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Abstract—The rapid evolution of the Internet of Things (IoT) 

has significantly transformed various aspects of both personal 

and professional spheres, offering innovative solutions in fields 

from home automation to industrial manufacturing. This 

progression is driven by the integration of physical devices with 

digital networks, facilitating efficient communication and data 

processing. However, such advancements bring forth critical 

security challenges, especially regarding data privacy and 

network integrity. Conventional cryptographic methods often fall 

short in addressing the unique requirements of IoT 

environments, such as limited device computational power and 

the need for efficient energy consumption. This paper introduces 

a novel approach to IoT security, inspired by the principles of 

steganography – the art of concealing information within other 

non-secret data. This method enhances security by embedding 

secret information within the payload or communication 

protocols, aligning with the low-power and minimal processing 

capabilities of IoT devices. We propose a steganographic key 

generation algorithm, adapted from the Diffie-Hellman key 

exchange model, tailored for IoT. This approach eliminates the 

need for explicit parameter exchange, thereby reducing 

vulnerability to key interception and unauthorized access, 

prevalent in IoT networks. The algorithm utilizes a pre-shared 

2D matrix and a synchronized seed-based approach for covert 

communication without explicit data exchange. Furthermore, we 

have rigorously tested our algorithm using the NIST Statistical 

Test Suite (STS), comparing its execution time with other 

algorithms. The results underscore our algorithm's superior 

performance and suitability for IoT applications, highlighting its 

potential to secure IoT networks effectively without 

compromising on efficiency and device resource constraints. This 

paper presents the design, implementation, and potential 

implications of this algorithm for enhancing IoT security, 

ensuring the full realization of IoT benefits without 

compromising user security and privacy. 
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I. INTRODUCTION 

The remarkable rise of the Internet of Things (IoT) has 
revolutionized numerous aspects of our daily and professional 
lives, bringing significant innovations across diverse fields 
ranging from home automation to industrial manufacturing [1]. 
This transformation is largely fueled by the seamless 
integration of physical devices with digital networks, enabling 
them to communicate, analyze, and act upon data with 
unprecedented efficiency and scale [24]. However, this rapidly 
expanding network of interconnected devices presents 

substantial security challenges, particularly in the realm of data 
privacy and network integrity [2]. 

In this context, the development of robust and innovative 
security protocols becomes paramount [25]. Traditional 
cryptographic methods, while effective in many scenarios, 
often struggle to meet the unique demands of IoT environments 
[3]. These challenges stem from factors such as limited 
computational power of IoT devices, the need for efficient 
energy consumption, and the requirement for seamless, 
continuous communication among a vast array of devices [26]. 
Therefore, there is a pressing need for tailored security 
solutions that address these specific constraints while providing 
robust protection against evolving cyber threats [4]. 

To secure network communications, cryptographic 
algorithms are employed, with the Diffie-Hellman key 
exchange algorithm being widely used in a public 
communication channel considered insecure [5]. While 
cryptography-based algorithms are robust in ensuring secure 
exchanges, they come with a significant cost in terms of energy 
consumption, memory usage, and resources [6]. This makes 
them unsuitable for IoT devices, which have constraints related 
to processing power, storage, and battery life autonomy. 

Research efforts have focused on developing lightweight 
versions of these cryptographic algorithms. [7], in his article, 
categorizes lightweight cryptography primitives into four 
groups: lightweight block ciphers, lightweight stream ciphers, 
lightweight hash functions, and lightweight elliptic curve 
cryptography. Lightweight block ciphers use smaller block 
sizes, smaller security keys, and simpler round designs, as well 
as key schedules. Lightweight stream ciphers aim to reduce 
chip area, key length, and minimize internal state. Lightweight 
hash functions focus on reducing output size and message size. 
Lastly, lightweight ECC works on reducing memory 
requirements, optimizing public functions, group arithmetic, 
and improving speed. 

In Dhana's study [7], 54 of these various lightweight 
cryptography algorithms were compared. The results of the 
comparison show that lightweight cryptographic algorithms 
have significant potential for adapting traditional cryptography 
to IoT device constraints. However, the techniques employed 
can still be costly in terms of processing power and memory 
usage. Additionally, reducing key size or length can expose the 
system to various attacks targeting IoT architectures, 
potentially weakening security. 

This paper introduces an innovative approach to IoT 
security, drawing inspiration from the principles of 
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steganography — the art of concealing information within 
other non-secret text or data. Unlike conventional 
cryptographic methods that primarily focus on encrypting data, 
steganography involves embedding secret information within 
the payload or within the communication protocols themselves, 
thus camouflaging the existence of the sensitive data. This 
technique not only enhances security by obfuscating the data 
transfer but also aligns well with the low-power and minimal 
processing capabilities of many IoT devices. 

The core of this research lies in the development of an 
algorithm akin to the Diffie-Hellman key exchange, a 
cornerstone of modern cryptography, but adapted for the 
unique landscape of IoT. This steganographic key generation 
algorithm leverages the principles of key exchange while 
embedding the security within the data transmission process 
itself. The noteworthy advantage of this approach is the 
elimination of explicit parameters exchange, thereby 
substantially reducing the vulnerability to key interception and 
unauthorized access, which are prevalent security challenges in 
IoT networks. 

II. MOTIVATION AND KEY CHALLENGES 

Designing a security algorithm to secure communication 
between IoT devices poses a significant challenge. The 
constraints associated with these devices and the complexity of 
cryptographic algorithms have led us to consider alternative, 
less computationally intensive techniques. Steganography, as a 
message concealment technique, has appeared highly 
promising, as the effort required to hide a message is less 
costly than encrypting and decrypting the same message. 

In our initial work [8], we introduced a basic method to 
ensure the confidentiality of exchanges between an IoT sensor 
and a Fog server in a Smart Greenhouse. The results obtained 
clearly demonstrate that the use of steganography in network 
communication security can significantly reduce various costs 
without compromising communication security. These results 
motivated us to propose a new security algorithm based on 
steganography, enabling the generation of security keys 
between an IoT client and an IoT server. To achieve this, we 
established the following objectives: 

 The algorithm must be adapted to steganographic uses 
while adhering to the Kerckhoffs's principle [9]. 

 It should generate as many security keys as needed, on-
demand, without requiring explicit communication. 

 The generation of a new security key should occur 
simultaneously on both the client and server sides 
without any explicit exchange. 

 Each new exchange between the client and server must 
utilize a different security key from the previous one, or 
even different from all previously used keys. 

 The entire solution must be suitable for IoT devices, 
accommodating their various constraints. 

III. RELATED WORKS 

In study [10] the authors proposed an anonymous 
authenticated key agreement protocol utilizing pairing-based 

cryptography. The suggested scheme comprises three steps: 
initialization, anonymous registration, and anonymous 
authentication key agreement. In the initialization step, the 
Home Server (HS) generates public and private parameters, 
which are employed to compute and generate private keys for 
end-users and IoT devices. During the registration step, users 
and IoT devices generate U and A values using a random 
number generator, communicate these values to the HS, and 
receive their private keys from it. To transmit the private key 
securely to users and IoT devices via a public channel, an 
additional session key is computed for encrypting the private 
key. The authentication and key agreement step enables mobile 
users and IoT devices to authenticate with the server, 
employing an authentication process based on timestamp 
verification. The presented solution elicits concerns, 
particularly due to the extensive exchange of parameters 
between the server and IoT devices/mobile users. This 
heightened parameter exchange raises apprehensions regarding 
its potential adverse effects on the performance of IoT devices. 
Additionally, the imperative to encrypt the authentication key 
for transmission over a public channel introduces a non-trivial 
layer of complexity. Another notable issue pertains to the non-
mutual nature of the proposed authentication, rendering the 
system susceptible to Man-In-The-Middle (MITM) attacks. 
The vulnerability exposed by this authentication approach 
underscores the necessity for a more robust security framework 
to safeguard communication channels. Regarding the use of 
timestamps in the final step, the critique underscores the 
potential pitfalls associated with the system's reliance on 
current time values. The intricacies of effectively controlling 
and synchronizing timestamps pose a significant challenge, 
thereby compromising the overall system integrity. 

In study [11] Shahwar Ali et al. present a comprehensive 
cryptographic approach designed for the unique challenges of 
wireless sensor networks (WSNs). This approach combines an 
enhanced key exchange protocol with a secure routing 
mechanism, ensuring both communication security and 
network efficiency. Key Generation Phase (Phase 1): The 
process initiates with the sender and receiver nodes selecting 
specific values based on prime numbers. The sender then 
selects two random prime numbers, P and G, and computes a 
complex hash function of these values. This step significantly 
strengthens the security of the key exchange process by adding 
an extra layer of complexity. Encryption Algorithm (Phase 2): 
Subsequently, the parties involved compute values P1 and P2 
using the base G and modulus P, and then hash these values. 
These hashed values are exchanged and rehashed upon receipt. 
Each party then computes the final key as P2A mod P and P1B 
mod P for parties A and B, respectively. The encryption of the 
plaintext is performed by converting it and the key into binary 
values and then applying the XNOR operation, ensuring secure 
data transmission. LEACH Protocol (Phase 3): The third phase 
introduces the LEACH protocol for secure data routing in 
WSNs. This phase involves using a clustering approach where 
cluster heads are selected randomly. The sender sends data or 
key parameters to its closest cluster head, which then forwards 
the data to the sink node. This protocol is instrumental in 
delivering secure communication between sensor nodes, 
protecting against various attacks, and efficiently managing 
network energy consumption. This methodology stands out for 
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its amalgamation of enhanced security features, computational 
efficiency, and an adaptive routing mechanism, making it 
highly suitable for WSNs where resource constraints and 
security are critical considerations. The integration of hashing 
in the key exchange, binary operations for encryption, and the 
implementation of the LEACH protocol exemplify a 
sophisticated and holistic approach to securing 
communications in WSN environments. 

Another work [12] based on steganography proposes a new 
method for key exchange that combines the Diffie-Hellman 
protocol with image registration techniques. The method 
involves concealing a key within a set of transformed images. 
This is done by using the Diffie-Hellman protocol along with 
image registration using Fast Fourier Transform (FFT), The 
approach consists of finding transformations between images, 
which then become a tool for the receiver to recover the key. 
This process uses image registration techniques that calculate a 
spatial transformation function between images to superimpose 
them optimally. The key exchange procedure consists of 
following steps: Secret keys are divided into blocks of 2 bytes 
each, for each block, a set of translated images is generated and 
sent to receiver, the recipient uses image registration to align 
the received images with a source image, determining the 
transformations (Tx, Ty) for each block, these transformations 
represent the data blocks of the secret key. To increase the 
security level, the authors suggest synchronizing the sending of 
translated images by a permutation of pseudo-random numbers 
generated by chaos theory. This ensures that the transformed 
images (TxiTyi) are sent in a specific order that can only be 
deciphered using the same pseudo-random number sequence. 
The method is robust to noise and provides additional security 
layers through image transformation and registration and the 
use of Diffie-Hellman but it’s application in the context of 
Internet of Things can face various difficulty. The Complexity 
of Implementation: IoT devices often have limited 
computational resources and power. The proposed method, 
involving image registration and transformation using the Fast 
Fourier Transform (FFT), may be computationally intensive 
for many IoT devices, especially those with limited processing 
capabilities. Data Transmission Overhead: IoT environments 
typically involve large networks of devices communicating 
frequently. The method's reliance on transmitting sets of 
transformed images for each key exchange could lead to 
significant data transmission overhead, impacting network 
performance, especially in bandwidth-constrained IoT 
scenarios. Real-time Processing Limitations: Many IoT 
applications require real-time or near-real-time data processing 
and decision-making. The additional time required for image 
registration and key recovery might introduce latency that 
could be detrimental in time-sensitive IoT applications. 

In this paper [13] the authors present a novel approach to 
secure communication using a combination of steganography 
and cryptography, the method integrates image steganography 
with the One-Time-Pad (OTP) encryption algorithm. 
Steganography is the practice of concealing a message within 
another medium, in this case, an image, it uses Discrete Haar 
Wavelet Transform (DHWT) to transform the cover images 
into sub-bands. This transformation helps in embedding the 
encrypted data into the image with minimal impact on the 

image quality. The encrypted data is embedded into the image 
using the LSB method. This technique involves modifying the 
least significant bits of the pixel values of the image to encode 
the data, then the secret message is encrypted using the OTP 
encryption algorithm, known for its theoretical security. This 
encryption is applied before embedding the data into the 
image. After embedding the data using the LSB method, 
Optimal Pixel Adjustment Process (OPAP) is used to minimize 
the errors in the stego-image (the image containing the hidden 
message), enhancing the method's undetectability. The 
encryption key for the OTP algorithm is not directly shared 
between the sender and receiver. Instead, a shared pool of keys 
is maintained at both ends, from which keys are randomly 
selected. This approach avoids the need for a separate secure 
channel for key exchange, addressing a common weakness in 
OTP encryption. while the proposed method offers an 
intriguing combination of steganography and cryptography for 
secure communication, its practical application in the IoT 
context raises significant concerns regarding resource and 
energy efficiency, real-time processing capabilities, scalability, 
and seamless integration with existing IoT protocols and 
infrastructures, in particular the computational complexity 
involved in executing Discrete Haar Wavelet Transform 
(DHWT), Least Significant Bit (LSB) embedding, and One-
Time-Pad (OTP) encryption might be too demanding for such 
devices, and for memory constraints the proposed method 
requires a pool of keys to be maintained at both the sender and 
receiver ends for the One-Time-Pad (OTP) encryption. Given 
that OTP requires keys as long as the message itself for true 
security, this could demand substantial memory, particularly in 
scenarios where large or numerous messages are being 
transmitted. 

IV. PROPOSED ALGORITHM 

This section aims to provide a comprehensive overview of 
this novel algorithm, detailing its design, implementation, and 
potential implications for IoT security. It represents a 
significant step forward in the ongoing effort to secure the 
ever-expanding universe of interconnected devices, ensuring 
that the benefits of IoT can be fully realized without 
compromising the security and privacy of users. 

The algorithm (see Fig. 1) leverages a pre-shared 2D matrix 
and a synchronized seed-based approach to establish shared 
pairs of elements for steganographic purposes, thus enabling 
covert communication without explicit data exchange. 

A. Matrix Selection Phase 

The foundation of our steganographic algorithm is a pre-
shared 2D matrix. This matrix, known to both device A and 
device B, serves as the source for generating the keys that 
constitutes the shared secret used for steganographic purposes. 

The pre-shared matrix M (see Fig. 2) is represented as a 2D 
array, where: 

 M[i][j] denotes the value at row i and column j. 

 N*N is the length of the matrix. 

This matrix is shared between device A and device B to 
generate keys for steganographic purposes. The values in the 
matrix can be chosen according to the specific application of 
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the algorithm. In our case, the values are integer numbers used 
as positions in the cover media where the message can be 
hidden. The length of the matrix is linked to the length of the 
cover media, the seize of transmitted data (message), the length 
of the key, and the degree of robustness required, in general: 

 The length of the matrix LM must be at least greater than 
or equal to the length of the Cover-Media LCM 

 The length of the selected key LK must equal the length 
of the Message LMSG 

 The length of the Cover-Media LCM must be greater 
than length of the message LMSG: 

𝐿𝑀 ≥ 𝐿𝐶𝑀        (1) 

𝐿𝐾  =  𝐿𝑀𝑆𝐺         (2) 

𝐿𝐶𝑀  =  
𝐿𝑀𝑆𝐺

𝑅
 , with  0 < 𝑅 ≤ 1       (3) 

 
Fig. 1. Secure IoT seed-based matrix key generator algorithm. 

 
Fig. 2. Pre-shared 2D matrix with a length of N*N. 

From Eq. (1), (2), and (3) we can conclude: 

𝐿𝑀 ≥  
𝐿𝑀𝑆𝐺

𝑅
       (4) 

R is a coefficient; the robustness increases as the coefficient 
R decreases. 

B. Seed-Based Synchronization and PRNG Phase 

The essential element of our steganographic algorithm's 
success is the use of a synchronized seed value. This seed 
serves as an input to the pseudo-random number generator used 
by both device A and device B. The synchronization achieved 
through the seed ensures that both devices generate the same 
random each time. This shared randomness forms the basis for 
the establishment of identical keys. 

The synchronization process can be a simple 
incrementation of the seed value: 

 Si+1 = Si + 1 for Ei+1 

 Where: 

 i denotes the sequence number of the exchange at a 
given moment, 

 Si+1 is the next seed to be used. 

 Ei+1 is the next exchange to be performed. 

Pseudo Random Number Generators (PRNGs) are 
algorithms used to produce a sequence of numbers that 
approximates the properties of random numbers [14], these 
numbers aren't truly random but are pseudo-random, meaning 
they are generated in a predictable fashion using a 
mathematical formula. When a seed value is provided to a 
PRNG, it uses this value as the initial state, the PRNG applies a 
mathematical operation to this seed value to produce a new 
number, which then becomes the input for the next iteration 
and so on. Seeding a PRNG with a specific number makes its 
output reproducible [15], if not seeded the PRNG will usually 
use a value derived from the system clock called timestamp as 
a seed, (see Fig. 3). 

 
Fig. 3. PNRG initialization with seed value. 

C. Shuffling the Matrix Phase 

The Fisher-Yates shuffle, also known as the Knuth shuffle, 
is an algorithm for generating a random permutation of a finite 
sequence—in other words, for shuffling the sequence [16]. The 
algorithm effectively shuffles the array or sequence in place, 
meaning it requires only a small, fixed amount of memory 
space regardless of the size of the array [17]. The Fisher-Yates 
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shuffle a sequence of random generated numbers, by default if 
no sequence is giving the FYS use a default sequence derived 
from a system-related source. Given an array A with n 
elements (indexed from 0 to n-1), the Fisher-Yates Shuffle 
algorithm proceeds as follows: 

 = length (A) 

for i from n-1 down to 1 do: 

    j = random integer in range [0, i] 

    swap A[i] with A[j] 

The algorithm effectively shuffles the array A in place, 
ensuring each element has an equal probability of ending up in 
any position, the Fisher-Yates Shuffle algorithm can be 
modified to use a seeded random number generator as follows: 

seededPRNG(seed) 

n = length(A) 

for i from n-1 down to 1 do: 

    j = random integer in range [0, i] from seededPRNG 

    swap A[i] with A[j] 

In our case the FYS will be state initialized using the 
Pseudo random number generated in the previous phase, the 
pre-shared matrix will be shuffled using the FYS initialized to 
the state fixed by the pseudo random generated number, using 
the same number will always produce the same shuffled order 
of the matrix, in this way each time devices A and B will have 
the same shuffled matrix. 

Considering that each unique arrangement of the matrix 
elements represents a distinct shuffle, the total number of 
elements in the matrix is N2 (since there are N elements in each 
of the N rows). The number of different ways to arrange these 
N2 elements is giving by the factorial of N2 (denotes as (N2)!). 
So the number of different shuffled matrices we can have from 
the original 2D matrix is (N2)! 

D. Key Extraction 

After shuffling the matrix within the Fisher-Yates shuffle 
algorithm, the first n elements are extracted from the shuffled 
matrix M and are concatenated in the order of extraction to 
form the key: 

𝐾𝑒𝑦 =∥𝑖=0 
𝑛 [𝑘𝑖] 

In this formula: 

 ki represents the i-th element of the matrix M 

 ∣∣ is the symbol of concatenation 

 Key is the resultant key formed by concatenating the 
first n elements of M. 

In consideration of a two-dimensional matrix M with 
dimensions N*N it follows that the total number of distinct 
elements within the matrix is N2. Consequently, when 
determining the total number of potential keys that can be 
derived from this matrix where each unique permutation of the 

matrix's elements constitutes an individual key, the 
combinatorial function is expressed as P (N2, n). 

𝑃(𝑁2, 𝑛) =  
(𝑁2)!

(𝑁2 − 𝑛)!
 

Here, P represents the permutation of N2 elements 
considered n at a time, thus providing the count of all possible 
ordered arrangements that can be constructed from the matrix 
elements to form keys of length n. 

V. RESULTS AND DISCUSSION 

A. Robustness of the Algorithm 

In order to empirically validate the robustness of our 
proposed key generation algorithm, we conducted a 
comprehensive experiment across a heterogeneous array of 
Internet of Things (IoT) devices. The algorithm was 
implemented on five Raspberry pi Pico microcontroller units 
(see Fig. 4) each initiated with a different matrix M (from M1 
to M5), and tasked with the generation of one million unique 
keys. This extensive production of keys served to simulate a 
real-world application scenario and to stress test the algorithm's 
scalability and adaptability across devices with varying 
workloads and operating conditions. Subsequently, the 
generated keys from each device were subjected to an 
empirical study [18] using the NIST Statistical Test Suite 
(STS). 

The NIST Test Suite is a statistical package consisting of 
15 tests that were developed to test the randomness of 
(arbitrarily long) binary sequences produced by either 
hardware or software based cryptographic random or 
pseudorandom number generators. These tests focus on a 
variety of different types of non-randomness that could exist in 
a sequence. Some tests are decomposable into a variety of 
subtests. The most commonly used tests in the NIST Statistical 
Test Suite for evaluating random number generators include 
[23]: 

 Frequency (Monobit) Test: Checks if the number of 
ones and zeros in a sequence are approximately the 
same as would be expected for a truly random 
sequence. To pass, the p-value must typically be greater 
than 0.01. 

 
Fig. 4. Implementation scenario for key generation in Raspberry Pi Pico 

devices. 
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TABLE I.  NIST STATISTICAL TEST RESULTS 

Test 
M1 M2 M3 M4 M5 

P-Value 
Proportio

n 
P-Value 

Proportio

n 
P-Value 

Proportio

n 
P-Value 

Proportio

n 
P-Value Proportion 

Frequency 0,350485 10/10 0,911413 10/10 0,739918 9/10 0,739918 10/10 0,534146 10/10 

BlockFrequency 0,534146 10/10 0,066882 10/10 0,739918 10/10 0,213309 9/10 0,122325 10/10 

CumulativeSums 0,534146 10/10 0,911413 10/10 0,350485 9/10 0,122325 10/10 0,534146 10/10 

Runs 0,350485 10/10 0,911413 10/10 0,739918 10/10 0,911413 10/10 0,534146 10/10 

LonguestRun 0,350485 10/10 0,350485 10/10 0,066882 10/10 0,911413 10/10 0,066882 10/10 

Rank 0,350485 10/10 0,004301 9/10 0,000199 10/10 0,066882 10/10 0,017912 10/10 

FFT 0,017912 10/10 0,534146 10/10 0,534146 10/10 0,534146 10/10 0,122325 10/10 

NonOverlappingTemplat
e 

 

0,433723 9/10 0,429832 09/10 0,440727 10/10 0,428214 9/10 
0,439083 

 
10/10 

OverlappingTemplate 
 

0,534146 
 

10/10 0,350485 10/10 
0,739918 
 

10/10 
0,534146 
 

10/10 
0,017912 
 

10/10 

ApproximativeEntropy 0,213309 10/10 0,122325 10/10 0,350485 10/10 0,739918 10/10 0,122325 08/10 

RandomExcursions 

 
-- 2/2 -- 2/2 -- 2/2 -- 2/2 -- 2/2 

RandomExcursionsVaria
nt 

 

-- 2/2 -- 2/2 -- 2/2 -- 2/2 -- 2/2 

Serial 
 

0,911413 10/10 0,534146 10/10 0,534146 10/10 0,213309 10/10 0,739918 10/10 

LinearComplexity 0,534146 10/10 0,066882 10/10 0,066882 9/10 0,213309 10/10 0,739918 10/10 

 Block Frequency Test: Determines whether the 
frequency of ones and zeros in an M-bit block is 
approximately half. Pass condition is similar, with p-
values generally expected to exceed 0.01. 

 Cumulative Sums (Cusum) Test: Assesses whether the 
cumulative sum of the binary sequence fluctuates as 
would be expected for a random sequence. Passing 
usually requires p-values above 0.01. 

 Runs Test: Evaluates the sequence for runs of both ones 
and zeros of various lengths to determine if they appear 
too frequently or infrequently. To pass, the p-value 
should again be above 0.01. 

 Longest Run of Ones in a Block Test: Looks at blocks 
of the binary sequence to determine if the longest run of 
ones within these blocks conforms to the expected 
distribution for a random sequence. The p-value must 
be above 0.01 for a pass. 

 Binary Matrix Rank Test: Examines the rank of disjoint 
submatrices of the entire sequence. The proportion of 
matrices with full rank is compared against that 
expected for random matrices. The pass criterion is a p-
value above 0.01. 

 Discrete Fourier Transform (Spectral) Test: Checks for 
periodic features (peaks in the frequency domain) that 
would indicate a deviation from randomness. The p-
value must be greater than 0.01 to pass. 

 To pass the NIST STS test: 

 the P-value of each test must be greater than 0,01 

 The minimum pass rate for each statistical test with the 
exception of the random excursion (variant) test is 
approximately = 8 for a sample size = 10 binary 
sequences. 

 The minimum pass rate for the random excursion 
(variant) test is approximately = 1 for a sample size = 2 
binary sequences. 

 The random excursion and the random excursion 
variant require a minimum of 1,000,000 bits for each 
sequence. 

Our experimental analysis employed the NIST Statistical 
Test Suite (STS) as the evaluative benchmark to assess the 
efficacy of the key generation algorithm. The suite of tests 
applied included the Frequency, Block Frequency, Cumulative 
Sums, Runs, Longest Run of Ones in a Block, Matrix Rank, 
and the Fast Fourier Transform (FFT) tests. The compiled 
results are systematically presented in Table I. Notably, our 
algorithm demonstrated a robust performance, successfully 
passing all seven of the aforementioned NIST STS tests. For 
the purpose of this analysis, we standardized the bitstream 
length to 10 for the datasets procured from five distinct 
microcontrollers. The criterion for passing each individual test  
was established such that the P-Value must be equal to or 
greater than 0.01. The uniform success across this suite of tests 
underscores the reliability of our algorithm in generating keys 
that exhibit the requisite randomness and uniformity for 
security applications. 

B. Performance Analysis 

To assess the performance of our newly developed key 
generation algorithm, we conducted a series of meticulously 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 15, No. 3, 2024 

1083 | P a g e  

www.ijacsa.thesai.org 

planned experiments implementations across a range of IoT 
device types. 

1) Execution time and memory usage: To assess the 

performance analyses, we conducted the first implementation 

using two ESP32 microcontrollers (see Fig. 5). The first 

microcontroller was programmed to execute a very basic 

version of the Diffie-Hellman key exchange with small 

primitive numbers, generating a set of 100 keys as a reference 

for traditional cryptographic key exchange mechanisms. 

Concurrently, the second microcontroller was tasked with 

generating an equivalent set of 100 keys, utilizing our 

proprietary algorithm. This parallel generation scheme was not 

only intended to provide a direct performance comparison 

between the traditional Diffie-Hellman approach and our 

novel solution but also to demonstrate the practical 

applicability and efficiency of our algorithm in a real-world 

IoT environment. Table II show the subsequent comparison 

and analysis between the two protocols and also the proposed 

schemes by [10], [19], [20], [21], [22]. 

The examination of the execution time, as delineated in 
Table II, reveals that our algorithm exhibits superior suitability 
for IoT devices that operate under stringent constraints of 
energy, memory, and performance. This efficacy positions our 
algorithm as an optimal choice for deployment in resource-
limited environments where such considerations are 
paramount. 

The second implementation was designed in two Raspberry 
Pi Zero devices (see Fig. 6) to analyze and compare the 
execution time Table III and the memory usage Table IV of our 
algorithm against a strong and secure version of Diffie-
Hellman key exchange since the esp32 was crashed when 
trying to execute a strong version of Diffie-Hellman. 

Our experimental evaluation showcases the performance of 
our algorithm compared to a Strong Diffie-Hellman 

implementation across different metrics: execution time and 
memory usage. These experiments were conducted to generate 
varying quantities of keys (10, 100, and 1000) with different 
key lengths (32, 64, 128, and 256 bits). 

 
Fig. 5. Implementation scenario for execution time evaluation in ESP-

WROOM-32 MCU devices. 

TABLE II.  EXECUTION TIME ANALYSIS 

Algorithm Execution time in seconde 

Diffie-Hellman (basic version) 8,23 

[10] 3,10 

[19] 2,1 

[20] 1,22 

[21] 1,05 

[22] 0,37 

Our Proposed Algorithm 0,16 

 

TABLE III.  EXECUTION TIME RESULTS FOR GENERATING 10, 100, AND 1000 KEYS WITH VARYING LENGTHS 

Key length in 

bit 

Exec. time in ms for 10 keys generation Exec. time in ms for 100 keys generation Exec. time in for 1000 keys generation 

Our algorithm Strong DH Our algorithm Strong DH Our algorithm Strong DH 

32 bits 52,614 93,740 369,399 647,025 3290,118 5128,065 

64 bits 54,076 139,612 370,038 1772,165 3298,031 17316,150 

128 bits 55,109 756,192 374,688 6754,179 3324,974 70802,648 

256 bits 58,113 5136,845 391,013 40546,82 3441,168 Device bugs 

TABLE IV.  MEMORY USAGE (IN KILOBYTES) RESULTS FOR GENERATING 10, 100, AND 1000 KEYS WITH VARYING LENGTHS 

Key length in bit 

Mem. usage in KiB for 10 keys 

generation 

Mem. usage in kiB for 100 keys 

generation 

Mem, usage in KiB for 1000 keys 

generation 

Our algorithm Strong DH Our algorithm Strong DH Our algorithm Strong DH 

32 bits 0,718 0,994 1,160 1,772 1,173 1,861 

64 bits 0,855 0,951 1,186 1,815 1,195 1,904 

128 bits 0,901 2,015 1,296 2,827 1,310 1,173 

256 bits 1,128 3,590 1,570 4,954 1,583 Device bugs 
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a) Execution time: The execution time is critical in 

environments where quick key generation is essential for 

maintaining operational efficiency and responsiveness. Our 

algorithm demonstrates a consistently lower execution time 

across all tested scenarios, significantly outperforming the 

strong Diffie-Hellman algorithm version, especially as the 

number of keys and key lengths increase. Notably, for 1000 

keys generation, our algorithm maintained a practical 

execution time even at higher key lengths (32 bits: 3290.118 

ms, 64 bits: 3298.031ms, 128 bits: 3324.974 ms), whereas the 

strong Diffie-Hellman algorithm version showed a drastic 

increase in execution time, peaking at 70802.648 ms for 128 

bits, a device bug occurred during 256-bit key generation for 

strong DH, limiting data availability. This discrepancy 

highlights the efficiency of our algorithm in scenarios 

requiring large volumes of key generations. 

 
Fig. 6. Implementation scenario for execution time and memory usage 

evaluation  in Raspberry Pi Zero devices. 

b) Memory usage: Memory usage is another vital 

aspect, particularly for IoT devices with limited resources. Our 

algorithm exhibits significantly lower memory consumption 

across all tests. For instance, generating 100 keys of 256 bits 

only required 1,570 KiloBytes of memory for our algorithm, 

compared to 4,954 KiloBytes for Strong DH. This reduced 

memory footprint underscores our algorithm's suitability for 

resource-constrained environments, enabling secure 

communications without compromising device performance. 

2) Scalability: In our study, we prioritized the 

implementation of our algorithm on actual hardware over 

simulation to capture the nuances of real-world execution. 

This approach, leveraging physical devices, allowed us to 

obtain genuine performance metrics, reflecting the algorithm's 

operational efficiency in tangible IoT environments. While 

this methodology underscores the practical applicability and 

advantages of our solution under real operational conditions, it 

naturally constrains our ability to extensively evaluate the 

scalability of our algorithm across a vast network of devices. 

Recognizing this limitation, our future work will be dedicated 

to implementing our algorithm within a simulator. This 

strategic shift will enable us to rigorously assess the scalability 

of our solution, facilitating the evaluation over a considerably 

larger array of virtual devices. Such simulated environments 

will provide invaluable insights into the performance impacts 

and scalability potential of our algorithm, offering a 

comprehensive understanding of its efficacy in expansive IoT 

ecosystems. This dual approach grounding initial validation in 

physical implementations before extending evaluations 

through simulations strikes a balance between practical 

verification and extensive scalability testing, ensuring our 

solution is both robust and adaptable to the diverse needs of 

IoT infrastructures. 

3) Interoperability with IoT systems and protocols: In 

addressing the interoperability of our algorithm with existing 

Internet of Things (IoT) systems and protocols, it's crucial to 

highlight that our solution is designed for seamless integration 

at the application layer. This strategic choice enables our 

algorithm to function effectively without necessitating 

alterations to the underlying layers of the network 

architecture. Implementing our key generation mechanism at 

this level offers several distinct advantages: 

 Flexibility: By situating the algorithm at the application 
layer, it can be easily deployed across a wide range of 
IoT platforms and devices, regardless of their specific 
network configurations or protocols employed at lower 
layers. 

 Ease of deployment: Application layer implementation 
allows for the introduction of our security solution 
without the need to modify existing network 
infrastructures. This significantly reduces the 
complexity and cost associated with deploying 
enhanced security measures. 

 Versatility in application: Given the diverse nature of 
IoT applications, embedding our algorithm at the 
application layer ensures that it can be tailored to meet 
the unique security requirements of various use cases, 
from smart home devices to industrial IoT applications. 

 Compatibility: This approach maintains compatibility 
with existing standards and protocols at the transport 
and network layers, ensuring that our algorithm can be 
integrated into existing IoT ecosystems without 
interoperability issues. 

Recognizing the importance of widespread protocol support 
in enhancing the utility and adoption of our algorithm, our 
future research will focus on integrating our key generation 
mechanism with widely used IoT transport protocols, such as 
MQTT. MQTT (Message Queuing Telemetry Transport) is 
renowned for its lightweight and efficient communication 
capabilities, making it a staple in IoT deployments. By 
embedding our security solution within protocols like MQTT, 
we aim to provide end-to-end security in IoT communications, 
ensuring data integrity and confidentiality without sacrificing 
performance. This forward-looking approach not only broadens 
the applicability of our algorithm but also aligns with the 
evolving security needs of the IoT landscape, promising 
enhanced protection for devices and data in an increasingly 
connected world. 
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VI. CONCLUSION AND FUTURE SCOPE 

In this article, we introduced a novel key generation 
algorithm designed to circumvent the need for explicit key 
exchange, a requirement inherent in many established 
protocols, such as the Diffie-Hellman technique and others 
referenced in the related work section. Our algorithm is 
particularly well-suited for IoT devices due to its non-reliant 
nature on explicit key exchanges and its foundation upon a pre-
shared matrix. This matrix not only demands an insubstantial 
memory footprint but also possesses the capability to generate 
a vast array of unique keys, providing a new key for each 
individual exchange to maintain security integrity. 

However, while our algorithm marks a significant stride 
towards optimizing key generation for IoT devices, it is not 
without areas necessitating refinement. A critical aspect that 
we aim to enhance in our future work is the seed 
synchronization process. Ensuring robust synchronization in 
the seed selection, which initiates the key generating sequence, 
is crucial to thwart attacks targeted at the desynchronization of 
this phase. Furthermore, we plan to deploy our algorithm 
within an authentic IoT environment to thoroughly evaluate its 
resilience against various security threats, including Man-In-
The-Middle (MITM) attacks, and to accurately measure the 
energy consumption of IoT devices engaged in secure 
communication facilitated by our algorithm. 

Our ambition is for this algorithm to stand as a viable 
alternative to the Diffie-Hellman protocol, particularly in 
applications of IoT devices where resource constraints are a 
critical consideration. This is especially pertinent in 
conjunction with steganographic algorithms, such as those we 
have proposed in our prior work. Through the continued 
development and rigorous testing of our algorithm, we 
anticipate contributing a robust and energy-efficient solution to 
the field of IoT security, enhancing the safe and private 
exchange of information in an increasingly interconnected 
world. 
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