
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 3, 2024

1077 | P a g e

www.ijacsa.thesai.org

Secure IoT Seed-based Matrix Key Generator
A Novel Algorithm for Steganographic Security application

Youssef NOUR-EL AINE, Cherkaoui LEGHRIS

Laboratory of Mathematics, Computer Science and Applications-Sciences and Technologies Faculty of Mohammedia,

Hassan II University, Mohammedia, Morocco

Abstract—The rapid evolution of the Internet of Things (IoT)

has significantly transformed various aspects of both personal

and professional spheres, offering innovative solutions in fields

from home automation to industrial manufacturing. This

progression is driven by the integration of physical devices with

digital networks, facilitating efficient communication and data

processing. However, such advancements bring forth critical

security challenges, especially regarding data privacy and

network integrity. Conventional cryptographic methods often fall

short in addressing the unique requirements of IoT

environments, such as limited device computational power and

the need for efficient energy consumption. This paper introduces

a novel approach to IoT security, inspired by the principles of

steganography – the art of concealing information within other

non-secret data. This method enhances security by embedding

secret information within the payload or communication

protocols, aligning with the low-power and minimal processing

capabilities of IoT devices. We propose a steganographic key

generation algorithm, adapted from the Diffie-Hellman key

exchange model, tailored for IoT. This approach eliminates the

need for explicit parameter exchange, thereby reducing

vulnerability to key interception and unauthorized access,

prevalent in IoT networks. The algorithm utilizes a pre-shared

2D matrix and a synchronized seed-based approach for covert

communication without explicit data exchange. Furthermore, we

have rigorously tested our algorithm using the NIST Statistical

Test Suite (STS), comparing its execution time with other

algorithms. The results underscore our algorithm's superior

performance and suitability for IoT applications, highlighting its

potential to secure IoT networks effectively without

compromising on efficiency and device resource constraints. This

paper presents the design, implementation, and potential

implications of this algorithm for enhancing IoT security,

ensuring the full realization of IoT benefits without

compromising user security and privacy.

Keywords—Security; IoT; steganography; key exchange;

cryptography

I. INTRODUCTION

The remarkable rise of the Internet of Things (IoT) has
revolutionized numerous aspects of our daily and professional
lives, bringing significant innovations across diverse fields
ranging from home automation to industrial manufacturing [1].
This transformation is largely fueled by the seamless
integration of physical devices with digital networks, enabling
them to communicate, analyze, and act upon data with
unprecedented efficiency and scale [24]. However, this rapidly
expanding network of interconnected devices presents

substantial security challenges, particularly in the realm of data
privacy and network integrity [2].

In this context, the development of robust and innovative
security protocols becomes paramount [25]. Traditional
cryptographic methods, while effective in many scenarios,
often struggle to meet the unique demands of IoT environments
[3]. These challenges stem from factors such as limited
computational power of IoT devices, the need for efficient
energy consumption, and the requirement for seamless,
continuous communication among a vast array of devices [26].
Therefore, there is a pressing need for tailored security
solutions that address these specific constraints while providing
robust protection against evolving cyber threats [4].

To secure network communications, cryptographic
algorithms are employed, with the Diffie-Hellman key
exchange algorithm being widely used in a public
communication channel considered insecure [5]. While
cryptography-based algorithms are robust in ensuring secure
exchanges, they come with a significant cost in terms of energy
consumption, memory usage, and resources [6]. This makes
them unsuitable for IoT devices, which have constraints related
to processing power, storage, and battery life autonomy.

Research efforts have focused on developing lightweight
versions of these cryptographic algorithms. [7], in his article,
categorizes lightweight cryptography primitives into four
groups: lightweight block ciphers, lightweight stream ciphers,
lightweight hash functions, and lightweight elliptic curve
cryptography. Lightweight block ciphers use smaller block
sizes, smaller security keys, and simpler round designs, as well
as key schedules. Lightweight stream ciphers aim to reduce
chip area, key length, and minimize internal state. Lightweight
hash functions focus on reducing output size and message size.
Lastly, lightweight ECC works on reducing memory
requirements, optimizing public functions, group arithmetic,
and improving speed.

In Dhana's study [7], 54 of these various lightweight
cryptography algorithms were compared. The results of the
comparison show that lightweight cryptographic algorithms
have significant potential for adapting traditional cryptography
to IoT device constraints. However, the techniques employed
can still be costly in terms of processing power and memory
usage. Additionally, reducing key size or length can expose the
system to various attacks targeting IoT architectures,
potentially weakening security.

This paper introduces an innovative approach to IoT
security, drawing inspiration from the principles of

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 3, 2024

1078 | P a g e

www.ijacsa.thesai.org

steganography — the art of concealing information within
other non-secret text or data. Unlike conventional
cryptographic methods that primarily focus on encrypting data,
steganography involves embedding secret information within
the payload or within the communication protocols themselves,
thus camouflaging the existence of the sensitive data. This
technique not only enhances security by obfuscating the data
transfer but also aligns well with the low-power and minimal
processing capabilities of many IoT devices.

The core of this research lies in the development of an
algorithm akin to the Diffie-Hellman key exchange, a
cornerstone of modern cryptography, but adapted for the
unique landscape of IoT. This steganographic key generation
algorithm leverages the principles of key exchange while
embedding the security within the data transmission process
itself. The noteworthy advantage of this approach is the
elimination of explicit parameters exchange, thereby
substantially reducing the vulnerability to key interception and
unauthorized access, which are prevalent security challenges in
IoT networks.

II. MOTIVATION AND KEY CHALLENGES

Designing a security algorithm to secure communication
between IoT devices poses a significant challenge. The
constraints associated with these devices and the complexity of
cryptographic algorithms have led us to consider alternative,
less computationally intensive techniques. Steganography, as a
message concealment technique, has appeared highly
promising, as the effort required to hide a message is less
costly than encrypting and decrypting the same message.

In our initial work [8], we introduced a basic method to
ensure the confidentiality of exchanges between an IoT sensor
and a Fog server in a Smart Greenhouse. The results obtained
clearly demonstrate that the use of steganography in network
communication security can significantly reduce various costs
without compromising communication security. These results
motivated us to propose a new security algorithm based on
steganography, enabling the generation of security keys
between an IoT client and an IoT server. To achieve this, we
established the following objectives:

 The algorithm must be adapted to steganographic uses
while adhering to the Kerckhoffs's principle [9].

 It should generate as many security keys as needed, on-
demand, without requiring explicit communication.

 The generation of a new security key should occur
simultaneously on both the client and server sides
without any explicit exchange.

 Each new exchange between the client and server must
utilize a different security key from the previous one, or
even different from all previously used keys.

 The entire solution must be suitable for IoT devices,
accommodating their various constraints.

III. RELATED WORKS

In study [10] the authors proposed an anonymous
authenticated key agreement protocol utilizing pairing-based

cryptography. The suggested scheme comprises three steps:
initialization, anonymous registration, and anonymous
authentication key agreement. In the initialization step, the
Home Server (HS) generates public and private parameters,
which are employed to compute and generate private keys for
end-users and IoT devices. During the registration step, users
and IoT devices generate U and A values using a random
number generator, communicate these values to the HS, and
receive their private keys from it. To transmit the private key
securely to users and IoT devices via a public channel, an
additional session key is computed for encrypting the private
key. The authentication and key agreement step enables mobile
users and IoT devices to authenticate with the server,
employing an authentication process based on timestamp
verification. The presented solution elicits concerns,
particularly due to the extensive exchange of parameters
between the server and IoT devices/mobile users. This
heightened parameter exchange raises apprehensions regarding
its potential adverse effects on the performance of IoT devices.
Additionally, the imperative to encrypt the authentication key
for transmission over a public channel introduces a non-trivial
layer of complexity. Another notable issue pertains to the non-
mutual nature of the proposed authentication, rendering the
system susceptible to Man-In-The-Middle (MITM) attacks.
The vulnerability exposed by this authentication approach
underscores the necessity for a more robust security framework
to safeguard communication channels. Regarding the use of
timestamps in the final step, the critique underscores the
potential pitfalls associated with the system's reliance on
current time values. The intricacies of effectively controlling
and synchronizing timestamps pose a significant challenge,
thereby compromising the overall system integrity.

In study [11] Shahwar Ali et al. present a comprehensive
cryptographic approach designed for the unique challenges of
wireless sensor networks (WSNs). This approach combines an
enhanced key exchange protocol with a secure routing
mechanism, ensuring both communication security and
network efficiency. Key Generation Phase (Phase 1): The
process initiates with the sender and receiver nodes selecting
specific values based on prime numbers. The sender then
selects two random prime numbers, P and G, and computes a
complex hash function of these values. This step significantly
strengthens the security of the key exchange process by adding
an extra layer of complexity. Encryption Algorithm (Phase 2):
Subsequently, the parties involved compute values P1 and P2
using the base G and modulus P, and then hash these values.
These hashed values are exchanged and rehashed upon receipt.
Each party then computes the final key as P2A mod P and P1B
mod P for parties A and B, respectively. The encryption of the
plaintext is performed by converting it and the key into binary
values and then applying the XNOR operation, ensuring secure
data transmission. LEACH Protocol (Phase 3): The third phase
introduces the LEACH protocol for secure data routing in
WSNs. This phase involves using a clustering approach where
cluster heads are selected randomly. The sender sends data or
key parameters to its closest cluster head, which then forwards
the data to the sink node. This protocol is instrumental in
delivering secure communication between sensor nodes,
protecting against various attacks, and efficiently managing
network energy consumption. This methodology stands out for

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 3, 2024

1079 | P a g e

www.ijacsa.thesai.org

its amalgamation of enhanced security features, computational
efficiency, and an adaptive routing mechanism, making it
highly suitable for WSNs where resource constraints and
security are critical considerations. The integration of hashing
in the key exchange, binary operations for encryption, and the
implementation of the LEACH protocol exemplify a
sophisticated and holistic approach to securing
communications in WSN environments.

Another work [12] based on steganography proposes a new
method for key exchange that combines the Diffie-Hellman
protocol with image registration techniques. The method
involves concealing a key within a set of transformed images.
This is done by using the Diffie-Hellman protocol along with
image registration using Fast Fourier Transform (FFT), The
approach consists of finding transformations between images,
which then become a tool for the receiver to recover the key.
This process uses image registration techniques that calculate a
spatial transformation function between images to superimpose
them optimally. The key exchange procedure consists of
following steps: Secret keys are divided into blocks of 2 bytes
each, for each block, a set of translated images is generated and
sent to receiver, the recipient uses image registration to align
the received images with a source image, determining the
transformations (Tx, Ty) for each block, these transformations
represent the data blocks of the secret key. To increase the
security level, the authors suggest synchronizing the sending of
translated images by a permutation of pseudo-random numbers
generated by chaos theory. This ensures that the transformed
images (TxiTyi) are sent in a specific order that can only be
deciphered using the same pseudo-random number sequence.
The method is robust to noise and provides additional security
layers through image transformation and registration and the
use of Diffie-Hellman but it’s application in the context of
Internet of Things can face various difficulty. The Complexity
of Implementation: IoT devices often have limited
computational resources and power. The proposed method,
involving image registration and transformation using the Fast
Fourier Transform (FFT), may be computationally intensive
for many IoT devices, especially those with limited processing
capabilities. Data Transmission Overhead: IoT environments
typically involve large networks of devices communicating
frequently. The method's reliance on transmitting sets of
transformed images for each key exchange could lead to
significant data transmission overhead, impacting network
performance, especially in bandwidth-constrained IoT
scenarios. Real-time Processing Limitations: Many IoT
applications require real-time or near-real-time data processing
and decision-making. The additional time required for image
registration and key recovery might introduce latency that
could be detrimental in time-sensitive IoT applications.

In this paper [13] the authors present a novel approach to
secure communication using a combination of steganography
and cryptography, the method integrates image steganography
with the One-Time-Pad (OTP) encryption algorithm.
Steganography is the practice of concealing a message within
another medium, in this case, an image, it uses Discrete Haar
Wavelet Transform (DHWT) to transform the cover images
into sub-bands. This transformation helps in embedding the
encrypted data into the image with minimal impact on the

image quality. The encrypted data is embedded into the image
using the LSB method. This technique involves modifying the
least significant bits of the pixel values of the image to encode
the data, then the secret message is encrypted using the OTP
encryption algorithm, known for its theoretical security. This
encryption is applied before embedding the data into the
image. After embedding the data using the LSB method,
Optimal Pixel Adjustment Process (OPAP) is used to minimize
the errors in the stego-image (the image containing the hidden
message), enhancing the method's undetectability. The
encryption key for the OTP algorithm is not directly shared
between the sender and receiver. Instead, a shared pool of keys
is maintained at both ends, from which keys are randomly
selected. This approach avoids the need for a separate secure
channel for key exchange, addressing a common weakness in
OTP encryption. while the proposed method offers an
intriguing combination of steganography and cryptography for
secure communication, its practical application in the IoT
context raises significant concerns regarding resource and
energy efficiency, real-time processing capabilities, scalability,
and seamless integration with existing IoT protocols and
infrastructures, in particular the computational complexity
involved in executing Discrete Haar Wavelet Transform
(DHWT), Least Significant Bit (LSB) embedding, and One-
Time-Pad (OTP) encryption might be too demanding for such
devices, and for memory constraints the proposed method
requires a pool of keys to be maintained at both the sender and
receiver ends for the One-Time-Pad (OTP) encryption. Given
that OTP requires keys as long as the message itself for true
security, this could demand substantial memory, particularly in
scenarios where large or numerous messages are being
transmitted.

IV. PROPOSED ALGORITHM

This section aims to provide a comprehensive overview of
this novel algorithm, detailing its design, implementation, and
potential implications for IoT security. It represents a
significant step forward in the ongoing effort to secure the
ever-expanding universe of interconnected devices, ensuring
that the benefits of IoT can be fully realized without
compromising the security and privacy of users.

The algorithm (see Fig. 1) leverages a pre-shared 2D matrix
and a synchronized seed-based approach to establish shared
pairs of elements for steganographic purposes, thus enabling
covert communication without explicit data exchange.

A. Matrix Selection Phase

The foundation of our steganographic algorithm is a pre-
shared 2D matrix. This matrix, known to both device A and
device B, serves as the source for generating the keys that
constitutes the shared secret used for steganographic purposes.

The pre-shared matrix M (see Fig. 2) is represented as a 2D
array, where:

 M[i][j] denotes the value at row i and column j.

 N*N is the length of the matrix.

This matrix is shared between device A and device B to
generate keys for steganographic purposes. The values in the
matrix can be chosen according to the specific application of

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 3, 2024

1080 | P a g e

www.ijacsa.thesai.org

the algorithm. In our case, the values are integer numbers used
as positions in the cover media where the message can be
hidden. The length of the matrix is linked to the length of the
cover media, the seize of transmitted data (message), the length
of the key, and the degree of robustness required, in general:

 The length of the matrix LM must be at least greater than
or equal to the length of the Cover-Media LCM

 The length of the selected key LK must equal the length
of the Message LMSG

 The length of the Cover-Media LCM must be greater
than length of the message LMSG:

𝐿𝑀 ≥ 𝐿𝐶𝑀 (1)

𝐿𝐾 = 𝐿𝑀𝑆𝐺 (2)

𝐿𝐶𝑀 =
𝐿𝑀𝑆𝐺

𝑅
 , with 0 < 𝑅 ≤ 1 (3)

Fig. 1. Secure IoT seed-based matrix key generator algorithm.

Fig. 2. Pre-shared 2D matrix with a length of N*N.

From Eq. (1), (2), and (3) we can conclude:

𝐿𝑀 ≥
𝐿𝑀𝑆𝐺

𝑅
 (4)

R is a coefficient; the robustness increases as the coefficient
R decreases.

B. Seed-Based Synchronization and PRNG Phase

The essential element of our steganographic algorithm's
success is the use of a synchronized seed value. This seed
serves as an input to the pseudo-random number generator used
by both device A and device B. The synchronization achieved
through the seed ensures that both devices generate the same
random each time. This shared randomness forms the basis for
the establishment of identical keys.

The synchronization process can be a simple
incrementation of the seed value:

 Si+1 = Si + 1 for Ei+1

 Where:

 i denotes the sequence number of the exchange at a
given moment,

 Si+1 is the next seed to be used.

 Ei+1 is the next exchange to be performed.

Pseudo Random Number Generators (PRNGs) are
algorithms used to produce a sequence of numbers that
approximates the properties of random numbers [14], these
numbers aren't truly random but are pseudo-random, meaning
they are generated in a predictable fashion using a
mathematical formula. When a seed value is provided to a
PRNG, it uses this value as the initial state, the PRNG applies a
mathematical operation to this seed value to produce a new
number, which then becomes the input for the next iteration
and so on. Seeding a PRNG with a specific number makes its
output reproducible [15], if not seeded the PRNG will usually
use a value derived from the system clock called timestamp as
a seed, (see Fig. 3).

Fig. 3. PNRG initialization with seed value.

C. Shuffling the Matrix Phase

The Fisher-Yates shuffle, also known as the Knuth shuffle,
is an algorithm for generating a random permutation of a finite
sequence—in other words, for shuffling the sequence [16]. The
algorithm effectively shuffles the array or sequence in place,
meaning it requires only a small, fixed amount of memory
space regardless of the size of the array [17]. The Fisher-Yates

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 3, 2024

1081 | P a g e

www.ijacsa.thesai.org

shuffle a sequence of random generated numbers, by default if
no sequence is giving the FYS use a default sequence derived
from a system-related source. Given an array A with n
elements (indexed from 0 to n-1), the Fisher-Yates Shuffle
algorithm proceeds as follows:

 = length (A)

for i from n-1 down to 1 do:

 j = random integer in range [0, i]

 swap A[i] with A[j]

The algorithm effectively shuffles the array A in place,
ensuring each element has an equal probability of ending up in
any position, the Fisher-Yates Shuffle algorithm can be
modified to use a seeded random number generator as follows:

seededPRNG(seed)

n = length(A)

for i from n-1 down to 1 do:

 j = random integer in range [0, i] from seededPRNG

 swap A[i] with A[j]

In our case the FYS will be state initialized using the
Pseudo random number generated in the previous phase, the
pre-shared matrix will be shuffled using the FYS initialized to
the state fixed by the pseudo random generated number, using
the same number will always produce the same shuffled order
of the matrix, in this way each time devices A and B will have
the same shuffled matrix.

Considering that each unique arrangement of the matrix
elements represents a distinct shuffle, the total number of
elements in the matrix is N2 (since there are N elements in each
of the N rows). The number of different ways to arrange these
N2 elements is giving by the factorial of N2 (denotes as (N2)!).
So the number of different shuffled matrices we can have from
the original 2D matrix is (N2)!

D. Key Extraction

After shuffling the matrix within the Fisher-Yates shuffle
algorithm, the first n elements are extracted from the shuffled
matrix M and are concatenated in the order of extraction to
form the key:

𝐾𝑒𝑦 =∥𝑖=0
𝑛 [𝑘𝑖]

In this formula:

 ki represents the i-th element of the matrix M

 ∣∣ is the symbol of concatenation

 Key is the resultant key formed by concatenating the
first n elements of M.

In consideration of a two-dimensional matrix M with
dimensions N*N it follows that the total number of distinct
elements within the matrix is N2. Consequently, when
determining the total number of potential keys that can be
derived from this matrix where each unique permutation of the

matrix's elements constitutes an individual key, the
combinatorial function is expressed as P (N2, n).

𝑃(𝑁2, 𝑛) =
(𝑁2)!

(𝑁2 − 𝑛)!

Here, P represents the permutation of N2 elements
considered n at a time, thus providing the count of all possible
ordered arrangements that can be constructed from the matrix
elements to form keys of length n.

V. RESULTS AND DISCUSSION

A. Robustness of the Algorithm

In order to empirically validate the robustness of our
proposed key generation algorithm, we conducted a
comprehensive experiment across a heterogeneous array of
Internet of Things (IoT) devices. The algorithm was
implemented on five Raspberry pi Pico microcontroller units
(see Fig. 4) each initiated with a different matrix M (from M1
to M5), and tasked with the generation of one million unique
keys. This extensive production of keys served to simulate a
real-world application scenario and to stress test the algorithm's
scalability and adaptability across devices with varying
workloads and operating conditions. Subsequently, the
generated keys from each device were subjected to an
empirical study [18] using the NIST Statistical Test Suite
(STS).

The NIST Test Suite is a statistical package consisting of
15 tests that were developed to test the randomness of
(arbitrarily long) binary sequences produced by either
hardware or software based cryptographic random or
pseudorandom number generators. These tests focus on a
variety of different types of non-randomness that could exist in
a sequence. Some tests are decomposable into a variety of
subtests. The most commonly used tests in the NIST Statistical
Test Suite for evaluating random number generators include
[23]:

 Frequency (Monobit) Test: Checks if the number of
ones and zeros in a sequence are approximately the
same as would be expected for a truly random
sequence. To pass, the p-value must typically be greater
than 0.01.

Fig. 4. Implementation scenario for key generation in Raspberry Pi Pico

devices.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 3, 2024

1082 | P a g e

www.ijacsa.thesai.org

TABLE I. NIST STATISTICAL TEST RESULTS

Test
M1 M2 M3 M4 M5

P-Value
Proportio

n
P-Value

Proportio

n
P-Value

Proportio

n
P-Value

Proportio

n
P-Value Proportion

Frequency 0,350485 10/10 0,911413 10/10 0,739918 9/10 0,739918 10/10 0,534146 10/10

BlockFrequency 0,534146 10/10 0,066882 10/10 0,739918 10/10 0,213309 9/10 0,122325 10/10

CumulativeSums 0,534146 10/10 0,911413 10/10 0,350485 9/10 0,122325 10/10 0,534146 10/10

Runs 0,350485 10/10 0,911413 10/10 0,739918 10/10 0,911413 10/10 0,534146 10/10

LonguestRun 0,350485 10/10 0,350485 10/10 0,066882 10/10 0,911413 10/10 0,066882 10/10

Rank 0,350485 10/10 0,004301 9/10 0,000199 10/10 0,066882 10/10 0,017912 10/10

FFT 0,017912 10/10 0,534146 10/10 0,534146 10/10 0,534146 10/10 0,122325 10/10

NonOverlappingTemplat
e

0,433723 9/10 0,429832 09/10 0,440727 10/10 0,428214 9/10
0,439083

10/10

OverlappingTemplate

0,534146

10/10 0,350485 10/10
0,739918

10/10
0,534146

10/10
0,017912

10/10

ApproximativeEntropy 0,213309 10/10 0,122325 10/10 0,350485 10/10 0,739918 10/10 0,122325 08/10

RandomExcursions

-- 2/2 -- 2/2 -- 2/2 -- 2/2 -- 2/2

RandomExcursionsVaria
nt

-- 2/2 -- 2/2 -- 2/2 -- 2/2 -- 2/2

Serial

0,911413 10/10 0,534146 10/10 0,534146 10/10 0,213309 10/10 0,739918 10/10

LinearComplexity 0,534146 10/10 0,066882 10/10 0,066882 9/10 0,213309 10/10 0,739918 10/10

 Block Frequency Test: Determines whether the
frequency of ones and zeros in an M-bit block is
approximately half. Pass condition is similar, with p-
values generally expected to exceed 0.01.

 Cumulative Sums (Cusum) Test: Assesses whether the
cumulative sum of the binary sequence fluctuates as
would be expected for a random sequence. Passing
usually requires p-values above 0.01.

 Runs Test: Evaluates the sequence for runs of both ones
and zeros of various lengths to determine if they appear
too frequently or infrequently. To pass, the p-value
should again be above 0.01.

 Longest Run of Ones in a Block Test: Looks at blocks
of the binary sequence to determine if the longest run of
ones within these blocks conforms to the expected
distribution for a random sequence. The p-value must
be above 0.01 for a pass.

 Binary Matrix Rank Test: Examines the rank of disjoint
submatrices of the entire sequence. The proportion of
matrices with full rank is compared against that
expected for random matrices. The pass criterion is a p-
value above 0.01.

 Discrete Fourier Transform (Spectral) Test: Checks for
periodic features (peaks in the frequency domain) that
would indicate a deviation from randomness. The p-
value must be greater than 0.01 to pass.

 To pass the NIST STS test:

 the P-value of each test must be greater than 0,01

 The minimum pass rate for each statistical test with the
exception of the random excursion (variant) test is
approximately = 8 for a sample size = 10 binary
sequences.

 The minimum pass rate for the random excursion
(variant) test is approximately = 1 for a sample size = 2
binary sequences.

 The random excursion and the random excursion
variant require a minimum of 1,000,000 bits for each
sequence.

Our experimental analysis employed the NIST Statistical
Test Suite (STS) as the evaluative benchmark to assess the
efficacy of the key generation algorithm. The suite of tests
applied included the Frequency, Block Frequency, Cumulative
Sums, Runs, Longest Run of Ones in a Block, Matrix Rank,
and the Fast Fourier Transform (FFT) tests. The compiled
results are systematically presented in Table I. Notably, our
algorithm demonstrated a robust performance, successfully
passing all seven of the aforementioned NIST STS tests. For
the purpose of this analysis, we standardized the bitstream
length to 10 for the datasets procured from five distinct
microcontrollers. The criterion for passing each individual test
was established such that the P-Value must be equal to or
greater than 0.01. The uniform success across this suite of tests
underscores the reliability of our algorithm in generating keys
that exhibit the requisite randomness and uniformity for
security applications.

B. Performance Analysis

To assess the performance of our newly developed key
generation algorithm, we conducted a series of meticulously

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 3, 2024

1083 | P a g e

www.ijacsa.thesai.org

planned experiments implementations across a range of IoT
device types.

1) Execution time and memory usage: To assess the

performance analyses, we conducted the first implementation

using two ESP32 microcontrollers (see Fig. 5). The first

microcontroller was programmed to execute a very basic

version of the Diffie-Hellman key exchange with small

primitive numbers, generating a set of 100 keys as a reference

for traditional cryptographic key exchange mechanisms.

Concurrently, the second microcontroller was tasked with

generating an equivalent set of 100 keys, utilizing our

proprietary algorithm. This parallel generation scheme was not

only intended to provide a direct performance comparison

between the traditional Diffie-Hellman approach and our

novel solution but also to demonstrate the practical

applicability and efficiency of our algorithm in a real-world

IoT environment. Table II show the subsequent comparison

and analysis between the two protocols and also the proposed

schemes by [10], [19], [20], [21], [22].

The examination of the execution time, as delineated in
Table II, reveals that our algorithm exhibits superior suitability
for IoT devices that operate under stringent constraints of
energy, memory, and performance. This efficacy positions our
algorithm as an optimal choice for deployment in resource-
limited environments where such considerations are
paramount.

The second implementation was designed in two Raspberry
Pi Zero devices (see Fig. 6) to analyze and compare the
execution time Table III and the memory usage Table IV of our
algorithm against a strong and secure version of Diffie-
Hellman key exchange since the esp32 was crashed when
trying to execute a strong version of Diffie-Hellman.

Our experimental evaluation showcases the performance of
our algorithm compared to a Strong Diffie-Hellman

implementation across different metrics: execution time and
memory usage. These experiments were conducted to generate
varying quantities of keys (10, 100, and 1000) with different
key lengths (32, 64, 128, and 256 bits).

Fig. 5. Implementation scenario for execution time evaluation in ESP-

WROOM-32 MCU devices.

TABLE II. EXECUTION TIME ANALYSIS

Algorithm Execution time in seconde

Diffie-Hellman (basic version) 8,23

[10] 3,10

[19] 2,1

[20] 1,22

[21] 1,05

[22] 0,37

Our Proposed Algorithm 0,16

TABLE III. EXECUTION TIME RESULTS FOR GENERATING 10, 100, AND 1000 KEYS WITH VARYING LENGTHS

Key length in

bit

Exec. time in ms for 10 keys generation Exec. time in ms for 100 keys generation Exec. time in for 1000 keys generation

Our algorithm Strong DH Our algorithm Strong DH Our algorithm Strong DH

32 bits 52,614 93,740 369,399 647,025 3290,118 5128,065

64 bits 54,076 139,612 370,038 1772,165 3298,031 17316,150

128 bits 55,109 756,192 374,688 6754,179 3324,974 70802,648

256 bits 58,113 5136,845 391,013 40546,82 3441,168 Device bugs

TABLE IV. MEMORY USAGE (IN KILOBYTES) RESULTS FOR GENERATING 10, 100, AND 1000 KEYS WITH VARYING LENGTHS

Key length in bit

Mem. usage in KiB for 10 keys

generation

Mem. usage in kiB for 100 keys

generation

Mem, usage in KiB for 1000 keys

generation

Our algorithm Strong DH Our algorithm Strong DH Our algorithm Strong DH

32 bits 0,718 0,994 1,160 1,772 1,173 1,861

64 bits 0,855 0,951 1,186 1,815 1,195 1,904

128 bits 0,901 2,015 1,296 2,827 1,310 1,173

256 bits 1,128 3,590 1,570 4,954 1,583 Device bugs

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 3, 2024

1084 | P a g e

www.ijacsa.thesai.org

a) Execution time: The execution time is critical in

environments where quick key generation is essential for

maintaining operational efficiency and responsiveness. Our

algorithm demonstrates a consistently lower execution time

across all tested scenarios, significantly outperforming the

strong Diffie-Hellman algorithm version, especially as the

number of keys and key lengths increase. Notably, for 1000

keys generation, our algorithm maintained a practical

execution time even at higher key lengths (32 bits: 3290.118

ms, 64 bits: 3298.031ms, 128 bits: 3324.974 ms), whereas the

strong Diffie-Hellman algorithm version showed a drastic

increase in execution time, peaking at 70802.648 ms for 128

bits, a device bug occurred during 256-bit key generation for

strong DH, limiting data availability. This discrepancy

highlights the efficiency of our algorithm in scenarios

requiring large volumes of key generations.

Fig. 6. Implementation scenario for execution time and memory usage

evaluation in Raspberry Pi Zero devices.

b) Memory usage: Memory usage is another vital

aspect, particularly for IoT devices with limited resources. Our

algorithm exhibits significantly lower memory consumption

across all tests. For instance, generating 100 keys of 256 bits

only required 1,570 KiloBytes of memory for our algorithm,

compared to 4,954 KiloBytes for Strong DH. This reduced

memory footprint underscores our algorithm's suitability for

resource-constrained environments, enabling secure

communications without compromising device performance.

2) Scalability: In our study, we prioritized the

implementation of our algorithm on actual hardware over

simulation to capture the nuances of real-world execution.

This approach, leveraging physical devices, allowed us to

obtain genuine performance metrics, reflecting the algorithm's

operational efficiency in tangible IoT environments. While

this methodology underscores the practical applicability and

advantages of our solution under real operational conditions, it

naturally constrains our ability to extensively evaluate the

scalability of our algorithm across a vast network of devices.

Recognizing this limitation, our future work will be dedicated

to implementing our algorithm within a simulator. This

strategic shift will enable us to rigorously assess the scalability

of our solution, facilitating the evaluation over a considerably

larger array of virtual devices. Such simulated environments

will provide invaluable insights into the performance impacts

and scalability potential of our algorithm, offering a

comprehensive understanding of its efficacy in expansive IoT

ecosystems. This dual approach grounding initial validation in

physical implementations before extending evaluations

through simulations strikes a balance between practical

verification and extensive scalability testing, ensuring our

solution is both robust and adaptable to the diverse needs of

IoT infrastructures.

3) Interoperability with IoT systems and protocols: In

addressing the interoperability of our algorithm with existing

Internet of Things (IoT) systems and protocols, it's crucial to

highlight that our solution is designed for seamless integration

at the application layer. This strategic choice enables our

algorithm to function effectively without necessitating

alterations to the underlying layers of the network

architecture. Implementing our key generation mechanism at

this level offers several distinct advantages:

 Flexibility: By situating the algorithm at the application
layer, it can be easily deployed across a wide range of
IoT platforms and devices, regardless of their specific
network configurations or protocols employed at lower
layers.

 Ease of deployment: Application layer implementation
allows for the introduction of our security solution
without the need to modify existing network
infrastructures. This significantly reduces the
complexity and cost associated with deploying
enhanced security measures.

 Versatility in application: Given the diverse nature of
IoT applications, embedding our algorithm at the
application layer ensures that it can be tailored to meet
the unique security requirements of various use cases,
from smart home devices to industrial IoT applications.

 Compatibility: This approach maintains compatibility
with existing standards and protocols at the transport
and network layers, ensuring that our algorithm can be
integrated into existing IoT ecosystems without
interoperability issues.

Recognizing the importance of widespread protocol support
in enhancing the utility and adoption of our algorithm, our
future research will focus on integrating our key generation
mechanism with widely used IoT transport protocols, such as
MQTT. MQTT (Message Queuing Telemetry Transport) is
renowned for its lightweight and efficient communication
capabilities, making it a staple in IoT deployments. By
embedding our security solution within protocols like MQTT,
we aim to provide end-to-end security in IoT communications,
ensuring data integrity and confidentiality without sacrificing
performance. This forward-looking approach not only broadens
the applicability of our algorithm but also aligns with the
evolving security needs of the IoT landscape, promising
enhanced protection for devices and data in an increasingly
connected world.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 3, 2024

1085 | P a g e

www.ijacsa.thesai.org

VI. CONCLUSION AND FUTURE SCOPE

In this article, we introduced a novel key generation
algorithm designed to circumvent the need for explicit key
exchange, a requirement inherent in many established
protocols, such as the Diffie-Hellman technique and others
referenced in the related work section. Our algorithm is
particularly well-suited for IoT devices due to its non-reliant
nature on explicit key exchanges and its foundation upon a pre-
shared matrix. This matrix not only demands an insubstantial
memory footprint but also possesses the capability to generate
a vast array of unique keys, providing a new key for each
individual exchange to maintain security integrity.

However, while our algorithm marks a significant stride
towards optimizing key generation for IoT devices, it is not
without areas necessitating refinement. A critical aspect that
we aim to enhance in our future work is the seed
synchronization process. Ensuring robust synchronization in
the seed selection, which initiates the key generating sequence,
is crucial to thwart attacks targeted at the desynchronization of
this phase. Furthermore, we plan to deploy our algorithm
within an authentic IoT environment to thoroughly evaluate its
resilience against various security threats, including Man-In-
The-Middle (MITM) attacks, and to accurately measure the
energy consumption of IoT devices engaged in secure
communication facilitated by our algorithm.

Our ambition is for this algorithm to stand as a viable
alternative to the Diffie-Hellman protocol, particularly in
applications of IoT devices where resource constraints are a
critical consideration. This is especially pertinent in
conjunction with steganographic algorithms, such as those we
have proposed in our prior work. Through the continued
development and rigorous testing of our algorithm, we
anticipate contributing a robust and energy-efficient solution to
the field of IoT security, enhancing the safe and private
exchange of information in an increasingly interconnected
world.

REFERENCES

[1] Munirathinam, S. (2020). Chapter Six - Industry 4.0: Industrial Internet
of Things (IIOT). Adv. Comput., 117, 129-
164. https://doi.org/10.1016/bs.adcom.2019.10.010.

[2] Venkatasubramanian, M., Lashkari, A., & Hakak, S. (2023). IoT
Malware Analysis Using Federated Learning: A Comprehensive Survey.
IEEE Access, 11, 5004-5018.
https://doi.org/10.1109/ACCESS.2023.3235389.

[3] Sherali Zeadally, Ashok Kumar Das, Nicolas Sklavos, Cryptographic
technologies and protocol standards for Internet of Things, Internet of
Things,2021, vol. 14,2021, 100075, ISSN 2542-6605.
https://doi.org/10.1016/j.iot.2019.100075.

[4] Alhajjar, E., & Lee, K. (2022). The U.S. Cyber Threat Landscape.
European Conference on Cyber Warfare and Security.
https://doi.org/10.34190/eccws.21.1.197.

[5] Rimani, R., said, N., Pacha, A., & Ozer, O. (2021). Key exchange based
on Diffie-Hellman protocol and image registration. Indonesian Journal
of Electrical Engineering and Computer Science, 21, 1751-1758.
https://doi.org/10.11591/IJEECS.V21.I3.PP1751-1758.

[6] Hegde, S., Srivastav, S., & Ks, N. (2022). A Comparative study on state
of art Cryptographic key distribution with quantum networks. 2022
IEEE 3rd Global Conference for Advancement in Technology (GCAT),
1-7. https://doi.org/10.1109/GCAT55367.2022.9971870.

[7] Dhanda, S.S., Singh, B. & Jindal, P. Lightweight Cryptography: A
Solution to Secure IoT. Wireless Pers Commun 112, 1947–1980 (2020).
https://doi.org/10.1007/s11277-020-07134-3.

[8] Nour-El Aine, Y., Leghris, C. (2021). Ensuring Smart Agriculture
System Communication Confidentiality Using a New Network
Steganography Method. In: Boumerdassi, S., Ghogho, M., Renault, É.
(eds) Smart and Sustainable Agriculture. SSA 2021. Communications in
Computer and Information Science, vol 1470. Springer, Cham.
https://doi.org/10.1007/978-3-030-88259-4_2.

[9] Smart, N.P. (2016). Historical Stream Ciphers. In: Cryptography Made
Simple. Information Security and Cryptography. Springer, Cham.
https://doi.org/10.1007/978-3-319-21936-3_10.

[10] Yu B, Li H. Anonymous authentication key agreement scheme with
pairing-based cryptography for home-based multi-sensor Internet of
Things. International Journal of Distributed Sensor Networks.
2019;15(9). doi:10.1177/1550147719879379.

[11] Ali S, Humaria A, Ramzan MS, et al. An efficient cryptographic
technique using modified Diffie–Hellman in wireless sensor networks.
International Journal of Distributed Sensor Networks. 2020;16(6).
doi:10.1177/1550147720925772.

[12] Rimani, R., said, N., Pacha, A., & Ozer, O. (2021). Key exchange based
on Diffie-Hellman protocol and image registration. Indonesian Journal
of Electrical Engineering and Computer Science, 21, 1751-1758.
https://doi.org/10.11591/IJEECS.V21.I3.PP1751-1758.

[13] Takaoğlu, M., Özyavas, A., Ajlouni, N., & Takaoglu, F. (2023). Highly
Secured Hybrid Image Steganography with an Improved Key
Generation and Exchange for One-Time-Pad Encryption Method. Afyon
Kocatepe University Journal of Sciences and Engineering.
https://doi.org/10.35414/akufemubid.1128075.

[14] Park, S., Kim, K., Kim, K., & Nam, C. (2022). Dynamical Pseudo-
Random Number Generator Using Reinforcement Learning. Applied
Sciences. https://doi.org/10.3390/app12073377.

[15] Sathya, K., Premalatha, J., & Rajasekar, V. (2021). Investigation of
Strength and Security of Pseudo Random Number Generators. IOP
Conference Series: Materials Science and Engineering, 1055.
https://doi.org/10.1088/1757-899X/1055/1/012076.

[16] Karawia, A. (2019). Image encryption based on Fisher-Yates shuffling
and three dimensional chaotic economic map. IET Image Process., 13,
2086-2097. https://doi.org/10.1049/IET-IPR.2018.5142.

[17] Servodio, S., & Li, X. (2021). An Efficient Shuffle-Light FFT Library.
2021 IEEE International Performance, Computing, and Communications
Conference(IPCCC),1-10. https://doi.org/10.1109/IPCCC51483.2021.
9679431.

[18] Aoun, O., & El Afia, A. (2018). Time-dependence in multi-Agent MDP
applied to gate assignment Problem. Int. J. Adv. Comput. Sci. Appl, 9,
331-340, https://doi: 10.14569/IJACSA.2018.090247.

[19] Scott M. Authenticated ID-based key exchange and remote log-in with
simple token and PIN number. Cryp- tology, 2002, pp.1–9,
https://eprint.iacr.org/2002/164.pdf

[20] Wu F, Xu L, Kumari S, et al. A new and secure authenti- cation scheme
for wireless sensor networks with formal proof. Peer Peer Netw Appl
2015; 10(1): 1–15.

[21] Xiong L and Peng DY. A lightweight anonymous authen- tication
protocol with perfect forward secrecy for wireless sensor networks.
Sensors 2017; 17(11): 2681.

[22] Srinivas J and Mukhopadhyay S. Secure and efficient user
authentication scheme for multi-gateway wireless sensor networks. Ad
Hoc Netw 2017; 54: 147–269.

[23] A Statistical Test Suite for Random and Pseudorandom Number
Generators for Cryptographic Applications, National Institute of
Standards and Technology Special Publication 800-22 Revision 1a,
https://nvlpubs.nist.gov/nistpubs/legacy/sp/nistspecialpublication800-
22r1a.pdf

[24] Balfaqih M, Balfagih Z, Lytras MD, Alfawaz KM, Alshdadi AA,
Alsolami E. A Blockchain-Enabled IoT Logistics System for Efficient
Tracking and Management of High-Price Shipments: A Resilient,
Scalable and Sustainable Approach to Smart Cities. Sustainability. 2023;
15(18):13971. https://doi.org/10.3390/su151813971.

https://doi.org/10.1109/ACCESS.2023.3235389
https://doi.org/10.1016/j.iot.2019.100075
https://doi.org/10.34190/eccws.21.1.197
https://doi.org/10.11591/IJEECS.V21.I3.PP1751-1758
https://doi.org/10.1109/GCAT55367.2022.9971870
https://doi.org/10.1007/978-3-030-88259-4_2
https://doi.org/10.11591/IJEECS.V21.I3.PP1751-1758
https://doi.org/10.35414/akufemubid.1128075
https://doi.org/10.3390/app12073377
https://doi.org/10.1088/1757-899X/1055/1/012076
https://doi.org/10.1049/IET-IPR.2018.5142
https://nvlpubs.nist.gov/nistpubs/legacy/sp/nistspecialpublication800-22r1a.pdf
https://nvlpubs.nist.gov/nistpubs/legacy/sp/nistspecialpublication800-22r1a.pdf
https://doi.org/10.3390/su151813971

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 3, 2024

1086 | P a g e

www.ijacsa.thesai.org

[25] Almohammedi, A.A., Balfaqih, M., Nahas, S., Bokhari, A., Alqudsi, A.
(2023). Design and Implementation of IoT-Enabled Intelligent Fire
Detection System Using Neural Networks. In: Yang, Y., Wang, X.,
Zhang, LJ. (eds) Artificial Intelligence and Mobile Services – AIMS
2023 . AIMS 2023. Lecture Notes in Computer Science, vol 14202.
Springer, Cham. https://doi.org/10.1007/978-3-031-45140-9_6.

[26] M. Balfaqih, Z. Balfagih, A. A. Almohammedi and K. M. Alfawaz, "A
Smart and Privacy-Preserving Logistics System Based on IoT and
Blockchain Technologies," 2023 1st International Conference on
Advanced Innovations in Smart Cities (ICAISC), Jeddah, Saudi Arabia,
2023, pp. 1-5, doi: 10.1109/ICAISC56366.2023.10255090.

https://doi.org/10.1007/978-3-031-45140-9_6

