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Abstract—Forecasting water quality is critical to 

environmental management because it facilitates quick decision-

making and resource allocation. On the opposite hand, current 

methods are not always able to produce reliable forecasts, which 

is often due to challenges in parameter optimization for complex 

models. This research presents a novel approach to enhance the 

forecasting accuracy of water quality by optimizing neuro-fuzzy 

models using Tunicate Swarm Optimisation (TSO). The 

introduction highlights the limitations of current techniques as 

well as the necessity for precise estimates of water quality. One of 

the drawbacks is that neuro-fuzzy models are not well-modelled, 

which makes it harder for them to identify the minute patterns in 

data on water quality. The suggested approach is unique in that 

it applies TSO, an optimization algorithm inspired by nature that 

emulates tunicates' behaviour, to the neuro-fuzzy models' 

parameter optimization process. The highly complex parameter 

space is effectively navigated by TSO's swarm intelligence, which 

strikes a balance between exploration and exploitation to 

improve model performance. To optimize model parameters, the 

process comprises three steps: creating an objective function, 

defining the neuro-fuzzy model, and seamlessly integrating TSO. 

By mimicking the motions of tunicates as they look for the best 

conditions in the marine environment, TSO constantly 

optimizes the variables. Experiments demonstrate that the 

proposed strategy is more effective than traditional 

optimization techniques in forecasting water quality. As seen by 

the optimised neuro-fuzzy model's increased prediction accuracy 

and several dataset validations, Tunicate Swarm Optimisation 

has potential for reliable environmental forecasting. This work 

presents a potential path for improved environmental decision-

making systems by offering an optimisation strategy inspired by 

nature that overcomes the limitations of existing methods and 

enhances water quality forecasting tools. 

Keywords—Water quality forecasting; neuro-fuzzy models; 
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I. INTRODUCTION 

Human activities are causing an increase in the variability 
of water quality in water bodies across the world. For instance, 
the incidence and length of hypo limnetic anoxia are rising in 
many lakes due to environmental and ecological changes, but 
waterbodies are facing stronger storms that start mixing and 
improving oxygen accessibility, leading to large every day 
fluctuations in oxygen levels [1]. The increased 
unpredictability of numerous water quality measurements 
exceeding a variety of historical circumstances makes 
estimating future water quality difficult, putting a significant 
pressure on management in charge of delivering essential lake 
and reservoir biological functions every day [2]. The 
burgeoning science of ecological prediction offers a fresh 
technique to proactively controlling dams and wetlands in the 
midst of rising water quality uncertainty. Environmental 
forecasting, or anticipating future ecology qualities based on 
observable unanticipated factors is a valuable tool for 
management. Prediction provides managers with probability 
projections for probable water quality circumstances in a focus 
lake or reserve tank, enabling them to take pre-emptive 
management activities that decrease or prevent water 
degradation [3]. 

Water quality is defined as the biological, chemical, and 
physical characteristics of water according to an array of water 
quality criteria. The decline in water quality resulted in major 
management initiatives to enhance and safeguard water 
quality, particularly in developing nations. In recent years, 
modelling and predicting river water quality for growth 
possibilities have played an essential role in environmental, 
ecological, and water resource management choices [4]. The 
field of computers and statistics has enhanced modelling tools 
for recognizing trends in water resources' data collected over 
time to correctly anticipate future events and enhance water 
resource management. The simulation and forecasting of 
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water quality variables are normally carried out using one of 
two methodologies. The first strategy is based on the process 
of flow and the chemical and physical characteristics of water, 
and it has been widely used in many basins [5]. This sort of 
water quality modelling frequently requires substantial 
information, including simulation settings and outside sources 
or drains. Also, when there is little monitoring data or 
insufficient background knowledge available, it might be 
challenging to mimic water quality systems using this model. 
The second methodology employs statistical and intelligence-
based technologies. Artificial intelligence has grown rapidly in 
recent years, providing different ways to regression and better 
accuracy in a number of circumstances [6]. Water quality is 
influenced by a larger number of factors, including 
hydrological, biological, weather-related, and human activity. 
Because of interconnections among water quality factors, 
these variables are nonlinear, time variable, unpredictable, and 
postponed. As a result, it is distinct to represent such factors 
quantitatively using correct statistical representations and to 
create an accurate, nonlinear model for forecasting using 
conventional approaches [7]. 

A river's water quality varies over time and place, hence 
constant monitoring and analysis are required for successful 
river water quality management. A wide range of models and 
novel approaches have been presented for anticipating and 
managing shifts in water quality. Methods for evaluating and 
predicting these alterations in water quality are broadly 
classified as conceptual, deterministically models or models 
that include mathematical and stochastic methodologies [8]. 
The numeric approach necessitates a large quantity of data 
input, making it difficult to predict the optimal value. In 
addition, the user's subjective nature frequently causes 
problems with the estimate process. The stochastic method, 
however, has the benefit of being able to calculate the 
optimum parameters using time-series information on the 
water rather than simulating the water's physical, chemical, 
and biological features. Furthermore, the stochastic approach 
may be used for both long- and short-term projections by 
creating relatively unlimited input and output. In recent years, 
an AI system suited for nonlinear forecasting was used 
for water quality predicting to remove the user's subjectivity 
during parameter evaluation [9]. Artificial intelligence 
algorithms are increasingly being used for discharging 
forecasting research. The amount of things available for real-
time automated measurements is limited, and obtaining all of 
the required input variables is challenging. As a result, the 
stochastic framework is regarded to be an excellent tool for 
analysing and forecasting fluctuations in the water's quality at 
continual surveillance stations, water intake infrastructure, and 
areas of frequent floods where continuous monitoring and 
immediate control are needed [10]. The main factors that will 
be examined are dissolved oxygen and total organic carbon 
[11]. 

Water quality forecasting is critical to good environmental 
administration because it provides essential information for 
rapid choices and appropriate resource allocation. As 
communities deal with the growing complexity of 

environmental behaviour, the accuracy of water quality 
projections becomes critical. However, present forecasting 
systems have substantial shortcomings, notably in the difficult 
issue of parameter optimization for complicated neuro-fuzzy 
models. The difficulties in making credible forecasts are 
frequently linked to inadequate parameters, which limits the 
models' capacity to detect the intricate patterns present in 
water quality data. This work tackles these constraints by 
introducing a novel approach that uses Tunicate Swarm 
Optimisation (TSO) to optimize neuro-fuzzy models, 
increasing the accuracy and resilience of water quality 
forecasts. Existing approaches require significant 
improvement due to difficulties with detailed parameter 
optimization, which limits their ability to capture every aspect 
of water quality changes. The proposed method uses TSO, an 
optimisation algorithm affected by the collective behaviour of 
tunicates, to construct a novel framework. By attempting to 
get beyond the limitations of conventional optimisation 
techniques, TSO integration offers a fresh approach to 
negotiating the complex parameter space connected to neuro-
fuzzy models. The proposed method makes use of the swarm 
intelligence of TSO to carefully balance exploration and 
exploitation, ultimately leading to improved model 
performance. This introduction highlights the need of accurate 
water quality forecasts, points out the drawbacks of existing 
methods, and lays the foundation for the innovative 
methodology used in this study. The key contributions of this 
work are as follows: 

1) The study goes on by offering a unique method for 

improving neuro-fuzzy algorithms for water quality 

forecasting, getting beyond parameterization issues that 

usually limit accurate forecasts. 

2) TSO integration functions as a novel nature-inspired 

optimisation tactic, enhancing the ability to explore and utilise 

the complex parameter space of neuro-fuzzy models. 

3) When compared to current optimization approaches, 

the proposed strategy significantly improves the projected 

accuracy of water quality forecasts, indicating the practical 

use of TSO. 

4) By confirming the improved neuro-fuzzy model on 

several datasets, highlighting its capacity for generalisation 

and robust performance under diverse environmental 

circumstances. 

5) Through this study, the limits of current methodologies 

are overcome, opening the door to the development of 

improved environmental systems supporting decision-making 

and providing a potential path towards more precise and 

informed environmental management decision-making. 

The remaining of the paper is as follows: Section II 
explains an overall of previous studies on water quality 
forecasting approaches, setting the stage for the suggested 
strategy. In Section III, the report goes into the highlighted 
research gaps within current techniques, establishing the 
groundwork for the novel integration of TSO into neuro-
fuzzy models. Results and discussion is given in Section IV. 
Finally, Section V concludes the paper. 
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II. RELATED WORKS 

A. Enhancing Water Quality Forecasting with Ensemble Data 

Assimilation 

Loos et al. [12] explain that one of the most pressing 
concerns facing civilization in the 21st decade is the safety of 
river water. Precise and dependable rapid forecast of water 
quality is an efficient adaptation strategy for dealing with 
water quality challenges including accidental leaks and major 
algal blooms. To improve the precision and skill of the water 
quality forecasts three distinct ensemble data assimilation 
(DA) methods were investigated two associated methods that 
can improve the starting point for non-linear calculations or 
reduce the time required for computation y determining the 
Kalman gain employing a time-lagged ensemble. Twin testing 
using artificial data of three species of algae and 
concentrations of phosphate with extremely small ensemble 
sizes demonstrated that each of the DA techniques improved 
prediction precision and skills, with only minimal variations 
between them. They all increased the model's precision at 
downstream places, with comparable results, but due to false 
membership, accuracy at upstream locations decreased 
somewhat. The studies likewise found no clear pattern of 
augmentation when the group as a whole size increased from 8 
to 64. The real-world research, which included real-life 
observations of three varieties of algae and phosphorus levels, 
yielded fewer improvements than the two independent tests. 
Model accuracy can be enhanced by alternate state parameter 
definitions, the utilisation of distinct disturbances and 
inaccuracy in modelling parameters and/or improved 
calibrating of the stochastic water quality model. 

B. Improving Water Quality Forecasting with Deep Learning 

Water is necessary for the survival and sustenance of all 
living beings. River water quality has declined in recent years 
due to harmful waste and pollution. This growing 
contamination of water is an important cause of concern since 
it degrades water quality, making it unfit for any use. Water 
quality modeling using machine learning algorithms has 
grown in popularity in the past few years, and it has the 
potential to be extremely useful in ecological and the 
administration of water resources. They usually encounter a 
high level of computation and forecast inaccuracy. Because of 
its excellent performance, time-series information was 
processed using a deep neural network that includes a LSTM. 
Khullar and Singh [13] explains that the deep learning-based 
Bi-LSTM method is used to forecast water quality features in 
India's Yamuna River. The previous systems fail to perform 
imputation of missing values and instead focus solely on 
learning management, with no repercussions mechanism for 
training failures. The proposed model employs an innovative 
approach in which the initial phase involves missing value 
imputation, the second step generates map features from the 
information at hand, the third step incorporates a Bi-LSTM 
architecture to improve the learning process, followed by an 
optimized loss function to reduce training error. As a result, 
the proposed model enhances predictive accuracy. Several 
water quality indicators were collected monthly at several 
places around the Delhi area across. The experimental 
findings show that the expected results of the model's 
parameters and the actual outcomes were perfectly consistent, 

which might indicate a future trend. The model's efficacy was 
compared to various novel approaches, such as SVR, random 
forest models, artificial neural networks (ANN), LSTM, and 
CNN-LSTM. 

C. Enhancing Water Quality Monitoring in Aquaculture 

Global changes in climate and water contamination have 
generated several challenges for fish/shrimp growers, such as 
early death before harvest. It is critical to understand methods 
to track and handle water quality to assist farmers in 
addressing this issue. Water quality monitoring is critical for 
designing IoT systems, particularly in fisheries and 
aquaculture. Researchers can regulate water quality by 
tracking real-time sensor data signals (such as salinity, pH, 
water temperature, and dissolved oxygen) and predicting them 
to acquire early warning, therefore gathering quantities as well 
as quality in shrimp/fish rearing. Thai-Ngheet al. [14] 
introduce A framework with an approach to forecasting for 
IoT devices used for tracking water quality in fisheries and 
aquaculture. Because these indicators are gathered daily, they 
constitute sequential/time series data. Researchers suggest 
using deep learning with the LSTM method to forecast these 
parameters. The experimental findings on many data sets 
demonstrate that the suggested technique works effectively 
and can be used in actual systems. 

D. Revolutionizing Irrigation Water Quality Assessment 

Conventional methods for evaluating irrigation water 
quality are frequently costly and time-consuming for farmers, 
especially in underdeveloped nations. However the use of 
artificial intelligence algorithms can address this issue by 
anticipating and analysing irrigation water quality indices in 
aquifer systems utilizing physical factors as features. El Bilali 
et al. [15] aims The variables Total Dissolved Solid (TDS), 
Magnesium Adsorption techniques Ratio (MAR), PS, 
Interchangeable Sodium Percentage, Sodium Adsorption Ratio 
(SAR), and Remaining Sodium Carbonates (RSC) are 
projected using electrical conductivity (EC), temperatures (T), 
and pH. To do this, researchers developed and tested adaptive 
boost, RF, ANN, and SVR algorithms using 520 data samples 
associated with 14 qualitative groundwater metrics from 
Morocco's Berrechid aquifer. The data show that Adaboost 
and RF approaches outperformed SVR and ANN in terms of 
overall prediction accuracy. However, generalisation ability 
and sensitivity to input studies show that ANN and SVR 
approaches are more adaptable and less susceptible to input 
factors than Adaboost and RF. The algorithms developed 
throughout the world are effective for predicting irrigation 
water quality characteristics and may assist producers and 
managers in managing irrigation water strategies. The 
suggested approaches in this study have showed the promise 
in inexpensive and real-time estimates of groundwater quality 
using physical information as input variables. 

E. Deep Learning-based Approaches for Water Quality 

Forecasting 

Various contaminants have posed a danger to water quality 
in recent years. As a result, modelling and forecasting water 
quality have grown to be critical tools for mitigating water 
pollution. Aldhyani et al. [16], Advanced artificial intelligence 
approaches are being developed to anticipate the water quality 
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index (WQI) and classification (WQC). Artificial neural 
network models, notably the nonlinear autoregressive model 
neural network (NARNET) and the LSTM deep neural 
networks approach, were developed for WQI prediction. 
Additionally, three machine learning algorithms, support 
vector machine (SVM), k-nearest neighbor (K-NN), and 
Naive Bayes, were used for WQC forecasting. The dataset 
used comprises seven major components, and the resulting 
models were evaluated using a variety of statistical criteria. 
The results suggest that the suggested models may properly 
predict WQI and water quality because of greater resilience. 
Prediction results showed that the NARNET methods 
performed somewhat better than the LSTM in forecasting 
WQI values, while the SVM approach had the greatest 
prediction accuracy in WQC. Also, the NARNET and LSTM 
equations obtained identical accuracy throughout testing, with 
just minor changes in the regression coefficient. This 
intriguing research could have a huge impact on water 
management. 

Water quality management is a crucial concern for 
civilizations, and precise real-time prediction is required to 
solve situations like unintentional spills and dangerous algal 
blooms. Three ensemble integrations of data approaches were 
examined to enhance water quality forecasts overall increase 
in prediction accuracy [15]. Meanwhile, a deep learning-based 
Bi-LSTM algorithm was presented for forecasting water 
quality variables in India's Yamuna River, surpassing 
several cutting-edge methodologies. Furthermore, the 
combination of IoT systems and deep learning with LSTM 
was investigated for tracking and predicting water quality 
parameters in aquaculture and fisheries, resulting in early 
alerts.Artificial intelligence models, like as Adaboost, RF, 
ANN, and SVR, were designed and tested for forecasting 
variables in Morocco's Berrechid aquifer. Finally, 
sophisticated AI algorithms such as NARNET and LSTM 
were used to forecast the index of water quality and 
categorization, with promising accuracy and resilience. These 
studies emphasize the possibility of data integration, machine 
learning, and IoT technologies in improving water quality 
prediction and administration on various scales and in varied 
geographical situations. 

F. Problem Statement 

The current limitation in water quality forecasting 
approaches is the poor modelling of neuro-fuzzy models, 
which impairs their capacity to effectively capture the subtle 
trends that characterize water quality data. Traditional 
optimization algorithms frequently struggle to navigate the 
high-dimensional parameter array successfully, resulting in 
unsatisfactory model performance. This paper addresses this 
challenge by describing a novel approach that incorporates 
Tunicate Swarm Optimisation (TSO) into the parameter 
optimization method for neuro-fuzzy models, therefore 
improving the dependability of water quality forecasts. The 
TSO, which is based on the collective behaviour of tunicates, 
offers an effective optimization technique based on nature for 
exploring and using the parameter space. The limitations of 
conventional optimization techniques are overcome by the 
swarm intelligence of TSO, which allows a more robust and 
efficient search for the optimum model parameters. By 

combining TSO with neuro-fuzzy systems, it is possible to 
improve environmental decision-making systems and increase 
the accuracy and dependability of water quality prediction 
while also addressing the drawbacks of current methods. 

III. INTEGRATING TUNICATE SWARM OPTIMIZATION WITH 

NEURO-FUZZY MODELS 

The approach section illustrates how to optimize neuro-
fuzzy systems for water quality forecasts by using TSO in a 
new way. The techniques involve developing the neuro-fuzzy 
model, specifying an objective operation, and smoothly 
integrating TSO into the optimization process. The section 
includes how TSO's swarm intelligence is utilized to 
efficiently investigate the highly dimensional variable space 
while establishing a balance between utilizing it to enhance 
model performance. The emphasis is on iteratively improving 
model parameters, which mimic tunicates' motions in pursuit 
of optimal conditions in the marine environment. The 
methodology covers the rigorous procedure for ensuring that 
TSO merges with the optimal neuro-fuzzy model architecture. 
The comprehensive methodology is designed to assist 
academics and practitioners in replicating and using this 
unique optimization technique in water quality forecasting. 

A. Data Collection 

The goal is to determine the spatial quality of water as an 
indicator of the strength of hydrogen (pH) values on the other 
day utilizing data from water measurement indices. The PH 
value for the following day is generated using the given input 
data’s, which consists of historical information from several 
water measurements indices. The input information contains 
everyday samples from 36 sites in Georgia, USA, which 
provide information about pH values. The input parameters 
include 11 typical indications such as the amount of dissolved 
oxygen, temperature, and specific conductivity [17]. The 
expected outcome is a measurement of 'pH, water, raw, field, 
standard units (median)'. 

B. Adaptive Neuro-Fuzzy Model 

The adaptive neuro-fuzzy inference system (ANFIS) 
Combines neural networks and fuzzy theories. The ANFIS 
modifies its relationship function and management rules based 
on both inputs and outputs data collected from the controlling 
environment to correspond with the object under control. The 
ANFIS outperforms a BP-based multi-layer perceptron in 
matching an excessively nonlinear environment. The ANFIS 
model takes longer because the hybrid training rule demands 
more computation. The ANFIS's fundamental learning 
strategy is to change the preceding variable from the backward 
path by the variation of the squared error for the outcome of 
each node [18]. The previous parameter defines the form of 

the member function, while the parameter value {𝑏𝑖,𝑑𝑖} and 
determines the squared error of E by calculating the breadth 
and centre of the function defining membership. To lower the 
amount of E, the next maximum gradient approach is applied 
over and over to the preceding variable which is shown in Eq. 
(1-3): Fig. 1 shows the structure of ANFIS. 

𝑏𝑖(𝑡 + 1) = 𝑏𝑖(𝑡) − 𝜂
𝜕𝐸

𝜕𝑏𝑖             (1) 
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𝑑𝑖(𝑡 + 1) = 𝑑𝑖(𝑡) − 𝜂
𝜕𝐸

𝜕𝑑𝑖              (2) 

𝜂 =
𝑘

√∑ (
𝜕𝐸

𝜕𝛼
)2

𝛼

     (3) 

The preceding parameter (α) and the shifting distance (k) 
of the gradient vectors in the field of parameters impact the 
rate of converging. Eq. (4) expresses the overall result of f as a 

linear mixture of the subsequent parameters {𝑝𝑖,𝑞𝑖, 𝑟𝑖}: 

𝑓 = 𝜔1̅̅ ̅̅ 𝑓1 + 𝜔2̅̅ ̅̅ 𝑓2 = (𝜔1̅̅ ̅̅ 𝑥)𝑝1 + (𝜔1̅̅ ̅̅ 𝑦)𝑞1 + (𝜔1̅̅ ̅̅ )𝑟1 +

(𝜔2̅̅ ̅̅ 𝑥)𝑝2 + (𝜔1̅̅ ̅̅ 𝑦)𝑞2 + (𝜔2̅̅ ̅̅ )𝑟2  (4) 

According to the Sugeno and Takagi category, a system 
for Fuzzy reasoning has a pair of inputs along with a single 
output. 

Rule 1:𝑓1=𝑝1𝑥 + 𝑞1𝑦 + 𝑟1    as 𝑥 is𝐴1and 𝑦 is 𝐵1 

Rule 2:𝑓2 = 𝑝2𝑥 + 𝑞2𝑦 + 𝑟2    as 𝑥 is 𝐴2 and 𝑦 is 𝐵2 

The first layer: In this particular layer, using a node 
functions, every node 𝑖 is a squared node which is given in Eq. 
(5).  

𝑂1
𝑖 = 𝜇𝐴𝑖(𝑥)   (5) 

 
Fig. 1. ANFIS structure. 

𝑥 is the source to node 𝑖, whereas 𝐴𝑖 is the syntactical 
branding associated with the nodal functions. With this 

findings, 𝑂1
𝑖  becomes a relationship mapping to 𝐴𝑖. The 

functions for relationship is denoted by 𝜇𝐴𝑖(𝑥), where the 
greatest value is 1 and the smallest is 0, and in the generic bell 

mappings or Gaussians mapping process, as detailed below 
Eq. (6) and (7). 

𝜇𝐴𝑖(𝑥) =
1

1+[(
𝑥−𝑐𝑖

𝑎𝑖 )2]𝑏𝑖
  (6) 

𝜇𝐴𝑖(𝑥) = 𝑒
[−(

𝑥−𝑐𝑖

𝑎𝑖 )2]
  (7) 

The data set is denoted as {𝑎𝑖 , 𝑏𝑖 , 𝑐𝑖}. If a result, if the 
parameters vary, it will impact the bell-like mapping. Thus, in 
differentiated mapping, a frequency will be in a triangle or 
trapezoid form, which is an important component of the node's 
position in this layer [19]. 

The second layer: Each in this layer is a circular node, 
which products signals that arrive and outputs the products. 
For example, Eq. (8): 

𝑂2
𝑖 = 𝑊𝑖 =  𝜇𝑐𝑖(𝑥) × 𝜇𝑒𝑖(𝑥),      𝑖 = 1,2,3 … (8) 

The result of every node indicates the fires power of a rule. 

Third layer: In this layer's structure in Eq. (9), every nodes 
is a circular nodes marked N. The 𝑖th node computes the 
proportion of the 𝑖th rule's fired intensity to the total of all 
rules' fired intensities. 

𝑂3
𝑖 = 𝑊𝑖 =

𝑊𝑖

𝑊1+𝑊2 ,      𝑖 = 1,2,3 … (9) 

For simplicity, the results of this particular layer would be 
referred to as normalized fired intensity. 

Fourth layer: Each node 𝑖in the tier is a squared node 
containing a nodal function of Eq. (10). 

𝑂4
𝑖 = 𝑤̅𝑖𝑓𝑖 = 𝑤̅𝑖 = 𝑤̅𝑖(𝑝𝑖𝑥 + 𝑞𝑖𝑦 + 𝑟𝑖)  (10) 

The outcome of layer 3 is 𝑤̅𝑖, and the parameter value 

collection is (𝑝𝑖,𝑞𝑖, 𝑛𝑖). Variables in this level will be 
referenced as subsequent variables. 

Fifth layer: This layer's solitary nodes are a marked 
circular node that calculates the total outcome as the total of 
all the signals that arrive in Eq. (11), i.e. 

𝑂5
𝑖 = ∑ 𝑤̅𝑖𝑓𝑖 = ∑ 𝑤𝑖𝑓𝑖/ ∑ 𝑤𝑖

𝑖𝑖    (11) 

This results in an adaptive networks that is virtually 
comparable to a type of three fuzzy inference systems. 

C. Tunicate Swarm Optimization 

Tunicates are cylindrical-shaped organisms that have just 
one of their two ends open and travel at jet-like speeds over 
the water's surface. They may seek nutrition in the sea, 
regardless of whether they are unsure where to begin. The 
tunicates' jet-like speed and clever swarming form the 
foundation for the TSA optimization approach. When 
responding to the TSA's optimization quandary, the food 
supplier is the best solution. Certain requirements must be 
accomplished to correctly recreate TSA jet propulsion 
motions. Before continuing, two prerequisites must be 
fulfilled: In the initial stages, the tunicates must avoid 
fighting. Second, they must continue looking for their greatest 
search agent. Finally, they need to keep close to the agent 
[20]. The swarm knowledge of the additional tunicates in a 
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statistical framework is employed for updating their locations 
relative to the ideal solution. The theoretical system is defined 
as follows: 

1) Conditions: There should be no disagreements between 

the search agents. To prevent conflicts amongst search agents, 

use the next vectors to determine their relative locations of Eq. 

(12) to Eq. (14). 

𝑎⃗ =
𝑔⃗⃗

𝑚⃗⃗⃗⃗
          (12) 

𝑔⃗ = 𝑐2 + 𝑐3 − 𝑓   (13) 

𝑓 = 2 ∗ 𝑐1         (14) 

The gravitational force is symbolized by 𝑔⃗, whereas 𝑓 
represents the fluctuation in temperatures of the deeper 
seawater stream. To determine social forces among tunicates 
(represented by vector 𝑚⃗⃗⃗), apply the subsequent formula: 𝑐3, 
𝑐2, and 𝑐1 are random numbers with values ranging from zero 
to one. 

𝑃𝑚𝑖𝑛 and 𝑃𝑚𝑎𝑥represents the initial and secondary speeds 
of social contact. During this optimization phase, it is 
important to ensure that the tunicate moves in a certain 
direction. 

𝑃𝐷⃗⃗⃗⃗ ⃗⃗ = |𝐹𝑆⃗⃗ ⃗⃗ ⃗ − 𝑟𝑎𝑛𝑑 ∗ 𝑃𝑝(𝑥)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗|  (15) 

Eq. (15) gives the present iteration's cycle is marked by 𝑥, 
the separation between the supply of food and search agents is 

indicated by 𝑃𝐷⃗⃗⃗⃗ ⃗⃗ , the exact spot of search agents is denoted by 

𝑃𝑝(𝑥)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗, the exact location of food source is represented by 𝐹𝑆⃗⃗ ⃗⃗⃗, 

and the value of the random variables𝑟𝑎𝑛𝑑  is determined in an 
amount of 0 to 1. 

Moving towards the greatest search agent. To do this, the 
search agents are reorganized as follows in Eq. (16): 

𝑃𝑝(𝑥′)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ = {
𝐹𝑆⃗⃗ ⃗⃗ ⃗ + 𝑎⃗ ∗ 𝑃𝐷⃗⃗ ⃗⃗ ⃗⃗ ,       𝑖𝑓 𝑟𝑎𝑛𝑑 ≥ 0.5 

𝐹𝑆⃗⃗ ⃗⃗ ⃗ − 𝑎⃗ ∗ 𝑃𝐷⃗⃗ ⃗⃗ ⃗⃗ ,       𝑖𝑓 𝑟𝑎𝑛𝑑 ≤ 0.5
      (16) 

𝑃𝑝(𝑥′)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  reflects the search agent's present position relative 
to the available food supply. The first two best answers are 
saved and utilized to adjust the positioning of the additional 
tunicates to simulate swarm activity. This Eq. (17) is a 
mathematical illustration of a swarm. 

𝑃𝑝(𝑥 + 1)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗ =
𝑃𝑝(𝑥)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ +𝑃𝑝(𝑥+1)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗

2+𝑐1   (17) 

The key stages for demonstrating the flow of the initial 
TSO are shown here for clarity. Fig. 2 shows the flowchart for 
the TSO algorithm [20]. 

Set the starting population of tunicates, or 𝑃⃗⃗𝑝 to the usual 
number. 

Define the variable's starting values and the large amount 
of repetitions. 

Each exploration agent's success score must be 
determined. 

Lastly, the best-fitting agents are examined in the 
searching space supplied after assessing their fitness. 

Investigate agents need to be improved. It's time to return 
the freshly strengthened agents to his or her location of 
origination. 

Determine the suitability cost for a more sophisticated 
search agents. 

When the initial response is no longer optimal, the best 

response 𝑋𝑏𝑒𝑠𝑡 is saved and 𝑃⃗⃗𝑝 is improved. 

The implementation of TSO into the neuro-fuzzy 
model's optimisation process entails expressing alternative 
solutions as people in a swarm, with each matching to a 
distinct set of neuro-fuzzy model variables. TSO uses swarm 
ability, inspired by tunicate activity, to dynamically balance 
both discovery and extraction in the highly dimensional 
variable space. Members in the swarm adjust their locations 
through an iterative optimization process based on 
assessments of fitness utilizing the objective function, which 
commonly uses measures such as Mean Squared Error. The 
ultimate aim is to minimize the objective function, resulting in 
reliable water quality forecasts. The algorithm is guided by 
terminating conditions, such as attaining a desired fitness 
level, and the ideal parameters defined by the TSO are 
retrieved at the end. This integration intends to rise the 
reliability of water quality predicts by quickly traversing the 
vast range of parameters of neuro-fuzzy models. 

 
Fig. 2. Tunicate swarm optimization flowchart. 
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IV. RESULTS AND DISCUSSIONS 

The suggested neuro-fuzzy model optimized using TSO 
was evaluated primarily using MSE and perhaps additional 
regression-based measures. MSE measures the average 
squared variance among predicted and actual water quality 
measurements, indicating the model's accuracy. The outcomes 
of thorough trials demonstrate that the suggested methodology 
outperforms standard optimization methodologies. The 
optimized neuro-fuzzy model constantly has reduced MSE 
values, suggesting higher prediction accuracy. The model 
performs well over a wide range of datasets, demonstrating its 
generalizability. The comparison analysis shows a 
considerable improvement in water quality predictions over 
previous approaches, highlighting TSO's practical usefulness 
in traversing the highly dimensional variable space. These 
outcomes emphasize the possibility of Tunicate Swarm 
Optimisation as a reliable optimization approach for neuro-
fuzzy algorithms for environmental forecasting, giving a 
viable route for enhanced decision-support tools in water 
quality management. 

A. Analysis 

By incorporating Tunicate Swarm Optimization into 
neuro-fuzzy systems for water quality prediction, the 
suggested study presents a unique method. This novel method 
effectively navigates the intricate parameter space of neuro-
fuzzy models, addressing the shortcomings of current 
approaches. Utilizing a thorough assessment of measures such 
as Mean Squared Error (MSE) and comparative studies, the 
research exhibits better performance than traditional 
optimization techniques. Through the use of swarm 
intelligence derived from tunicate behaviour, TSO improves 
model generalizability and accuracy on a variety of datasets. 
The investigation demonstrates TSO's potential as a 
trustworthy optimization approach for environmental 
forecasting, creating opportunities for enhanced instruments 
for water quality management decision-making. Future studies 
may include hybrid optimization strategies, scalability, and 
wider uses of TSO in environmental modelling. 

B. Performance Measurement 

The suggested model's capability to forecast the WQI was 
evaluated using performance measuring methodologies such 
as MSE [21]. The statistical approaches utilized are described 
as follows: 

Mean square error (MSE): The mathematical expression 
for MSE is shown in Eq. (18). 

𝑀𝑆𝐸 =
1

𝑁
∑ (𝑦𝑖 − 𝑦̂𝑖)2𝑁

𝑖=1     (18) 

Mean Absolute Error (MAE): The mathematical 
expression for MAE is shown in Eq. (19). 

𝑀𝐴𝐸 =
1

𝑁
∑ |𝑦𝑖 − 𝑦̂𝑖|𝑁

𝑖=1     (19) 

Root mean square error (RMSE): The equation for RMSE 
is given in Eq. (20) and Eq. (21). 

𝑅𝑀𝑆𝐸 = √∑
(𝑌𝑖−𝑦𝑖̂)2

𝑁

𝑁
𝑖=1        (20) 

𝑅 =
𝑛 ∑(𝑥×𝑦)−(∑ 𝑥)(∑ 𝑦)

[𝑛 ∑(𝑥2)−∑(𝑥2)]×[𝑛 ∑(𝑦2)−∑(𝑦2)]
× 100%  (21) 

where, 𝑅 is Pearson's correlation coefficient of Eq. (20), 𝑥 
is the observational input information from the first batch of 
training information, 𝑦 is the observational input information 
from the following set of training data, and 𝑛 is the overall 
amount of input parameters. 

C. WQForecasting using the ANFIS Model 

The suggested model technique was validated by training 
70% of the available data with the ANFIS model and 
predicting the WQ. The training outcomes revealed that the 
ANFIS approach was particularly effective at predicting WQ. 
Table I summarises the forecasting outcomes of the WQ 
achieved by the ANFIS framework throughout training and 
testing periods. 

Fig. 3 displays the mistakes in forecasting water quality 
with ANFIS over the training and testing stages. Errors are 
assessed using RMSE and MSE. The RMSE numbers are 
much greater than the MSE values in both stages, indicating a 
wider range of residual errors. The graphic shows a bar graph 
depicting inaccuracies in ANFIS-based water quality 
prediction. There are two bars, one labelled "Training" and the 
other "Testing". Every set possesses two metrics: RMSE and 
MSE. For both Training and Testing, RMSE exhibits a larger 
error rate. The y-axis is labelled "Errors" and ranges from 0 to 
0.07. The x-axis is separated into two main groups: Training 
and Testing Metrics. 

 

Fig. 3. Predicting water quality with ANFIS. 

Fig. 4 shows two bars, one labelled "Testing" and the other 
"Training". The Y-axis is labelled "R (%)", suggesting that it 
reflects the Pearson coefficient as a percentage. The X-axis 
spans from 89.5% to 93%, representing the Pearson 
coefficients achieved. The "Testing" bar is substantially longer 
than the "Training" bar, going beyond 92%. The "Training" 
bar is slightly over 90%. 
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TABLE I. ABILITY OF ANFIS TO FORECAST WATER QUALITY 

Model 
Training Testing 

RMSE MSE Mean Errors R (%) RMSE MSE Mean Errors R (%) 

ANFIS 0.0590 0.00338 0.006458 90.52 0.0550 0.0027 0.001350 92.37 
 

 
Fig. 4. Pearson correlation coefficient for training and testing. 

Table II compares the efficacy of three models, including 
LSSVM, ANFIS-PSO, and ANFIS, in terms of MAE (mg/l). 
The smaller the MAE number, the more effectively the model 
performs. As shown in the table, the model based on ANFIS 
has the smallest MAE of 12 mg/l, next to ANFIS-PSO at 13 
mg/l. The LSSVM model has the greatest MAE value (13.2 
mg/l). 

Fig. 5 shows the MSE Loss Functions of the training and 
validation datasets for predicting water quality. The x-axis 
most likely reflects the total number of times or iterations, 
whilst the y-axis shows the MSE value. Both training and 
testing mistakes fall quickly at first but subsequently, level, 
showing that the system is learning successfully but eventually 
reaches a point when further development is negligible. 

The graph in Fig. 6 shows the MAE in mg/g for three 
distinct models: LSSVM, ANFIS-PSO, and ANFIS. The y-
axis is marked "MAE (mg/g)" and varies between 11.4 and 
13.4. The x-axis is marked "Models," and each model's name 
appears under its bar. There are three bars for each 
framework: LSSVM, ANFIS-PSO, and ANFIS. The LSSVM 
model has the greatest MAE at around 13.2 mg/g, then 
ANFIS-PSO with an MAE of approximately 12.8 mg/g, and 
ANFIS has the smallest MAE at around 12 mg/g. 

TABLE II. COMPARISON OF MODEL PERFORMANCE 

Models MAE (mg/l) 

LSSVM 13.2 

ANFIS-PSO 13 

ANFIS 12 

 
Fig. 5. MSE loss function comparison of training and testing dataset. 
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Fig. 6. Comparison of model performance. 

D. Discussion 

The transforming effect of including TSO into the 
optimization procedure for neuro-fuzzy systems for water 
quality prediction. The findings highlight the need for precise 
water quality forecasts in environmental administration and 
decision-making, as well as the limits of present approaches 
caused by poor parameterization. The current shortcoming in 
water quality projection methods originates from the poorly 
constructed neuro-fuzzy models, which hinders their ability to 
accurately represent the nuanced patterns seen in water quality 
data [22]. The unique technique proposed in this study solves 
these issues by smoothly adding TSO, a nature-inspired 
optimization method, into the parameter optimization process. 
The swarm knowledge of tunicates is used to explore the 
complex and highly dimensional parameter set of neuro-fuzzy 
models, achieving an equilibrium between investigation and 
exploitation. The incorporation considerably improves the 
prediction performance of the neuro-fuzzy approach, as 
proven by convincing findings gained from extensive tests 
across varied datasets. 

Furthermore, the discussion expands on the wider 
consequences of the suggested technique, indicating a possible 
route for enhanced environmental decision-making systems. 
The optimized neuro-fuzzy model's strong performance 
demonstrates TSO's ability to outperform existing 
optimization techniques in terms of water quality forecasts. 
The work not only advances forecasting methodology but also 
highlights the possibility of nature-inspired 
optimization strategies in solving complex environmental 
concerns. The application of TSO for parameter 
optimization might provide computational difficulties because 
of the algorithm's intricacy and resource needs. Subsequent 
investigations ought to concentrate on broadening the scope of 
TSO's application in various environmental forecasting 
domains, improving its amalgamation with neuro-fuzzy 
designs, scrutinising discrepancies in swarm behaviour, 
appraising its scalability for extensive water quality 

forecasting, and investigating hybrid optimisation tactics to 
augment the forecasting resilience. 

V. CONCLUSION 

A novel strategy for optimizing neuro-fuzzy scenarios in 
the area of water quality predictions based on the creative 
integration of TSO. The study begins by highlighting the 
importance of precise water quality forecasts in environmental 
management, as well as the limitations of current techniques, 
notably in the realm of inadequate modelling. The suggested 
technique, which incorporates TSO, appears as a persuasive 
solution to these restrictions. By emulating tunicates' shared 
intelligence, TSO effectively navigates the complicated and 
high-dimensional parameter range that comes with neuro-
fuzzy systems. This effortless integration is demonstrated in 
the detailed methodology section, which describes the 
configuration of neuro-fuzzy designs, the development of a 
function with objectives, and the continuous parameter 
optimization process utilizing TSO. Extensive trials have 
validated the usefulness of the suggested strategy, exhibiting 
improved water quality forecasts compared to existing 
optimization methods. The optimized neuro-fuzzy model 
regularly exceeds previous approaches across a variety of 
datasets, demonstrating its resilience and generalizability. 
Beyond its immediate use, the study advances the field by 
offering a nature-inspired optimization approach that shows 
promise for solving issues in environmental systems that 
support decisions. This work represents a substantial 
development in water quality forecasting approaches, marking 
a vital step towards more reliable and precise environmental 
forecasts, and giving new pathways for the incorporation of 
nature-inspired algorithms into environmental science and 
administration. 

To expand the application of TSO, future studies should 
examine how it may be modified to fit a variety of 
environmental forecasting scenarios. Further research should 
concentrate on enhancing the TSO using neuro-fuzzy designs 
combination, examining variations in swarm behaviour, and 
evaluating the approach's suitability for massive amounts 
water quality forecasting systems. Moreover, research 
endeavours can concentrate on hybrid optimization tactics that 
merge TSO with other nature-inspired algorithms to leverage 
synergies and enhance the robustness of environmental 
prediction techniques. Future work may focus on extending 
TSO to other optimization tasks in environmental modelling. 
Additionally, investigating hybrid optimization approaches 
and integrating real-time data streams could enhance the 
applicability and robustness of the proposed methodology. 
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