿𝒁

𝑷𝑻𝟎
𝑷𝑻𝑹

𝑷𝑻𝟎+𝟏 … 𝑷𝑻𝟎−𝒁+𝟏 𝑷𝑻𝟎−𝟏

𝒑𝑺𝒏 =

𝒎𝒊𝒏(𝒑𝑻𝟎
𝑺𝒏 , 𝒑𝑻𝟎+𝟏

𝑺𝒏 , ⋯ 𝒑𝑻𝑹
𝑺𝒏)

𝑆𝑁

𝑇0

Fog

𝒗𝒉

Fog
𝑩𝑺𝟏 𝑩𝑺𝒊

Fig. 2. Prediction model bandwidth reservation request timing.

decision function uses ε(n) because the model predicts the
expected price of reserving in the next time step δt, not the
minimum price. Statistically, if the vehicle waits, it will receive
a price that is at least equal to the expected price. However,
there is a high chance of getting a lower price, and the amount
of reduction depends on the variance in the prices. Therefore,
the constant c should be proportional to the variance in the
prices of DPh. As the value of N is approached, ε(n) should
decrease. Here, N represents the maximum number of sessions
that can be requested per time step δt, which is determined
by the MNO. The value of ε(n) also depends on the time
the vehicle started searching for the minimum price prior to
takeoff.

In our model, the constant c is crucial. Its optimal values
are determined empirically, balancing cost savings and risk
reduction. The choice of c also prevents failing to reserve
resources due to reaching the maximum number of sessions.
Further investigation of these values is conducted in our
experiments.

IV. BANDWIDTH RESERVATION DECISION TIME

First, a brief overview of the approach is provided. Follow-
ing that, appropriate time series prediction models are selected
and applied. This enables vehicles to reserve bandwidth on a
specific future path at a designated time, thereby minimizing
costs. Subsequently, the prediction model, which utilizes the
batched LSTM algorithm, is explained in detail.

A. Overview on the Proposed Approach

From the vehicle’s perspective, the challenge lies in ef-
ficiently timing decisions for bandwidth reservation requests
due to insufficient future price prediction data. The proposed
approach involves vehicle vh dividing its desired departure
interval [T0, TR] into Q small δt intervals. It then requests
the cost for each area A of DPh at each future time.

The proposed method uses a time-series deep neural net-
work to predict future costs and continues to request pricing
sessions until the minimum price surpasses a dynamic thresh-
old. This threshold, determined by a parameter c, adjusts with
each new session to balance risk. The prediction model, trained
on models like LSTM and Transformers, leverages recurrent
load patterns along DPh. Despite the high computational cost
of training, it’s infrequent and can be offloaded to an external

server for efficient onboard cost prediction. Retraining is only
necessary if major road events significantly alter local traffic.

B. Machine Learning Model

In this section, the details of the primary families of
candidate time-series deep neural network models (LSTM,
batched LSTM, and Mix) are explored to assess their suitability
for the prediction task.

1) LSTM: The LSTM model is the classical LSTM archi-
tecture without batches. LSTM is an artificial recurrent neural
network (RNN) architecture extensively used for sequence
modeling and prediction tasks. LSTM networks excel at han-
dling problems where inputs possess long-term dependencies
or temporal relationships. Traditional RNNs are susceptible to
the ”vanishing gradient” problem, which impedes their ability
to capture extended dependencies in sequences. LSTM net-
works tackle this challenge by introducing memory cells and
gating mechanisms that control the information flow within the
network. The key components of an LSTM network are:

• Cell State: It serves as the memory of the network
and is responsible for capturing long-term dependen-
cies. The cell state C can selectively forget or store
information using gate units.

• Forget Gate: It decides which information in the cell
state should be forgotten or discarded. In the time step
t, the decision is made using a sigmoid function σ of
the current input vector xt and the current hidden state
ht. The output, called ft, is a weight value between
0 and 1: 0 means ”let nothing through”, 1 means ”let
everything through”.

• Input Gate: It determines which information from the
input should be stored in the cell state. In the time
step t, using always a sigmoid function σ, it is decided
which values will be updated (it). A tahn layer creates
a vector of new candidate values C̃t and, combing it
with C̃t, an update Ct is created.

• Output Gate: It controls the output of the LSTM unit
and determines what information should be output
based on the current input and the previous cell state.
In time step t, a sigmoid layer decides what parts of
the cell state will go to output. This part is called ot.
The output ht is obtained by multiplying ot with the
cell state Ct transformed by the tanh function. The
formulas outlined within it are:

ft = σ(Wf (ht−1, xt) + bf) (11)

it = σ(Wi(ht−1, xt) + bi) (12)

C̃t = tanh(WC(ht−1, xt) + bC) (13)

Ct = ftCt + itC̃t (14)

ot = σ(Wo(ht−1, xt) + bo) (15)

ht = ottanh(Ct) (16)

www.ijacsa.thesai.org 966 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 15, No. 2, 2024

Formatvorlage des Untertitelmasters durch klicken bearbeiten

BATCH 1 BATCH 2

…

BATCH 6

Keep

inner

state

𝑷𝐭−𝟏 𝑷𝒕
1

𝑷𝒕−𝒌+𝟐 𝑷𝒕−𝒌+𝟑
1

𝑷𝒕−𝒌 𝑷𝒕−𝒌+𝟏
1

Keep

inner

state

Fig. 3. Structure of batch step

Formatvorlage des Untertitelmasters
durch klicken bearbeiten

Reset
initial
States

Batch 1 Batch 2 Batch 6

LSTM LSTM LSTM

LSTM LSTM LSTM

Epoch

x+1

Reset

initial

States

Batch 1 Batch 2 Batch 6

Epoch x

…

…

𝑊𝑥+1,1 𝑊𝑥+1,2 𝑊𝑥+1,6

𝑊𝑥,1 𝑊𝑥,2 𝑊𝑥,6

Fig. 4. The structure of a stacked batched LSTM network.

2) Batched LSTM: Batched LSTM is an LSTM model with
batches. In LSTM networks, the data is typically processed
in batches during training and inference. Let’s discuss LSTM
with different batches:

• Batch Processing: In LSTM, batch processing refers
to dividing the input data into multiple batches. Each
batch consists of a subset of the training or test dataset.
Batch processing offers several benefits, including im-
proved computational efficiency, parallel processing,
and better generalization.

• Variable Batch Sizes: LSTM networks can handle
variable batch sizes. It means that each batch can have
a different number of sequences or time steps. This
flexibility allows for processing sequences of varying
lengths within the same batch, which is particularly
useful when working with time series data of different
lengths.

• Training with Different Batch Sizes: During training,
LSTM networks are typically trained on multiple
batches, where each batch contains a fixed number of
sequences or time steps. The batch size can be chosen
based on factors such as computational resources,
memory constraints, and the specific characteristics of
the dataset. Common batch sizes range from a few
samples to several hundreds or even thousands.

• Impact on Training: The choice of batch size can
influence the training process. Smaller batch sizes
provide more frequent weight updates, which can lead
to faster convergence but may result in noisy gradients
due to a smaller sample size. Larger batch sizes, on
the other hand, offer better gradient estimation but

may slow down the training process and require more
memory.

• Testing and Inference with Batches: During testing or
inference, LSTM networks can process input data in
batches as well. This allows for efficient evaluation of
multiple samples simultaneously. The batch size for
testing can be different from the batch size used during
training.

• Handling Remaining Data: When the total number of
samples is not divisible by the chosen batch size, there
may be a smaller ”remainder” batch at the end of
each epoch. Some approaches include discarding the
remaining data, padding it to match the batch size,
or using dynamic batching techniques that can handle
variable batch sizes more gracefully.

Overall, LSTM networks can handle different batch sizes,
allowing for efficient processing of time series data in parallel.
The choice of batch size depends on various factors, such as
computational resources, memory constraints, and the charac-
teristics of the dataset. Careful consideration should be given
to selecting an appropriate batch size to balance computational
efficiency and model performance. Two types of LSTM with
batches exist:

• Stateless batches LSTM: In a stateless LSTM with
batches, the internal states of the LSTM cells are reset
at the beginning of each batch. This means that the
LSTM does not retain any memory of the previous
batch when processing the next batch. The LSTM
treats each batch as an independent entity.

• Stateful LSTM with batches: In a stateful LSTM with
batches, the internal states of the LSTM cells are
preserved between batches. The LSTM maintains the
hidden states and memory states from the previous
batch and uses them as the initial states for processing
the next batch. The LSTM carries information from
one batch to another within a sequence.

Stateless LSTM with batches is suitable for independent
sequences, while stateful LSTM with batches is useful for cap-
turing sequential dependencies and handling variable-length
sequences within a batch. For this reason, batched LSTM is a
stateful model.

The structure of LSTM with 6 batches is similar to that
of LSTM, but the parts of the batches are described in Fig.
3 and 4. While in LSTM in each epoch, only 1 set W is
obtained, in batched LSTM in each epoch, 6 sets W are
obtained. During each epoch, both LSTM models update their
internal parameters (weights and biases) based on the training
data and the computed gradients. This parameter update aims
to minimize the difference between the model’s predictions and
the actual targets, effectively improving the model’s ability to
capture patterns and make accurate predictions. The relation-
ship between different epochs is that each epoch builds upon
the progress made by the previous epochs. As the training
progresses through multiple epochs, the model’s performance
typically improves, and the learned representations become
more refined. However, it’s important to note that the rela-
tionship between epochs is not strictly linear or guaranteed to
continually improve.

www.ijacsa.thesai.org 967 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 15, No. 2, 2024

Formatvorlage des Untertitelmasters durch klicken bearbeiten

LSTM model

Transformers model

minimization 𝜶 output

Fig. 5. Structure of mix model.

3) Mixed model: The mixed model, where transformers
[24] and LSTMs are run separately, is considered. The key
components of a mixed model are:

• Transformer Model: Start by training a transformer
model on the time series data. The transformer model
captures global dependencies and long-range patterns
effectively by utilizing self-attention mechanisms.

• LSTM Model: Train a separate LSTM model on the
same time series data. The LSTM model focuses on
capturing local dependencies and temporal patterns
within the time series.

• Prediction Combination: Once both the transformer
and LSTM models are trained, combine their predic-
tions to obtain the final output. This combination is a
weighted average, where the weights are calculated to
minimize the MSE of the prediction.

Overall, this mixed model combining transformer and
LSTM models separately provides a way to leverage the
strengths of each architecture and capture both global and
local dependencies in the time series. However, it comes with
increased complexity and potential challenges in integrating
the two models effectively. The structure of the Mix model is
described in Fig. 5.

C. Prediction Model Algorithm with Batched LSTM

The algorithm presented is a predictive model that employs
a batched LSTM technique to forecast future prices within
a time series. Its main goal is to estimate the upcoming
price (P̂T0+1), determine the minimum expected price (p̃) over
a specified time interval, and make a decision based on a
predefined criterion. To initiate the process, the algorithm takes
into account the average prices (XZ) within a specified time
range, namely [T0−Z, T0− 1]. It requires certain parameters,
Z, and operates on a model with trainable parameters (θ).
The algorithm unfolds in multiple steps. Step 1 represents
the initialization and the model training. The algorithm com-
mences by initializing the sequence of average prices (XZ)
and configuring a batched LSTM model with parameters (θ).
A crucial step involves defining a batch size, and subsequently,
XZ is reshaped into batches for streamlined processing. The
training of the model takes place within a loop, persisting
until the successful prediction of P̂T0+1. This training iteration
involves updating the LSTM with batches, and the trainable
parameters (θ) undergo adjustments as dictated by the model’s
training procedure. Simultaneously, XZ is continually updated
to incorporate the newly predicted values. The steps from 11
to 18 represent the decision making. Moving forward, the al-
gorithm proceeds to calculate the minimum expected price (p̃)
over the predefined time interval. The decision-making process
ensues, determining whether to reserve or wait. This decision

Algorithm 1 Prediction Model Algorithm with Batched LSTM
Input:
• Average prices, XZ , between time interval [T0 −

Z, T0 − 1]
• Parameters Z
• Model with trainable parameters θ

Output:
• Expected future price, P̂T0+1, of reserving in the

following t
• Minimum expected price, p̃, for the time interval

[T0, TR]
• Time associated with the lowest price

1: procedure PREDICTION MODEL BATCHED
LSTM(XZ , Z, θ)

2: XZ ← [PT0−Z , PT0−Z+1, ..., PT0−1]
3: Initialize batched LSTM model with parameters θ
4: batch size← b ▷ Set your desired batch size
5: XZ batches← reshape into batches(XZ , batch size)
6: while P̂T0+1 not obtained do
7: for batch in XZ batches do
8: P̂T0+1 ← LSTM Model(θ, batch)
9: Update θ using the model’s training procedure

10: XZ ← [PT0−Z+2, ..., P̂T0+1]
11: end for
12: end while
13: p̃← min(P̂T0 , P̂T0+1, ..., P̂TR

)
14: if p̃Sn ≤ p̃− ε(n) then
15: DE ← ”reserve”
16: else
17: DE ← ”wait”
18: end if
19: ε(n)← c

n for n ∈ [1, N]

20: p̃Sn
← min(p̃Sn

T0
, p̃Sn

T0+1, ..., p̃
Sn

TR
)

21: Return p̃ and associated time
22: end procedure

hinges on a condition integrating p̃Sn
and a decreasing function

ϵ(n). The culmination of this phase involves the algorithm
providing as output the determined minimum expected price
(p̃) and the corresponding time. Utilizing LSTM for time series
prediction ensures the algorithm’s ability to capture intricate
temporal dependencies. The incorporation of batch processing
in the model training phase enhances computational efficiency.
Decision making involves a dynamic strategy, employing a
threshold (ϵ(n)) and the minimum expected price, guiding the
choice between reserving or waiting.

V. PERFORMANCE EVALUATION

A. Dataset Description

To assess the effectiveness of our methodology, we utilized
a historical dataset of Amazon spot prices, which are subject
to fluctuations influenced by factors such as capacity, demand,
geographic location, and specific instance types [18]. Given
the time-sensitive nature of various applications, vehicles re-
quire both computing instances and communication links, i.e.,
bandwidth. Our assumptions are that the pricing for setting
up computing and communication resources aligns with the
Amazon spot pricing model, as previously referenced in [11],

www.ijacsa.thesai.org 968 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 15, No. 2, 2024

[9]. For this study, we collected pricing data from all available
instances and two specific regions, namely us-west-1b and us-
west-1c. This data was collected from April 17, 2021, to May
2, 2021, for training purposes, and from May 3, 2021, to May
8, 2021, for the testing phase of the model.

B. Experimental Results

In this section, the experimental results of the study are
presented, encompassing model evaluation and metrics, a
comparison of prediction errors among different models, an
analysis of the level of risk, and the performance evaluation of
cost. The study includes four models: LSTM, batched LSTM,
Transformers, and Mix. The experiments were conducted using
the PyTorch framework in Python and trained on an NVIDIA
GeForce RTX 2080 Ti GPU.

1) Model evaluation and metrics: Mean Absolute Per-
centage Error (MAPE), Mean Absolute Error (MAE), and
Root Mean Squared Error (RMSE) are three commonly used
metrics for evaluating the performance of prediction models
and assessing their forecasting accuracy. These metrics pro-
vide valuable insights into the effectiveness and reliability of
the models in capturing the underlying patterns and making
accurate predictions.

Table I presents a comparison of the time consumption
among four models, measured in seconds. Batched LSTM
and Transformer models demonstrate significantly shorter
processing times compared to LSTM and the mix model,
thanks to their ability to leverage parallel processing. It is
noteworthy that the mix model is the most time-consuming,
which is a recognized drawback of this particular approach
due to its hybrid nature. Additionally, the table includes a
comparison of the time taken for a single forward pass among
the three models. Batched LSTM takes advantage of parallel
processing by batching sequences together, resulting in im-
proved performance during a forward pass. This parallelization
allows for more efficient utilization of hardware resources
like GPUs, enabling batched LSTM to achieve faster forward
pass times compared to processing each sequence individually,
as in LSTM. Transformers are known for their exceptional
parallel processing capabilities. By employing self-attention
mechanisms, Transformers can simultaneously process all po-
sitions in the input sequence, enabling parallelization across
different positions. Consequently, Transformers achieve fast
forward pass times, especially for long sequences. Interest-
ingly, Transformers and batched LSTM show similar forward
pass times, which is advantageous for resource-constrained
environments like vehicles, where computational resources are
limited and model training need not be performed onboard.
The mix model is not considered in this comparison due to its
hybrid nature, which makes it challenging to fit into the batch
processing paradigm. As a result, the focus is on analyzing the
performance of models that fully embrace parallel processing
for more efficient and faster computations. In addition, the
parameters settings of models are as shown in Table II.

2) Model prediction error comparison: In this section, the
error analysis provides valuable insights into the strengths and
weaknesses of each model in capturing different aspects of
prediction accuracy. The three error metrics, MAE, MAPE,
and RMSE, play distinct roles in assessing prediction accuracy.

TABLE I. TIME CONSUMPTION OF TRAINING PER EPOCH AND PER
SINGLE FORWARD PASS TIME ON THE AMAZON SPOT PRICING DATASET

Training Time per epoch [s] Time Single Forward-Pass [ms]
LSTM Tranf. Mix B.LSTM LSTM Tranf. B.LSTM
0.034 0.025 0.188 0.025 2.412 1.889 1.886

TABLE II. PARAMETERS SETTINGS

Model Layer Hidden layers Dropout percentage
LSTM 1 100

Transformers 2 10 0.2
Mix model 3 110 0.2

Batched LSTM 1 100

MAE emphasizes the magnitude of errors; MAPE provides a
relative measure of the prediction error as a percentage; and
RMSE takes both the magnitude and direction of errors into
account, giving more weight to larger errors. The choice of
which metric to use depends on the specific context and re-
quirements of the problem at hand. Based on these metrics, the
batched LSTM model emerges as the top performer, achieving
a lower error rate as demonstrated in Fig. 6. However, for a
more comprehensive evaluation, the errors of other models are
compared as well. At epoch 140, the Transformers and Mix
models show similar errors to the LSTM model when consid-
ering MAE and RMSE. On the other hand, taking MAPE into
account, the LSTM model exhibits a smaller error compared
to Transformers and Mix, though still higher than the Batched
model. The lower error rate with MAPE for the LSTM model
can be attributed to its effective handling of outliers, as MAPE
is less influenced by extreme values compared to RMSE and
MAE. Consequently, the LSTM model demonstrates superior
robustness in producing predictions when faced with extreme
data points.

Fig. 7 clearly shows that the accuracy of the model im-
proves with a longer time interval provided as input. The length
of time (in the analyzed case, an hour) that the vehicle has
to determine the input’s duration directly affects the model’s
accuracy, with longer input intervals leading to better perfor-
mance and a lower MAE. Consistently, the LSTM models
outperform the Transformer model. They demonstrate better
performance in capturing temporal dependencies and patterns
in the time series data, consistently yielding lower MAE
values compared to the Transformer model across different
input matrix lengths. This indicates that the LSTM models are
more effective in modeling the sequential nature and capturing
relevant information for accurate predictions.

On the other hand, the Transformer model benefits from
longer sequences, exhibiting a larger reduction in MAE as
the length of the input matrix increases. Although the Trans-
former model has a higher MAE than the LSTM models at
all input lengths, it shows a more significant reduction in
MAE with longer sequences. This suggests that the Trans-
former model can leverage the additional information present
in longer sequences to learn more complex patterns. While
the MAE remains higher than that of the LSTM models,
the relative improvement in performance for the Transformer
model is substantial. Based on these observations, it can be
concluded that the LSTM models consistently outperform the
Transformer model in terms of MAE. The LSTM models’

www.ijacsa.thesai.org 969 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 15, No. 2, 2024

0 20 40 60 80 100 120 140
Epoch

0.25

0.50

0.75

1.00

1.25

1.50

1.75

Va
lid

at
io

n
M

AE

Validation Mean Absolute Error
LSTM
Transformers
Mix
Batched LSTM

(a)

0 20 40 60 80 100 120 140
Epoch

0.5

1.0

1.5

2.0

2.5

3.0

Va
lid

at
io

n
M

AP
E

Validation Mean Absolute Percentage Error
LSTM
Transformers
Mix
Batched LSTM

(b)

0 20 40 60 80 100 120 140
Epoch

0.2

0.4

0.6

0.8

1.0

1.2

Va
lid

at
io

n
RM

SE

Validation Root Mean Square Error
LSTM
Transformers
Mix
Batched LSTM

(c)

Fig. 6. Prediction errors comparison between models through epochs.

3 6 9 12 15
Input interval Lenght

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Te
st

 M
AE

LSTM
Transformers
Mix
Batched LSTM

Fig. 7. Input request price time interval.

ability to model sequential dependencies and capture relevant
information gives them an advantage over the Transformer
model. However, the Transformer model shows promise in
handling longer sequences and exhibits a larger reduction in
MAE, indicating its potential for capturing more complex
patterns and dependencies. In the context of the mix model,
if either the transformer or LSTM model poorly estimates the
true price, the decision threshold step in the bandwidth cost
problem may lead to worse performance of the mix model
compared to both the transformer and LSTM models, even if
it outperforms them in the estimation step.

Finally, the batched LSTM outperforms the standard LSTM
due to its consideration of batches, enabling it to produce more
generalized results. LSTM models trained with batches tend
to exhibit improved generalization performance. By exposing
the model to multiple sequences within each batch, it gains
exposure to a diverse range of patterns and can capture broader
temporal dependencies. This increased variety of examples
enhances the model’s ability to make predictions on unseen
data, resulting in improved generalization and more accurate
forecasts, even with shorter input to the model. As observed

0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
c Value

0.20

0.22

0.24

0.26

0.28

0.30

0.32

0.34

Te
st

 M
AE

LSTM

(a) LSTM

0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
c Value

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

Te
st

 M
AE

Transformers

(b) Transformers

0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
c Value

0.00

0.02

0.04

0.06

0.08

0.10

Te
st

 M
AE

Mix

(c) Mix

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
c Value

0.0025

0.0050

0.0075

0.0100

0.0125

0.0150

0.0175

0.0200

0.0225

Te
st

 M
AE

Batched LSTM

(d) Batched LSTM

Fig. 8. Comparison of risk levels among different models.

in Fig. 7, the vehicle only needs a small number of hours (i.e.,
1-3 hours) as input to the model to achieve better and more
accurate predictions of bandwidth cost. This indicates that
the model’s performance remains consistent even with limited
input, closely resembling real-world scenarios. The advantage
of using a shorter input interval is that the vehicle does not
need to wait for an extended period to find the best price for
bandwidth.

3) Level of risk analysis: The analysis of risk levels among
different models sheds light on their precision and helps
identify the best c values for optimizing prediction accuracy.
When comparing the optimal value of risk achieved by various
models in Fig. 8, the batched LSTM demonstrates the lowest
value of c, indicating higher precision, while Transformers
exhibit the highest value of c. It’s important to note that as
c increases, precision decreases. For instance, when p̃Sn = 1
and p̃ equals 1.1, the algorithm reserves with a c of 0,
whereas a c of 0.2 would prompt the algorithm to wait
wrongly. Consequently, batched LSTM, being the most precise
algorithm, has the lowest MAE associated with the smallest c,
and the change in MAE associated with varying c is minimal.
However, all the best c are very small.

4) Cost performance: In this subsection, a comprehensive
evaluation of the cost performance of the prediction models is
conducted by comparing them with the benchmark immediate
reservation request scheme. Three distinct benchmark scenar-
ios are explored, each characterized by different time intervals
during which the vehicle searches for the most cost-effective
option. As mentioned earlier, the time interval represents the
desired departure time for the vehicle. Furthermore, time steps
are utilized to divide the aforementioned time interval into
smaller segments, such as hours or half-hours.

www.ijacsa.thesai.org 970 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 15, No. 2, 2024

8.1
7.4

8.3
7.4

26.9

0

5

10

15

20

25

30

12:00-16:00

C
o

st
 [

$
]

Day Time intervals

LSTM Transformers

Mix Batched LSTM

Immediate Reservation

(a)

7.4

8.7 8.5

5.8

18.4

0

2

4

6

8

10

12

14

16

18

20

16:00-20:00

C
o

st
 [

$
]

Day Time intervals

LSTM Transformers

Mix Batched LSTM

Immediate Reservation

(b)

Fig. 9. Comparison of cost performance across benchmark with time
intervals [T0 , TR] = 4 hr and time steps δt = 1 hr.

Subsequently, the total cost is calculated by determining
the number of BSs that the vehicle reserves along its driving
path to reach the final destination. The calculation enables an
effective assessment of the performance of prediction models
in comparison to the established benchmark. The analysis
of cost performance highlights the effectiveness of the pro-
posed method in securing reservations at lower prices. Fig.
9 and Fig. 10 illustrate the comparison between the costs of
various approaches and immediate reservations. In all cases,
the prediction methods derived from the different approaches
outperform the immediate reservation scheme in obtaining a
better price. This is due to the fact that the proposed approach
identifies the optimal price, which may differ significantly from
the immediate reservation price.

Among the estimation methods, batched LSTM exhibits
the smallest Mean Absolute Error (MAE), resulting in an
estimated value that closely approximates the true best price,
deviating distinctly from the immediate price. Nevertheless, all
four estimation methods capture this difference, making the
proposed method valuable for securing reservations at lower
prices.

Comparing Fig. 9 with Fig. 10, it is evident that as the time
steps (δt) increase from 0.5 hr to 1 hr, the price of immediate
reservations may rise, while the cost savings from employing
the proposed approach increase. For example, comparing the
savings obtained using the estimated price from batched LSTM
with the immediate reservation for the interval 12.00-16.00, the
saving is 72.49% for 1 hr (Fig. 9.a) and time interval 20.00-
24.00 for 0.5 hr (Fig. 10.b) is 73.52%.

VI. CONCLUSIONS

In conclusion, this research effectively addresses the chal-
lenges in decision time for bandwidth reservation, particularly
within the context of safety-critical vehicular applications.
The paper introduces an optimized approach using batched
LSTM to predict bandwidth costs within a short duration. By

5.9 6.1 6

5

10

0

2

4

6

8

10

12

04:00-08:00

C
o

st
 [

$
]

Day Time intervals

LSTM Transformers
Mix Batched LSTM
Immediate Reservation

(a)

6.1 6.4 6.2

4.5

17

0

2

4

6

8

10

12

14

16

18

20:00-24:00

C
o

st
 [

$
]

Day Time intervals

LSTM Transformers
Mix Batched LSTM
Immediate Reservation

(b)

Fig. 10. Comparison of cost performance across benchmark with time
intervals [T0 , TR] = 4 hr and time steps δt = 0.5 hr.

organizing data into batches during the training phase, the
model enhances both computational efficiency and prediction
accuracy. This approach has proven highly effective, through
the utilization of real price data, resulting in significant cost
reductions by 27% compared to traditional time-series machine
learning models, as we have provided in the experimental
results. In future work, we aim to explore dynamic BS ranges
and varying MNO numbers for more realistic and intelligent
reservation request strategies.

REFERENCES

[1] X. Chen and G. Liu, “Energy-efficient task offloading and resource
allocation via deep reinforcement learning for augmented reality in
mobile edge networks,” IEEE Internet Things J., vol. 8, no. 13, pp.
10 843–10 856, Jul. 2021.

[2] Z. Cheng, M. Min, M. Liwang, L. Huang, and Z. Gao, “Multiagent
ddpg-based joint task partitioning and power control in fog computing
networks,” IEEE Internet Things J., vol. 9, no. 1, pp. 104–116, Jan.
2022.

[3] M. Chiang and T. Zhang, “Fog and iot: An overview of research
opportunities,” IEEE Internet Things J., vol. 3, no. 6, pp. 854–864,
Dec. 2016.

[4] C. Jiang, X. Cheng, H. Gao, X. Zhou, and J. Wan, “Toward computation
offloading in edge computing: A survey,” IEEE Access, vol. 7, pp.
131 543–131 558, Aug. 2019.

[5] Ieee spectrum, 6 key connectivity requirements of autonomous driving.
[Online]. Available: https://spectrum.ieee.org/6-key- connectivity-
requirements-of-autonomous-driving

[6] V. Sciancalepore, K. Samdanis, X. Costa-Perez, D. Bega, M. Gramaglia,
and A. Banchs, “Mobile traffic forecasting for maximizing 5g network
slicing resource utilization,” in Proc. IEEE Conf. Comput. Commun.
(INFOCOM), May. 2017, pp. 1–9.

[7] A. A. Al-Khatib and A. Khelil, “Priority- and reservation-based slicing
for future vehicular networks,” in Proc. IEEE Conf. Netw. Softwarization
(NetSoft), Aug. 2020, pp. 36–42.

[8] A. A. Al-khatib, A. Khelil, and M. Balfaqih, “Bandwidth slicing with
reservation capability and application priority awareness for future
vehicular networks,” in Proc. - Int. Conf. Adv. Inf. Netw. Appl. (AINA).
Springer, Apr. 2021, pp. 681–691.

[9] S. Zang, W. Bao, P. L. Yeoh, B. Vucetic, and Y. Li, “Filling two
needs with one deed: Combo pricing plans for computing-intensive

www.ijacsa.thesai.org 971 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 15, No. 2, 2024

multimedia applications,” IEEE J. Sel. Areas Commun., vol. 37, no. 7,
pp. 1518–1533, May. 2019.

[10] D. Chen, Y.-C. Liu, B. Kim, J. Xie, C. S. Hong, and Z. Han, “Edge
computing resources reservation in vehicular networks: A meta-learning
approach,” IEEE Trans. Veh. Technol., vol. 69, no. 5, pp. 5634–5646,
May. 2020.

[11] S. Zang, W. Bao, P. L. Yeoh, B. Vucetic, and Y. Li, “Soar: Smart online
aggregated reservation for mobile edge computing brokerage services,”
IEEE Trans. Mob. Comput., vol. 22, no. 1, pp. 527–540, Jan. 2023.

[12] A. A. Al-Khatib, F. Al-Khateeb, A. Khelil, and K. Moessner, “Optimal
timing for bandwidth reservation for time-sensitive vehicular applica-
tions,” in Proc. IEEE Int. Conf. Fog and Edge Comput. (ICFEC), May.
2022, pp. 94–99.

[13] A. A. Al-khatib, M. U. Hassan, and K. Moessner, “Heuristic optimiza-
tion of bandwidth reservation cost for vehicular applications,” in Proc.
IEEE Global Commun. Conf. (GLOBECOM), Dec. 2022, pp. 4909–
4915.

[14] At&t wireless plans. [Online]. Available:
https://www.att.com/plans/wireless/

[15] Aws pricing - how does aws pricing work. [Online]. Available:
https://aws.amazon.com/pricing/?nc1=h ls

[16] N. C. Luong, D. T. Hoang, P. Wang, D. Niyato, D. I. Kim, and Z. Han,
“Data collection and wireless communication in internet of things (iot)
using economic analysis and pricing models: A survey,” IEEE Commun.
Surveys Tuts., vol. 18, no. 4, pp. 2546–2590, Jun. 2016.

[17] Y. Liao, X. Qiao, Q. Yu, and Q. Liu, “Intelligent dynamic service
pricing strategy for multi-user vehicle-aided mec networks,” Future
Gener. Comput. Syst., vol. 114, pp. 15–22, Jan. 2021.

[18] Amazon ec2 spot instances pricing. [Online]. Available:
https://aws.amazon.com/ec2/spot/pricing/

[19] L. Lin, L. Pan, and S. Liu, “Backup or not: An online cost optimal
algorithm for data analysis jobs using spot instances,” IEEE Access,
vol. 8, pp. 144 945–144 956, Aug. 2020.

[20] S. Sen, C. Joe-Wong, S. Ha, and M. Chiang, “A survey of smart data
pricing: Past proposals, current plans, and future trends,” ACM Comput.
Surv., vol. 46, no. 2, pp. 1–37, Nov. 2013.

[21] Y. Cao, C. Long, T. Jiang, and S. Mao, “Share communication and com-
putation resources on mobile devices: A social awareness perspective,”
IEEE Wirel. Commun., vol. 23, no. 4, pp. 52–59, Aug. 2016.

[22] I. Bajaj, Y. H. Lee, and Y. Gong, “A spectrum trading scheme for
licensed user incentives,” IEEE Trans. Commun., vol. 63, no. 11, pp.
4026–4036, Nov. 2015.

[23] Y. Chen, Z. Li, B. Yang, K. Nai, and K. Li, “A stackelberg game
approach to multiple resources allocation and pricing in mobile edge
computing,” Future Gener. Comput. Syst., vol. 108, pp. 273–287, Jul.
2020.

[24] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” Adv. Neural
Inf. Process. Syst., vol. 30, Dec. 2017.

www.ijacsa.thesai.org 972 | P a g e

