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Abstract—Strawberry Disease Detection in the Agricultural 

Sector is of paramount importance, as it directly impacts crop 

yield and quality. A multitude of methods have been explored in 

the literature to address this challenge, but deep learning 

techniques have consistently demonstrated superior accuracy in 

disease detection. Nevertheless, the current research challenge in 

deep learning-based strawberry disease detection remains the 

demand for consistently high accuracy rates. In this study, we 

propose a deep learning model based on the Yolov5 architecture 

to address the aforementioned research challenge effectively. Our 

approach involves the generation of a custom dataset tailored to 

strawberry disease detection and the execution of comprehensive 

training, validation, and testing processes to fine-tune the model. 

Experimental results and performance evaluations were 

conducted to validate our proposed method, demonstrating its 

ability to achieve accurate results consistently. This research 

contributes to the ongoing efforts to enhance strawberry disease 

detection methods within the agricultural sector, ultimately 

aiding in the early identification and mitigation of diseases to 

preserve crop yield and quality. 
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I. INTRODUCTION 

Strawberries are one of the most beloved and economically 
significant crops in the agricultural industry [1], [2]. However, 
the cultivation of these delicate fruits is often hindered by 
various factors, including diseases that can drastically reduce 
yield and quality [3]. The early detection of strawberry diseases 
is crucial to prevent the spread of infections and minimize crop 
losses [4]. This paper focuses on the application of advanced 
technologies, particularly deep learning methods, for the 
purpose of strawberry disease detection in agriculture. 

The importance of strawberry disease detection in 
agriculture cannot be overstated. Strawberry plants are 
susceptible to a range of diseases, including powdery mildew, 
gray mold, and anthracnose, among others [5], [6]. These 
diseases can lead to significant reductions in crop yield, 
rendering them a major concern for strawberry growers. The 
ability to detect these diseases early and accurately is essential 
for timely intervention, reduced pesticide usage, and improved 
crop management, thereby ensuring the economic viability of 
strawberry production [7]. 

Historically, the detection of strawberry diseases in 
agriculture has relied on visual inspection by experts and the 
use 

of traditional diagnostic tools [8]. However, recent 
advancements in technology have revolutionized disease 
detection in agriculture. Researchers and practitioners have 
increasingly turned to automated methods, including computer 
vision and machine learning 9], to enhance the accuracy and 
efficiency of disease detection in strawberries. In this context, 
the paper reviews the latest advances in strawberry disease 
detection methods, particularly focusing on the emergence of 
deep learning approaches as a promising solution [10], [11]. 

Deep learning-based approaches have gained substantial 
attention in recent years for strawberry disease detection. 
Compared to other methods, deep learning techniques offer the 
advantage of automatically learning relevant features from 
large datasets, thereby enabling accurate and efficient disease 
identification. The use of deep learning in agriculture, 
including strawberry disease detection, has become a subject of 
intense research due to its potential to outperform traditional 
methods and address the limitations associated with human 
expertise. 

Despite the promise of deep learning-based approaches, 
several challenges and limitations persist. Achieving high 
accuracy in disease detection is demanding, and these models 
often struggle with issues such as data scarcity, class 
imbalance, and robustness in real-world agricultural settings. 
Addressing these challenges and improving the robustness and 
accuracy of deep learning models is a critical area for further 
research. 

The research problem centers on the inefficiency and 
limitations of current disease detection methods, particularly in 
the face of increasing challenges such as disease spread and 
crop loss [19]. Our research objectives encompass the 
development of an advanced deep learning model tailored for 
strawberry disease detection, leveraging the advantages of 
CNNs to enhance accuracy and efficiency. Additionally, we 
aim to provide a comprehensive evaluation of our proposed 
method through rigorous experimentation and performance 
analysis. 

In this study, we propose a deep learning method using the 
CNN to address the demanding requirements of strawberry 
disease detection. We leverage the advantages of deep learning 
in automatically extracting relevant features from strawberry 
images, ultimately enhancing the accuracy and efficiency of 
disease detection. To validate our approach, we generate a 
custom dataset and conduct rigorous training, validation, and 
testing processes. 
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This paper makes three significant contributions as, 

1) The paper develops a tailored dataset to address the 

challenges of strawberry disease detection, filling a critical 

gap in the field's available resources. 

2) It introduces an efficient deep learning methodology 

utilizing CNNs to enhance the accuracy of strawberry disease 

detection, representing a notable advancement in agricultural 

disease identification techniques. 

3) Through comprehensive experimentation and 

evaluation, the paper validates the effectiveness of its 

proposed method while offering insights and solutions to 

address current limitations in strawberry disease detection 

research. 

This rest of this paper is as follows; Section II presents 
related works. The research methodology discusses in Section 
III. Results and discussion present in Section IV. Finally, this 
paper concludes in Section V. 

II. RELATED WORK 

 The field of agriculture has witnessed remarkable 
advancements, largely driven by the significant contributions 
of machine learning and deep learning techniques. These 
cutting-edge technologies have played a pivotal role in 
transforming disease prediction, classification, and 
identification in plants. Their adoption offers numerous 
advantages, including non-invasiveness, cost-efficiency, speed, 
and reliability in plant disease detection. This transformative 
potential has spurred a multitude of research efforts aimed at 
advancing plant disease diagnosis and detection. Among the 
pioneering researchers who have made substantial 
contributions in this domain, notable figures include: 

The paper in [12] introduced YOLOv5-ASFF, a multistage 
strawberry detection algorithm that refines the YOLOv5 
model. This approach utilizes an Adaptive Spatial Feature 
Fusion (ASFF) module to enhance strawberry detection 
accuracy. It combines features from different stages of the 
YOLOv5 network, thereby improving detection performance. 
While the method shows promise in strawberry detection, it 
lacks a comprehensive discussion of limitations and does not 
propose specific avenues for addressing potential challenges or 
improving the model's practical applicability. Further research 
should focus on addressing these limitations and evaluating the 
model's performance in real-world agricultural settings. 

The authors in [13]  presented a method for strawberry 
defect identification utilizing deep learning and infrared-visible 
image fusion. The approach aims to enhance detection 
accuracy by fusing infrared and visible images, leveraging the 
complementary information they provide. However, the study 
lacks an extensive discussion of the limitations of the proposed 
method, hindering a comprehensive understanding of potential 
challenges. Future work should focus on addressing these 
limitations and assessing the model's performance under 
various environmental conditions to enhance its practical utility 
in strawberry quality control. 

The authors in [14] presented a method for strawberry 
defect identification utilizing deep learning and infrared-visible 

image fusion. The approach aims to enhance detection 
accuracy by fusing infrared and visible images, leveraging the 
complementary information they provide. However, the study 
lacks an extensive discussion of the limitations of the proposed 
method, hindering a comprehensive understanding of potential 
challenges. Future work should focus on addressing these 
limitations and assessing the model's performance under 
various environmental conditions to enhance its practical utility 
in strawberry quality control. 

The paper in [15] introduced a method for strawberry 
flower and fruit detection using an autonomous imaging robot 
and deep learning techniques. The robot captures images of 
strawberry plants in agricultural fields and employs deep 
learning algorithms to identify and distinguish between flowers 
and fruits. The system shows promise in automating this labor-
intensive task. However, the study does not thoroughly discuss 
the limitations, particularly regarding challenges in diverse 
environmental conditions or varying plant growth stages. 
Future research should address these limitations to ensure the 
model's robustness and reliability in real-world, dynamic 
agricultural settings. 

The authors in [16]  presented a method for detecting two-
spotted spider mites and predatory mites in strawberry crops 
employing deep learning technology. The approach involves 
training a deep learning model on image data to distinguish 
between these mite species. However, the study lacks a 
comprehensive discussion of the model's limitations, such as 
the potential for misclassification in complex real-world 
conditions or its scalability to large-scale agricultural 
applications. Future research should focus on addressing these 
limitations and refining the model's practical applicability for 
effective pest management in strawberry cultivation. 

The paper in [17] presented a deep-learning model for 
identifying diseases in strawberry plants. The method utilizes 
convolutional neural networks (CNNs) to analyze images of 
strawberry plants and classify them into disease categories. 
However, the paper does not explicitly address the limitations 
of the model or potential challenges, such as variations in 
lighting and image quality in real-world agricultural settings. 
Future work should focus on enhancing the model's robustness 
and its adaptability to diverse conditions for practical disease 
management in strawberry cultivation. 

The papers in question collectively illustrate the significant 
role that deep learning and augmented reality play in the 
context of strawberry farming. The study in [14] and [13] both 
focus on enhancing strawberry quality. The former emphasizes 
real-time ripeness detection using augmented reality and deep 
learning, enabling timely harvesting, while the latter employs 
deep learning for defect identification, ensuring high-quality 
strawberry production. The study in [15] introduces the 
concept of an autonomous imaging robot in strawberry 
farming. This robot employs deep learning to detect both 
strawberry flowers and fruits, aiding in monitoring growth 
stages and optimizing farm management. In the realm of pest 
management, the study in [16] showcases deep learning's 
utility in identifying spider mites and predatory mites on 
strawberry plants, which is crucial for pest control strategies. 
Lastly, the study in [17] emphasizes the importance of disease 
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detection in strawberry farming. This paper employs deep 
learning techniques to detect various diseases afflicting 
strawberry plants, facilitating early diagnosis and prompt 
intervention. Collectively, these papers emphasize the 
versatility and transformative potential of deep learning and 
augmented reality in strawberry farming, addressing issues 
such as ripeness, quality, growth stage monitoring, pest 
control, and disease management. 

In comparing these papers, it's evident that deep learning, 
combined with innovative technologies like augmented reality 
and autonomous imaging robots, offers significant advantages 
to the strawberry agriculture sector. These technologies enable 
real-time decision-making, quality control, efficient growth 
stage monitoring, pest detection, and disease management. 
However, the specific applications highlight different aspects 
of strawberry farming, such as quality control, growth stage 
monitoring, and pest and disease management, showcasing the 
breadth of issues that deep learning can address in the 
agricultural domain. Ultimately, these papers collectively 
underscore the potential for technology-driven advancements 
in modern strawberry farming practices. 

III. METHODOLOGY 

A. Data Collection 

In our research, we harnessed the power of diverse 
resources to construct a comprehensive dataset for strawberry 
disease image analysis. We gathered a significant portion of 
our dataset from various internet resources, which offered a 
wide range of strawberry disease images captured under 
different environmental conditions. Additionally, we leveraged 
Roboflow, a robust platform that provides curated and labeled 
datasets for machine learning tasks. The classes of our dataset 
involve Angular Leaf Spot, Anthracnose Fruit Rot, Blossom 
Blight, Gray Mold, Leaf Spot, Powdery Mildew Fruit, and 
Powdery Mildew Leaf. By combining these resources, we were 
able to create a rich and diverse collection of strawberry 
disease images that represented the real-world variability 
encountered in agricultural settings. 

The dataset was carefully assembled to reflect the 
variability encountered in real-world agricultural conditions. 
Images were captured under different environmental settings, 
encompassing variations in lighting, background, and disease 
severity. This diverse representation ensures that the trained 
model is capable of recognizing and accurately classifying 
strawberry diseases across a spectrum of scenarios. 

To ensure that our deep learning model could effectively 
handle the intricate nuances of strawberry disease detection, we 
employed data augmentation techniques to augment our 
dataset. These techniques played a vital role in generating more 
images and improving the model's robustness. Common data 
augmentation methods we applied included rotation, which 
introduced variations in orientation, and flipping, both 
horizontally and vertically, to enable the model to recognize 
diseases from multiple perspectives. Additionally, we 
incorporated scaling, which mimics the effects of different 
camera distances and zoom levels. Contrast and brightness 
adjustments were also applied to account for variations in 
lighting conditions. These augmentation techniques 

collectively created a dataset with a wide range of variations, 
closely mirroring the complexities of real-world agricultural 
conditions. This diverse dataset became instrumental in 
training a deep learning model capable of accurately and 
robustly detecting strawberry diseases, even in challenging 
environments. 

By meticulously curating and augmenting our dataset, we 
ensured that our deep learning model is trained on a diverse 
and representative collection of strawberry disease images. 
This rich dataset forms the foundation for robust and accurate 
disease detection, enabling the model to effectively handle the 
intricate nuances of real-world agricultural conditions. 

The study utilizes a dataset sourced from Robloflow, 
comprising a total of 6394 images. This dataset is split into 
three subsets for training, validation, and testing purposes. The 
training set consists of 5901 images, accounting for 
approximately 92% of the total dataset, while the validation 
and test sets contain 247 and 246 images, respectively, and 
making up 4% each. Notably, no preprocessing steps were 
applied to the images before training. However, augmentations 
were implemented during training, with each training example 
producing three outputs. These augmentations include rotations 
of 90° clockwise, counterclockwise, and upside down, as well 
as rotations within a range of -15° to +15°, adjustments to 
brightness and exposure between -25% and +25%, and the 
application of cutout with three boxes, each at 10% size. These 
augmentation techniques aim to enhance the robustness and 
generalization capabilities of the trained model when faced 
with variations and complexities in real-world strawberry 
disease images. 

B. Feature Extraction using Convolutional Neural Network 

Convolutional Neural Network-based Object Detectors are 
mainly suitable for a wide range of applications, not just 
recommendation systems. You Only Look Once (YOLO) 
models excel in the field of object detection due to their high 
performance. YOLO divides an image into a grid system, 
where each grid is responsible for detecting objects within its 
boundaries [20]. These models are particularly well-suited for 
real-time object detection using data streams, and they are 
known for their efficiency, requiring minimal computational 
resources. Ultralytics YOLOv5 represents the latest 
advancement in the the YOLO series, setting new standards in 
the field of computer vision. This state-of-the-art (SOTA) 
model not only inherits the accomplishments of its YOLO 
predecessors but also introduces innovative features and 
enhancements to enhance its performance and versatility 
significantly. As shown in Fig. 1, the YOLOv5 is engineered 
with a strong emphasis on speed, precision, and user-
friendliness, making it a superior option for an extensive array 
of applications, including object detection, instance 
segmentation, and image classification tasks [18]. 

C. The Proposed Yolov5 Model 

In this study, the generation of YOLOv5 models for 
strawberry disease detection follows a systematic process 
involving several key steps, including model initialization, 
model configuration, and hyperparameter tuning. Here is a 
step-by-step guide outlining how the YOLOv5 models are 
generated: 
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Fig. 1. YOLOv5 versions: COCO AP val denotes mAP@0.5:0.95 metric measured on the 5000-image COCO val2017 dataset over various inference sizes from 

256 to 1536. GPU Speed measures the average inference time per image on the COCO val2017 dataset using an AWSp3.2xlarge V100 instance at batch-size 32. 
EfficientDet data from Google/automl at batch size 8. 

1) Model initialization: 

a) The process begins with initializing the YOLOv5 

model architecture. YOLOv5 is a deep learning-based object 

detection model that uses the CNN backbone for feature 

extraction and prediction. 

b) The model is initialized with pre-trained weights, 

typically obtained from training on a large-scale dataset from 

COCO, which helps accelerate the training process and 

improve model performance. 

c) The pre-trained weights provide a good starting point 

for feature extraction, enabling the model to capture generic 

patterns relevant to object detection tasks. 

2) Model configuration: 

a) Once initialized, the YOLOv5 model architecture 

needs to be configured for the specific task of strawberry 

disease detection. 

b) This involves adjusting the input size of the images, 

as well as the number of classes to be detected. In this case, 

the model is configured to detect various classes of strawberry 

diseases, such as Angular Leaf Spot, Anthracnose Fruit Rot, 

Blossom Blight, Gray Mold, Leaf Spot, Powdery Mildew 

Fruit, and Powdery Mildew Leaf. 

3) Hyperparameter setting for model generation: 

a) Hyperparameters play a crucial role in determining 

the performance and behavior of the model during training. 

Setting appropriate hyperparameters is essential for achieving 

optimal performance. 

b) Key hyperparameters include learning rate, batch 

size, optimizer choice, weight decay, and the number of 

training epochs. 

c) Hyperparameters are typically set through 

experimentation and validation on a separate validation 

dataset. Techniques such as grid search or random search may 

be employed to explore the hyperparameter space and identify 

the optimal configuration. 

4) Model training and evaluation: 

a) Once the model architecture is initialized, configured, 

and hyperparameters are set, the model is trained on the 

annotated dataset of strawberry disease images. 

b) During training, the model iteratively learns to 

predict the presence and location of different disease classes in 

the input images. 

c) After training, the model's performance is evaluated 

using metrics such as mean Average Precision (mAP), 

precision, recall, and F1-score, to assess its effectiveness in 

detecting strawberry diseases. 

D. Model Evaluation Techniques 

Precision, recall, F1 score, and mean Average Precision 
(mAP) stand as common metrics used to evaluate the 
performance of object detection models. In the context of 
tomato leaf disease detection using YOLOv8 and YOLOv5, 
these metrics serve the following purposes: 

1) Precision: This metric assesses the accuracy of the 

model's positive predictions in disease detection. It quantifies 

the ratio of true positive predictions (correctly identified 

diseases) to the total number of positive predictions, which 

encompasses both true positives and false positives. High 

precision indicates that the model is typically correct when 

predicting diseases, though it does not account for instances 

missed by the model. 

2) Recall: Also known as sensitivity, recall evaluates the 

model's capability to identify all instances of a specific class 

(disease) within the dataset. It's determined by dividing the 

number of true positive predictions by the total number of 

actual positive instances. High recall suggests that the model 

can capture most positive instances, but it doesn't consider 

false positives. 

3) F1 Score: The F1 score strikes a balance between 

precision and recall, as it is the harmonic mean of these two 
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metrics. It offers a well-rounded evaluation of the model's 

performance by considering both false positives and false 

negatives. A higher F1 score indicates a favorable equilibrium 

between precision and recall, offering a single metric for 

assessing the overall effectiveness of the model. 

4) mAP (mean Average Precision): mAP emerges as a 

comprehensive metric for object detection models. It takes 

precision and recall into account across different confidence 

thresholds for predicted bounding boxes. mAP is calculated by 

averaging the Average Precision (AP) values across various 

classes. AP is computed by generating a precision-recall curve 

for each class and determining the area under the curve. 

Consequently, mAP delivers a global assessment of model 

performance that considers multiple classes and confidence 

levels. 

E. Model Evaluation and Discussion 

Fig. 2 presents data on the impact of the number of training 
epochs on the performance of a YOLOv5s-based strawberry 
disease detection model. The results show a clear trend of 
improvement as the number of epochs increases. Precision, 
which measures the accuracy of positive predictions, rises from 
0.49218 at epoch 1 to 0.87756 at epoch 17. Recall, reflecting 
the model's ability to capture all relevant instances, increases 
from 0.44742 to 0.90167 over the same epochs. Moreover, the 
mean Average Precision at an IoU threshold of 0.5 (mAP_0.5) 
also sees consistent growth, going from 0.42374 to 0.93036. 
These findings suggest that extended training enhances the 
model's capacity to accurately detect strawberry diseases, with 
all three metrics showing notable improvement. 

In summary, the data underscores the importance of 
training duration in enhancing the YOLOv5s-based strawberry 

disease detection model's performance. More epochs lead to 
increased precision, recall, and mAP_0.5, signifying improved 
accuracy and disease identification capabilities. However, it is 
essential to strike a balance between training and overfitting to 
achieve optimal results, and the data illustrates the benefits of 
extended training in this context. 

Fig. 3 presents data on the performance metrics of a 
YOLOv5n-based strawberry disease detection model at 
different epochs during training. As we observe the data, 
several trends emerge with respect to the impact of epochs on 
the model's performance. In the early epochs (e.g., epochs 0-3), 
both precision and recall metrics exhibit some degree of 
variation, with precision generally increasing and recall 
showing fluctuations. The mAP_0.5 values also experience 
gradual improvements. However, as training progresses (e.g., 
epochs 4-12), precision, recall, and mAP_0.5 consistently 
increase. This indicates that the model is becoming more 
accurate in detecting strawberry diseases and improving its 
ability to classify true positives (precision) and identify all 
actual positive cases (recall). Towards the later epochs (e.g., 
epochs 13-19), we observe a plateau effect. Precision, recall, 
and mAP_0.5 metrics stabilize, showing that the model's 
performance has reached a certain level of maturity. These 
metrics do not increase significantly beyond this point. This 
suggests that further training may not yield substantial 
improvements, and the model has reached a state of 
diminishing returns. 

Overall, the data in the table reflects the progression of the 
YOLOv5n-based strawberry disease detection model's 
performance as training epochs increase. It demonstrates how 
the model evolves in terms of precision, recall, and mAP_0.5, 
ultimately reaching a point of stability where additional 
training epochs do not lead to significant performance gains. 

 
Fig. 2. Result of Yolov5s. 
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Fig. 3. Result of Yolov5n. 

Fig. 4 provides data on the performance metrics of a 
YOLOv5m-based strawberry disease detection model at 
various epochs during training. As we examine the data, 
several trends become apparent regarding the impact of epochs 
on the model's performance. In the initial epochs (e.g., epochs 
0-4), precision and recall exhibit varying trends. Precision 
starts relatively high but drops slightly, while recall steadily 
increases. This suggests that, in the early stages, the model 
becomes more adept at identifying actual positive cases but 
may include some false positives. Subsequently (e.g., epochs 
5-10), there is a marked improvement in both precision and 
recall, with a significant increase in mAP_0.5. This signifies 
that the model is enhancing its ability to both accurately 

classify positive cases and detect a higher proportion of actual 
positive cases. In the later epochs (e.g., epochs 11-19), the 
metrics continue to improve, although there are diminishing 
returns. Precision remains high, and recall shows steady 
progress, ultimately stabilizing at a relatively high value. The 
mAP_0.5 reaches its peak, indicating the model's ability to 
achieve accurate and consistent strawberry disease detection. 

Overall, the data in the table reflects the evolution of the 
YOLOv5m-based strawberry disease detection model's 
performance across different training epochs. It illustrates how 
the model refines its precision and recall, achieving a balance 
that leads to high mAP_0.5 values, ultimately plateauing after a 
certain number of epochs.

 

Fig. 4. Result of Yolov5m. 
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Fig. 5. Result of Yolov5l. 

Fig. 5 provides data on the performance metrics of a 
YOLOv5l-based strawberry disease detection model at 
different epochs during training. Analyzing the data reveals 
how epochs affect the model's performance. In the early epochs 
(e.g., epochs 0-4), the model's precision, recall, and mAP_0.5 
exhibit an upward trajectory, with both precision and recall 
increasing. This suggests that the model gradually becomes 
more precise in identifying strawberry diseases and also starts 
to recall a higher proportion of actual cases. As training 
progresses (e.g., epochs 5-10), there is a substantial 
improvement in precision, recall, and mAP_0.5. Precision 
remains consistently high, and recall steadily increases. These 
improvements are indicative of the model's growing ability to 
both accurately classify positive cases and detect a higher 
proportion of true positive cases, leading to a significant boost 
in mAP_0.5. In the later epochs (e.g., epochs 11-19), the 
performance metrics continue to rise, although the rate of 
improvement becomes less pronounced. Precision remains 
high, while recall shows steady progress, eventually stabilizing 
at a relatively high value. The mAP_0.5 reaches its peak, 
indicating the model's proficiency in achieving accurate and 
consistent strawberry disease detection. 

Overall, the data in the table demonstrates how the 
YOLOv5l-based strawberry disease detection model evolves 
over training epochs, refining its precision and recall and 
ultimately achieving a state of high and stable performance as 
reflected in the mAP_0.5 values. 

IV. RESULTS AND DISCUSSION 

In our research, we conducted an extensive series of 
experiments to evaluate and compare the performance of 
various YOLOv5 models, namely YOLOv5s, YOLOv5n, 
YOLOv5m, and YOLOv5l, in the context of strawberry 
disease detection. Table I shows the comparison of different 
versions of YOLOv5. 

The primary aim of these experiments was to identify the 
most accurate and effective model for this specific task. Each 
of the models was rigorously trained and tested using a diverse 
dataset encompassing different disease classes, and the 
performance results were collected and analyzed. 

Upon careful examination of the table of results, it is 
evident that the YOLOv5l model achieved the highest mean 
Average Precision (mAP) at an Intersection over the Union 
(IoU) threshold of 0.5, with a score of 0.95. Furthermore, the 
YOLOv5l model displayed the highest precision of 0.97, which 
indicates that it had the lowest rate of false positives, making it 
highly reliable in correctly classifying disease instances. 
Additionally, the YOLOv5l model exhibited the highest recall 
(0.98), signifying its ability to detect a substantial proportion of 
actual disease cases within the dataset. Consequently, the 
YOLOv5l model outperformed the other models in terms of 
F1-score, achieving a value of 0.92, indicating a harmonious 
balance between precision and recall. Fig. 6 shows the graph of 
the comparison of different versions of YOLOv5. 

TABLE I.  THE COMPARISON OF DIFFERENT VERSION OF YOLOV5 

Model mAP 0.5 precision recall F1-score 

YOLOv5s 0.92 0.94 0.97 0.87 

YOLOv5n 0.91 0.98 0.94 0.86 

YOLOv5m 0.94 0.93 0.97 0.91 

YOLOv5l 0.95 0.97 0.98 0.92 
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Fig. 6. The graph of the comparison of different versions of YOLOv5. 

 

Fig. 7. The result of the YOLOv5l model. 

These results suggest that the YOLOv5l model is the most 
effective and accurate model for strawberry disease detection 
among the ones tested. The superior performance of YOLOv5l 
can be attributed to its larger architecture and capacity to 
capture more detailed features, allowing it to make highly 
precise predictions while maintaining a high recall rate. In 

conclusion, based on the extensive experiments conducted, we 
have successfully identified and validated the YOLOv5l model 
as the most accurate and effective choice for strawberry disease 
detection, ensuring reliable and robust disease diagnosis in 
agricultural settings. Fig. 7 shows the result of the YOLOv5 
model. 
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These results underscore the pivotal role of YOLOv5 
models, particularly YOLOv5l, in enhancing disease diagnosis 
and contributing to more robust and reliable agricultural 
practices. Fig. 7 shows the result of the YOLOv5l model. 

As result, the research addresses this need by proposing a 
deep learning-based solution using CNNs, which are renowned 
for their ability to extract relevant features from large datasets. 
A key aspect of the study is the creation of a custom dataset 
comprising diverse strawberry disease images sourced from 
various internet resources and augmented using techniques like 
rotation, flipping, scaling, and contrast adjustments. These 
augmentations aim to simulate real-world agricultural 
conditions, thereby enhancing the robustness of the trained 
model. The proposed method undergoes extensive 
experimentation and evaluation, culminating in promising 
results that underscore its effectiveness in accurately detecting 
strawberry diseases. 

The effectiveness of the proposed method is evident from 
the reported results, showcasing high precision, recall, and F1-
scores across different YOLOv5 models. Notably, the 
YOLOv5l model emerges as the top performer, demonstrating 
exceptional accuracy in detecting strawberry diseases. The 
robustness of the method is attributed to several factors, 
including the utilization of deep learning techniques, the 
creation of a diverse and representative dataset, and the 
application of data augmentation strategies to enhance model 
generalization. By leveraging the power of CNNs and 
innovative dataset construction, the proposed method offers a 
promising solution to the challenges of strawberry disease 
detection in agriculture, ultimately contributing to improved 
crop management and yield optimization in the industry. 

The scalability of the proposed work in utilizing deep 
learning for strawberry disease detection in agriculture is 
evident through its adaptability to diverse agricultural settings 
and potential for broader applications. By employing the Yolo 
based approach and leveraging advancements in computer 
vision and machine learning, the proposed method offers a 
scalable solution that can be tailored to address disease 
detection challenges across different crops and agricultural 
environments. The methodology's reliance on automated 
techniques allows for efficient processing of large-scale 
datasets, facilitating the detection of various diseases with high 
accuracy and precision. Moreover, the creation of a custom 
dataset tailored to strawberry diseases exemplifies the 
scalability of the approach, as similar datasets can be curated 
for other crops, enabling the extension of the method to 
different agricultural contexts. Additionally, the proposed 
method's performance across different YOLOv5 models 
demonstrates its scalability in accommodating varying 
computational resources and model complexities, making it 
adaptable to different infrastructure constraints. Overall, the 
scalability of the proposed work lies in its ability to be applied 
across diverse agricultural scenarios, offering a scalable and 
effective solution to disease detection challenges in the 
agricultural industry. 

V. CONCLUSION AND FUTURE WORK 

In the agricultural sector, the accurate detection of 
strawberry diseases holds paramount importance for crop 

management and yield optimization. Various methodologies 
have been explored in the literature for this purpose, with deep 
learning-based approaches consistently demonstrating superior 
accuracy compared to alternative methods. However, the 
existing research landscape reveals a pressing challenge in 
achieving the high accuracy rates necessary for practical 
implementation. To address this challenge, this study 
introduces a novel deep-learning model based on the Yolov5 
architecture. We present a comprehensive approach involving 
the creation of a custom dataset and the execution of rigorous 
training, validation, and testing processes. For the performance 
evaluation and results comparison purpose, various YOLOv5 
models are experimentally evaluated to determine their 
effectiveness in strawberry disease detection, with the aim of 
identifying the superior-performing model. Through systematic 
experimentation and rigorous evaluation, the results collected 
from different YOLOv5 variants are compared to ascertain 
their respective performances in accurately identifying and 
localizing strawberry diseases within agricultural images. By 
analyzing the standard metrics across the different YOLOv5 
models, insights are gained into their capabilities and 
limitations in addressing the complexities of disease detection 
in strawberries. Ultimately, the findings highlight the superior-
performing YOLOv5 model, which demonstrates the highest 
levels of accuracy and efficiency in detecting strawberry 
diseases. Additionally, it is noted that previous studies have 
similarly shown the effectiveness of YOLOv5 models 
compared to other detection algorithms, reaffirming the 
robustness and reliability of the YOLOv5 framework for 
agricultural applications. Two notable limitations in strawberry 
disease detection using deep learning methods are the need for 
larger and more diverse datasets to enhance model 
generalization and the necessity for real-time deployment 
solutions in field conditions, which current models may not 
fully support. To address these limitations, future work could 
focus on, first, the acquisition and curation of extensive 
datasets containing a wider range of strawberry disease 
instances and environmental conditions further to improve the 
robustness and generalization of deep learning models. Second, 
researchers can explore the development of edge computing 
solutions that enable real-time disease detection in the field, 
reducing the reliance on centralized computing resources and 
facilitating immediate, on-site interventions for improved crop 
management and disease control. These advancements would 
contribute significantly to the practicality and effectiveness of 
strawberry disease detection systems in agriculture. 
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