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Abstract—The catalytic cracking-based process for lightening
heavy oil yields gasoline products with sulfur and olefin contents
surpassing 95%, consequently diminishing the Research Octane
Number (RON) of gasoline during desulfurization and olefin
reduction stages. Hence, investigating methodologies to mitigate
RON loss in gasoline while maintaining effective desulfurization
is imperative. This study addresses this challenge by initially
performing data cleaning and augmentation, employing box plot
modeling and Grubbs’ test for outlier detection and removal.
Subsequently, through the integration of mutual information and
the Lasso method, data dimensionality is reduced, with the top
30 variables selected as primary factors. A predictive model
for RON loss is then established based on these 30 variables,
utilizing random forest and Support Vector Regression (SVR)
models. Employing this model enables the computation of RON
loss for each data sample. Comparing with existing methods, our
approach could ensure a balance between effective desulfurization
and mitigated RON loss in gasoline products.

Keywords—Feature selection; random forest model; support
vector machine model; RON loss

I. INTRODUCTION

Gasoline stands as a cornerstone of automotive fuels, yet its
combustion releases harmful substances into the atmosphere,
notably sulfur and olefin components. Given that gasoline
production predominantly hinges on heavy oil as a feedstock,
characterized by high impurity levels, the quest for cleaner
gasoline has emerged as a central concern within the industrial
sphere.

The Research Octane Number (RON) serves as a crucial
indicator of gasoline’s ability to withstand compression ratios.
In scenarios where gasoline attains high quality, devoid of
impurities and undesired chemical substances, the RON stands
as the most scientifically robust, precise, and widely embraced
benchmark for evaluating gasoline’s actual performance. How-
ever, the presence of desulfurization and olefin reduction
technologies often leads to a decrease in gasoline’s RON,
directly impacting economic efficiency. Consequently, within
the realm of catalytic cracking gasoline production, the focus
has shifted towards reducing sulfur and olefin content while
preserving RON.

Currently, numerous scholars are actively engaged in re-
searching the accurate calculation of Research Octane Num-
ber (RON). Regression analysis methods are commonly em-
ployed for constructing RON prediction models owing to
their simplicity and convenience [1]. However, in industrial
settings, collected data may contain unnecessary redundancies,
leading to collinearity issues among variables. To address

this challenge, some researchers have proposed algorithmic
enhancements aimed at eliminating data collinearity.

Kardamakis et al. [2] were among the first to utilize
Linear Predictive Coding (LPC) to process noise and eliminate
collinearity, subsequently employing the MLR algorithm to
construct an RON prediction model based on near-infrared
spectroscopy. Similarly, Benavides [3] introduced regulariza-
tion to constrain the objective function of MLR, effectively
resolving collinearity issues. They further combined ridge
regression with near-infrared spectroscopy to develop an RON
prediction model. Moreover, recognizing the limitations of
traditional single models in addressing diverse and complex
operating conditions, Xie et al. [4] proposed a research-based
RON prediction model utilizing the random forest regression
algorithm. Wang et al. [5], by optimizing the desulfurization
process, established an RON loss model using residual analysis
and the least squares method, analyzing the impact of reducing
operational steps on decreasing RON loss during desulfuriza-
tion. Furthermore, Liu et al. [6] incorporated gasoline RON
as one of the modeling variables and constructed a prediction
model based on the principles of random forest classification,
with gasoline RON as the dependent variable, to predict RON
loss during the desulfurization process.

Despite the significant progress made by numerous scholars
in RON prediction research, meeting increasingly stringent
fuel standards and the growing demand for accurate RON
predictions remains challenging.

Given the complex and variable nature of operating con-
ditions, this paper focuses on the RON and sulfur content of
the products. To establish a predictive model for RON loss,
we utilized a large volume of historical data accumulated over
nearly four years from a petrochemical company’s refining and
desulfurization unit, and employed data mining techniques [7]
to construct an optimization model. The main contributions of
this paper are as follows:

1) We employed box plot modeling and Grubbs’ test to
pinpoint data samples and eliminate outliers. Subse-
quently, in conjunction with mutual information and
the Lasso method [8], we performed dimensionality
reduction on the data variables to select the key
variables.

2) We established a prediction model for Research Oc-
tane Number (RON) loss using the random forest
and support vector regression (SVR) models [9]. This
model facilitated the computation of RON loss for
each data sample.

3) We employed the conjugate gradient method [10] to
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establish an optimization model for the key variables,
ensuring that the sulfur content of the product does
not exceed 5 µg/g while RON loss remains below
30%. We used the random forest model [11] to
optimize the key variables in the data samples, pro-
gressively reducing RON loss by iteratively adjusting
operational variables.

In the forthcoming sections of this paper, we delineate
a structured approach. Section II furnishes the preliminary
knowledge essential to our scheme, while Section III describes
the details of our proposed solution. Section IV describes our
experimental results and analysis. Finally, Section V offers a
conclusion of our study.

II. PRELIMINARY KNOWLEDGE

The scheme proposed in this paper mainly involves tech-
niques such as data preprocessing, feature selection, and fea-
ture extraction. This section provides an introduction to these
pertinent technologies.

A. Data Pre-processing

1) Box plot model: The samples of data that fall outside
the operational range were detected and removed using the
box plot method [12]. Box plot not only provides a visual
representation of identifying outliers in the dataset, but also
helps determine the dispersion and skewness of the data. It
consists of five values: the minimum value (min), the lower
quartile (Q1), the median, the upper quartile (Q3), and the
maximum value (max). The lower quartile, median, and upper
quartile together form a “box with whiskers” structure. A line
extends from the upper quartile to the maximum value, and
this line is referred to as the “whisker”.

The whiskers in the box plot are used to identify and
remove outliers from the skewed population. In this context,
the maximum and minimum values are set as 1.5 times the
interquartile range (IQR), which is the range between the upper
and lower quartiles. Specifically, the whiskers extend up to
a distance of 1.5 times the IQR from the upper and lower
quartiles. The formula of IQR is as follows:

IQR = Q3−Q1. (1)

The IQR also represents the length of the box plot. There-
fore, the minimum value (min) and maximum value (max) can
be determined as follows:

min = Q1− 1.5× IQR. (2)

max = Q3− 1.5× IQR. (3)

When applying the box plot analysis to data, if there are
outliers that fall below the minimum observed value, the lower
whisker is set at the minimum observed value, and the outliers
are individually marked as points. If there are no values
lower than the minimum observed value, the lower whisker

extends to the minimum value. Similarly, if there are outliers
that exceed the maximum observed value, the upper whisker
is set at the maximum observed value, and the outliers are
individually marked as points. If there are no values greater
than the maximum observed value, the upper whisker extends
to the maximum value.

2) Grubbs’ criterion model: Based on Grubbs’ criterion
(3σ criterion) [13] for removing outliers from a sample, we
first assume that the measured variable is measured with equal
precision, resulting in x1, x2, ..., xn. Then, we calculate
the arithmetic mean x and the residual errors vi = xi − x
(for i=1,2,...,n). Based on these variables, we use the Beale’s
formula to calculate the standard error σ. If there exists a
measurement value xb with a residual error vb (1¡=b¡=n)
satisfying —vb—=—xb − x—¿3σ, it is considered an outlier
with a gross error and should be removed. The Beale’s formula
is given as follows:

σ = [
1

n− 1

n∑
i=1

vi
2]1/2 = {[

n∑
i=1

xi
2 − (

n∑
i=1

xi)
2/n]/(n− 1)}1/2

(4)

B. Feature Selection

1) Mutual information model: Mutual information [14] is a
useful information measure in information theory that quanti-
fies the amount of information contributed by the occurrence of
one event to the occurrence of another event. It can be viewed
as the amount of information about one random variable
contained in another random variable or as the reduction in
uncertainty of one random variable due to the knowledge of
another random variable. Mutual information graph is shown
in Fig. 1.

Let the joint distribution of two random variables (X,Y) be
denoted as p(x,y), and their marginal distributions be denoted
as p(x) and p(y), respectively. The mutual information I(X,Y)
is the relative entropy between the joint distribution p(x,y)
and the marginal distributions p(x), p(y). According to the
definition of entropy, the derivation formulas are as follows.

H(X) H(Y)

H(X,Y)

H(X|Y) H(Y|X)I(X;Y)

Fig. 1. Mutual information graph.

H(X,Y ) = H(X) +H(Y |X) = H(Y ) +H(X|Y ), (5)
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H(X)−H(X|Y ) = H(Y )−H(Y |X). (6)

Therefore, the final calculation formula is as follow:

I(X;Y ) =
∑
x∈X

∑
y∈Y

p(x, y)log
p(x, y)

p(x)p(y)
. (7)

2) Lasso regression model: The Lasso method is a com-
pression estimation technique based on the idea of shrinking
the variable set. By constructing a penalty function, it com-
presses the coefficients of the variables and forces some regres-
sion coefficients to become zero, thereby achieving variable
selection.

Regularization [15] is a method to prevent overfitting,
which usually occurs when there are too many variables or
features. In such cases, the resulting equation can fit the
training data very well, with a loss function that may be very
close to or equal to zero.

However, such a curve may fail to generalize to new data
samples. In regularization, all feature variables are retained, but
the magnitude of the feature variables is reduced. When there
are many feature variables, each variable can have some impact
on the prediction. Lasso regression adds L1 regularization to
the loss function. The coefficients trained by Lasso regression
are sparse and can be used for feature selection. Because the
absolute value function is not differentiable at zero, directly
applying gradient descent is not feasible. Therefore, alternative
algorithms such as coordinate descent are used. Coordinate
descent method [16] updates one attribute at a time, and the
loss function is given as follows:

L(w) = f(w) + λ ∥w∥11 =
∥∥y −XTw

∥∥2
2
+ λ ∥w∥11 . (8)

C. Regression Model

1) Random forest model: In machine learning [17], a
random forest is a classifier that consists of multiple decision
trees, and its output class is determined by the majority
vote of individual tree outputs. Random forests have several
advantages which can produce highly accurate classifiers for
various types of data, handle a large number of input variables,
and evaluate the importance of variables when determining
class labels. During the construction of the forest, they can
generate unbiased estimates of generalized errors, and they
can balance errors for imbalanced classification datasets. The
specific algorithm is as follows:

1) Let N represent the number of training examples and
M represent the number of features.

2) Input the number m of features to determine the
decision result at a node in the decision tree, where
m should be much smaller than M.

3) Randomly sample N times with replacement from
the N training examples (samples) to form a training
set, and use the unsampled examples (samples) for
prediction to evaluate their errors.

4) For each node, randomly select m features, and the
decision at each node in the decision tree is based on
these features. Based on these m features, compute
the optimal splitting method.

5) Each tree grows fully without pruning, which may be
adopted after building a complete tree-based classi-
fier.

When tuning the parameters of a random forest using
sklearn [18], it is significant to perform parameter tuning based
on the relationship between generalization error and model
complexity. By assessing the impact of parameters on the
model, they can be sorted in descending order of influence,
determining which parameters reduce model complexity and
which ones increase it. Suitable parameters are then selected
sequentially, and parameter tuning is carried out through
methods such as plotting learning curves or performing grid
searches, until the maximum accuracy score is achieved.

The prediction error rate of a random forest depends on
two factors: the correlation between any two trees in the
forest and the classification ability of each individual tree.
Higher correlation leads to a higher error rate. The stronger
the classification ability of an individual tree, the stronger the
overall classification ability of the entire forest. If, within a
tree, samples split based on a certain feature m are more likely
or less likely to split on feature k, there exists a certain degree
of interaction between m and k.

The key issue in building a random forest is how to
select the optimal value of m. To address this problem, the
calculation of the out-of-bag error (oob error) [19] is crucial.
One important advantage of random forests is that there is no
need for cross-validation or an independent test set to obtain
an unbiased estimate of the error. It can be internally evalu-
ated, meaning that an unbiased estimate of the error can be
established during the generation process. When constructing
each tree, we utilize different bootstrap samples (randomly and
with replacement) from the training set. Consequently, for each
tree (let’s assume the k-th tree), approximately one-third of the
training instances are not involved in the generation of the k-th
tree. These instances are referred to as the oob samples for the
k-th tree.

Such sampling characteristics allow us to perform the oob
estimation, and its calculation method is as follows:

1) For each sample, compute its classification by the
trees for which it serves as an oob sample (approxi-
mately one-third of the trees).

2) Use a simple majority vote as the classification result
for that sample.

3) Finally, calculate the oob error rate of the random
forest as the ratio of misclassified samples to the total
number of samples.

2) Support vector regression model: Support Vector Ma-
chine (SVM) [20] is a classification algorithm that can also
be used for regression, offering different models based on
the input data. By seeking to minimize structured risk, SVM
enhances the generalization ability of the learning machine,
achieving the minimization of empirical risk and confidence
interval. This allows obtaining good statistical patterns even
with limited statistical samples. In simple terms, SVM is a
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binary classification model, with the basic model defined as
the linear classifier in feature space with the maximum margin,
known as the maximal margin classifier. The learning strategy
of SVM is to maximize the margin, ultimately transforming
into solving a convex quadratic programming problem.

In Support Vector Regression (SVR) [21], the objective is
to find a regression plane that minimizes the distance between
the plane and a set of data points. SVR is an important applica-
tion branch of Support Vector Machines (SVM). In traditional
regression methods, a prediction is considered correct only if
the regression function f(x) is exactly equal to y. However, in
support vector regression, a prediction is considered correct as
long as the deviation between f(x) and y is not too large. In
other words, if the absolute difference between the predicted
value y(x) and the target value t is smaller than ϵ, the error
given by the error function is zero, where ϵ ¿ 0.

The regularization error function is as follows.

C
∑
n

[Eε(yn − tn)] +
1

2
∥w∥2 , yn − ε ≤ tn ≤ yn + ε (9)

The error function after introducing slack variables is as
follows.

C
∑
n

{ξ̃n + ξn}+
1

2
∥w∥2 (10)

The discriminant function is as follows.

y (x) =
∑
n

(an − ãn) k (x, xn) + b (11)

3) The correlation coefficient model: Correlation [22] is a
non-deterministic relationship, and the correlation coefficient is
a measure of the linear relationship between variables. Due to
variations in the subjects under study, there are several different
ways to define the correlation coefficient.

The simple correlation coefficient, also known as the cor-
relation coefficient or linear correlation coefficient, is typically
represented by a letter and is used to measure the linear
relationship between two variables. The definition formula is
as follows.

r (X,Y ) =
Cov (X,Y )√

V ar (X)V ar (Y )
(12)

In which, Cov(X,Y ) represents the covariance between X and
Y , V ar(X) represents the variance of X , V ar(Y ) represents
the variance of Y .

D. Optimization Algorithm

The system of linear equations is known to be representable
as Ax = b. When A is a real symmetric matrix, that is, the
expression for the derivative of the quadratic form f(x) =
1
2x

TAx− bTx+ c with respect to x when it equals zero, is as
follows.

f ′(x) =
1

x
ATx+

1

2
Ax− b (13)

When A is a real symmetric matrix in the formula, f ′(x) = 0
is equivalent to Ax = b, and thus, solving the system of linear
equations can be transformed into solving minf(x).

From the knowledge of algebra, it is known that when the
matrix A is positive definite, positive semi-definite, negative
definite, or indefinite, the equation set Ax = b has differ-
ent solutions, corresponding to different minimum values of
f ′(x) = 0. The impact of different situations of matrix A on
equation f(x) is shown in Fig. 2.

Fig. 2. Equation solution plot.

The distribution of solution patterns in Fig. 2 corresponds
to A being a positive definite, negative definite, positive semi-
definite, and indefinite matrix, respectively. From the figure,
it can be observed that when A is an indefinite matrix, it is
not possible to find the minimum value of f(x) by setting its
derivative to zero.

The conjugate gradient method [23] can solve the above
problem. First, it is assumed that A has good properties,
namely, symmetry and positive definiteness. When seeking the
minimum value of the function f(x), its derivative leads to a
sequence of solution vectors: x(1), x(2), . . . , from which we
obtain f ′(x(i)) = Ax(i) − b.

From calculus knowledge, we know that to consider
f(x(i+1)) as a function of a(i), and to find the most appropriate
step length, we need to set it as follows:

d

dα(i)
f(x(i+1)) = 0 (14)

By applying the chain rule [24], we find that r(i) is
orthogonal to r(i+1), meaning that the step length for each
step can be determined based on the current residual r(i).

Based on the iterative process of the steepest descent
method [25], we can obtain rT(i+1)r(i) = 0. However, the steep-
est descent method has a significant issue: in order to converge
to the vicinity of the solution, the same iteration direction may
be followed more than once. To address this problem, if we
can select a series of linearly independent direction vectors
d(0), d(1), d(2), ..., d(n−1), and move along each direction
only once, we can eventually reach the solution x without
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encountering the issue of repeating the same direction. The
most straightforward idea comes from the Cartesian coordinate
system. If each direction is orthogonal, there will naturally be
no problem of repeating the same direction. This leads to the

condition α(i) = − dT
(i)e(i)

dT
(i)

d(i)
. Assuming that the selected series

of direction vectors are all pairwise orthogonal with respect to
matrix A, the formula of α(i) is as follows.

α(i) =
dT(i)r(i)

dT(i)Ad(i)
(15)

According to this formula, for an n-order system of equa-
tions, it will take at most n steps to converge to the correct
solution.

From the above formulas, it is evident that the residuals
between each iteration are mutually orthogonal. Therefore,
we can define the residual r(0), r(1), r(2), ......, r(n−1) as the
basis before conjugation. Since using conjugate directions for
iteration requires at most n steps, and each step eliminates
the error in that direction, this set of bases is not only
linearly independent but also possesses the desirable property
of orthogonality.

III. THE PROPOSED SCHEME

This article aims to construct a predictive model for octane
loss. To achieve this, we first filter the data features, then
build a predictive model to calculate potential octane loss.
Furthermore, we employ optimization algorithms to adjust
variables in order to reduce octane loss.

A. Data Filtration

Industrial data often contain a significant amount of invalid
and outlier data. For data with a high degree of missing values
that cannot be filled, we delete sample data where all values
are missing and use the average of data from the two hours
before and after to fill in missing values. For samples that fall
outside the original data variable operation range or contain
outliers, we establish mathematical models for resolution. The
entire data processing workflow is illustrated in Fig. 3.

B. Feature Selection

High-dimensional feature variables often increase the com-
plexity of engineering problem analysis. In practical engi-
neering applications, it’s common to employ dimensionality
reduction techniques before modeling. This approach can
improve prediction accuracy, enable the construction of more
efficient predictive models, and enhance the understanding and
interpretability of the models. It helps in ignoring minor factors
and identifying and analyzing the key variables and factors
influencing the model.

To achieve this, we use mutual information entropy, cor-
relation coefficients, and Lasso regression to select important
features, making it easier to establish subsequent predictive
models. As shown in Fig. 4, we adopt two different approaches
for feature selection in this article. We use two combinations of
methods to filter the main variables affecting octane loss: one
approach uses mutual information and correlation coefficients,
while the other employs Lasso regression.

Delete sites with a high amount of missing data

Delete sites with completely empty data

Replace some missing values with the mean

Summarize the operational range of data variables and 
remove outlier samples

Remove outliers based on the 3-sigma rule (3σ 
criterion)

Fig. 3. Data processing workflow. There are five steps, including deleting
missing data, deleting empty data, replacing missing data, summarizing data

distribution, and removing outlier data.

Schem
e 1

Schem
e 2

Remove outlier data points

• Mostly empty values
• low variance, nearly 

identical data

Lasso Regression

• Remove data points with a 
correlation coefficient of 
zero with octane loss values

Correlation Coefficient Matrix

• Remove sites with strong 
pairwise correlations to 
enhance the independence 
between each operational 
variable

Remove outlier data points

• Mostly empty values
• low variance, nearly 

identical data

Mutual Information Entropy

• Search for a feature subset 
that provides as much 
"information" as possible

Correlation Coefficient Matrix

• Remove sites with strong 
pairwise correlations to 
enhance the independence 
between each operational 
variable

Fig. 4. Scheme model diagram. The lasso regression and mutual information
entropy are used to filter features.

C. Development of RON Loss Prediction Model

In this section, we employ machine learning-based [17]
models for regression prediction of RON as illustrated in the
framework diagram in Fig. 5. Initially, the original data is
subjected to outlier removal and standardization using box
plots. After standardization, 80 percent of the samples are used
for training, while the remaining 20 percent are reserved for
testing. We establish RON loss prediction model using Random
Forest prediction models and Support Vector Machine (SVM)
techniques, followed by model validation.

IV. EXPERIMENTS

A. Experiment settings

Dataset: We used a dataset comprising 325 data points
obtained from actual production in a petrochemical enterprise.
The dataset includes seven raw material properties, two prop-
erties of the adsorbents used in the initial adsorption stage, two
properties of the adsorbents used in the regeneration stage, two
product properties, and an additional 354 operating variables,
totaling 367 variables.

Experimental Parameters: In our experiments, we set the
standard deviation threshold to 0.3 in the Lasso regression
process. For the random forest, we used 100 decision trees,
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Data StandardizationData 
Preparation

Model 
Construction

Raw 
Data

Cleaned 
Data

Using box plots to perform 
outlier data removal

Standardized 
Data

Data Standardization

Trained 
Data

Tested 
Data

Trained 
Data

Input

Model
Train

Trained 
Model

Tested 
Data

Prediction 
Error

Fig. 5. Algorithm framework diagram.The data is first splited into training
dataset and testing dataset. Then, we train models with the training dataset

and the evaluate it on the testing dataset.

Fig. 6. Box Plot Method for Removing Sample Data Graph.

the Mean Absolute Error (MAE) as the error function, and a
minimum sample size of 4 for leaf nodes. The support vector
regression model had a penalty coefficient of 0.1 and a gamma
value of 0.01.

B. Data Filtering Results

Based on the box plot model, a check was conducted on
data samples. Due to the large number of data points, it is
not feasible to display all of them. Fig. 6 below shows only a
portion of the data points in sample that need to be removed, as
indicated in the graph. It is necessary to delete the data points
in sample that fall outside the numerical range defined by the
upper and lower ends of the box plot. Further examination
using the Grubbs’ test revealed that there were no outliers
requiring removal in the samples.

C. Primary Variable Selection

We employed two approaches for selection and then com-
pared their effectiveness. First, we utilized the mutual infor-
mation model to filter out 50 primary features.

Furthermore, we conducted additional filtering using the
correlation coefficient model to identify 30 primary features.

Main feature variables can also be selected using Lasso
regression, which involves the following steps:

TABLE I. MAIN VARIABLES SELECTED BY LASSO REGRESSION

S-ZORB.FT 5104.PV S-ZORB.FT 9102.PV

S-ZORB.FT 5201.TOTAL S-ZORB.FT 5101.TOTAL

S-ZORB.FT 9201.TOTAL S-ZORB.FT 9202.TOTAL

S-ZORB.FT 9402.TOTAL S-ZORB.FT 9403.TOTAL

S-ZORB.FT 5102.TOTAL S-ZORB.FC 1202.TOTAL

S-ZORB.FT 1001.TOTAL S-ZORB.PDT 2503.DACA

S-ZORB.TC 2201.PV S-ZORB.FC 5103.DACA

S-ZORB.FT 1006.DACA.PV S-ZORB.CAL.LEVEL.PV

S-ZORB.FT 1503.TOTALIZERA.PV S-ZORB.FT 1504.TOTALIZERA.PV

S-ZORB.PT 7510.DACA S-ZORB.TE 3111.DACA

S-ZORB.FT 1004.TOTAL S-ZORB.FC 5203.DACA

S-ZORB.FT 1003.TOTAL S-ZORB.TE 2001.DACA

S-ZORB.FT 9401.TOTAL S-ZORB.FT 1503.DACA.PV

S-ZORB.FC 1101.TOTAL S-ZORB.FT 5204.TOTALIZERA.PV

S-ZORB.FT 9102.TOTAL S-ZORB.FT 1001.TOTAL

1) Calculate the standard deviation [26] for each of the
325 samples’ variables. Variables with a standard
deviation less than the threshold will be removed. The
calculation formula is as follows.

δ =

√∑n
i=1(xi − x)2

n
(16)

When δ¡ 0.3, the variable will be removed.
2) Count the number of zero elements in each variable.

If the number of zeros exceeds 30% of the total
elements in that column, the variable will be removed.
If the number of zeros does not exceed 30% of the
total elements in that column, the zero values in the
variable will be replaced with the mean of its non-
zero values.

3) Perform Lasso regression on the remaining variables
to select 30 main variables, as shown in Table I.

For the two aforementioned approaches, we constructed
the same model and then separately used the features selected
by these two approaches for training and testing to assess the
quality of the feature sets.

Specifically, we employed a support vector regression
model with identical parameter settings as the base model to
evaluate the quality of the feature sets based on its detection
performance. The experimental results are presented in Table
*.

In terms of specific metrics, we used the Mean Squared
Error (MSE) between predicted values and actual values as
the performance indicator. The features selected by the Lasso
regression model ultimately resulted in an MSE of 0.0249,
whereas the features selected using mutual information entropy
yielded an MSE of 0.0258, slightly higher than that of the
Lasso regression. Therefore, we opted for the Lasso regression
model as the feature selection approach.

D. RON Loss Prediction Performance

Based on the primary operating variable features, we
utilized random forest and SVR (Support Vector Regression)
for prediction separately.
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Fig. 7. Prediction performance graph of random forest regression model.
The value of y-axis means the feature values.

TABLE II. THE REGRESSION PERFORMANCE UNDER DIFFERNT SVR
KERNELS

Kernel
Regression Performance

R2 MAE RMSE

Linear 0.9666 0.0757 0.1533
Polynomial 0.8258 0.2169 0.2657

Gauss 0.8803 0.1962 0.2396

Laplace 0.7364 0.3305 0.3129

Sigmoid -12.6431 2.0192 3.2221

1) Random Forest Prediction Performance: Based on the
selected primary operational variable features, we used a
random forest for regression prediction. The random forest
model involves multiple model parameters. To choose the
model that best suits the current data, we conducted a grid
search for parameter tuning.

From the search results, it can be observed that when the
number of decision trees in the random forest is set to 100, the
used error metric is MAE (Mean Absolute Error) [27], and the
minimum samples per leaf node is 4, the model achieves its
minimum prediction error of 0.233917. After concluding the
parameter search, we constructed a new random forest model
using the optimal parameters. The final model’s predictive
performance is illustrated in Fig. 7.

2) Model prediction performance: We also employed a
support vector regression model for prediction. The support
vector regression model involves multiple model parameters
such as penalty coefficient [32] and Gamma value [33]. To

TABLE III. COMPARISON WITH OTHER MODELS

Method
Regression Performance

R2 MAE RMSE

Linear regression [28] 0.4174 6.4373 43.3017

Decision Tree [29] 0.9483 0.0863 0.1720

Simple DNN [30] 0.6989 0.5980 1.3927

RandomForest [31] 0.9724 0.0526 0.1077

SVR [21] 0.9666 0.0757 0.1533

RandomForest+SVR 0.9868 0.0453 0.0973

(a) Parameter Search Results

(b) Model Prediction Performance

Fig. 8. The parameter search results and model prediction performance of
support vector regression model.

select the model that best suits the current data, we conducted
a grid search for the penalty coefficient and Gamma value.

The prediction errors obtained for different parameter con-
figurations are shown in Fig. 8(a). From the search results,
it can be observed that when the penalty coefficient for the
support vector regression model is set to 0.1 and the Gamma
value is set to 0.01, the model achieves its minimum prediction
error of 0.022. After completing the parameter search, we
constructed a new support vector regression model using the
optimal parameters. The final model’s predictive performance
is illustrated in Fig. 8(b).

We also evaluated the fitting performance of Support Vector
Regression (SVR) under different kernel functions. It is can
be seen from Table II that our approach achieves optimal
results when employing the linear kernel function. Under such
settings, we compared the ensemble model and other models.
As shown in Table III, our approach shows better regression

www.ijacsa.thesai.org 1151 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 15, No. 3, 2024

performance. The combination of RandomForest and SVR
could increase the accuracy of feature regression.

V. CONCLUSION

Gasoline octane loss optimization has become a focal point
of concern in the industry. In this paper, addressing the issue of
RON loss optimization, we employed the lasso regression and
correlation coefficient methods to feature selection, reducing
the information redundancy that affects the octane loss model.
We utilized random forest and support vector machine models
to establish RON loss prediction models, training and testing
them with well-preprocessed data to predict RON loss values.
Combining Random Forest and SVR, our proposed solution
achieves an R2 value of 0.9868, surpassing the performance
of multiple existing models. In future work, we will further
refine feature selection algorithms and explore the utilization
of genetic algorithms to determine optimal parameters for the
model.
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