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Abstract—The integration of renewable energy sources and
the advancement of smart grid technologies have revolutionized
the power distribution landscape. As the smart grid evolves, the
monitoring and control of power converters play a crucial role
in ensuring the stability and efficiency of the overall system.
This research paper introduced a converter monitoring system
in photovoltaic systems, the main concern is to protect the
electrical system from disastrous failures that occur when the
system is in operating condition. The reliability of the converters
is significantly influenced by the degradation of their passive
components, which can be characterized in various ways. For
instance, the aging of inductors and capacitors can be char-
acterized by a decrease in their inductance and capacitance
values. Identifying which component is undergoing degradation
and assessing whether it is in a critical condition or not, is
crucial for implementing cost-effective maintenance strategies.
This paper explores a set of classification algorithms, leveraging
machine learning, trained on data collected from a Zeta converter
simulated in Matlab Simulink. the report presents observations
on how each algorithm effectively predicts the component and its
condition and Graphical Performance Comparison for different
ML Techniques serves as a crucial endeavor in evaluating and
understanding the effectiveness of various ML approaches. The
goal is to provide a comprehensive overview of how these
techniques fare concerning criteria such as accuracy, precision,
recall, F1 score, and Specificity among others. Quadratic Support
Vector Machine (SVM) yields superior results compared to other
machine learning techniques employed in training our dataset.

Keywords—Artificial intelligence; photovoltaic; support vector
machine; machine learning; K-Nearest neighbor; maximum power
point tracking; pulse width modulation; prognostic analysis; one-
against-rest; one-against-one; direct acyclic graph; multi class
support vector machine; DC-DC converter; zeta c

I. INTRODUCTION

The ever-expanding landscape of modern energy systems
demands intelligent and adaptive technologies to manage the
integration of renewable energy sources into power grids
effectively. Smart grids have emerged as the linchpin in this
transformative journey, offering enhanced control, resilience,
and efficiency. At the heart of smart grid functionality lies
the intricate interplay of power converters, such as inverters
and rectifiers, which serve as the conduits for seamless energy
flow, storage, and distribution [1]. The increased complexity
and dynamism of contemporary smart grids necessitate ad-
vanced monitoring solutions for power converters. Traditional
monitoring methods often struggle to keep pace with the

rapid changes and diverse operational challenges posed by the
integration of renewable energy [2]. This research endeavors to
bridge this gap by introducing a novel machine-learning-based
framework expressly designed for the real-time monitoring
of converters within smart grid applications. The smart grid
represents a paradigm shift in energy management, leveraging
cutting-edge technologies to enhance grid flexibility, reliabil-
ity, and sustainability. As renewable energy sources become
integral to the energy matrix, the role of power converters in
facilitating the seamless integration of solar, wind, and other
green energy forms becomes paramount. Effective monitoring
of these converters emerges as a critical component in ensuring
the smooth operation of smart grids and harnessing the full
potential of renewable resources. Against this backdrop, the
primary objectives of this research are twofold. First, we aim to
introduce a machine learning-based solution that significantly
augments the real-time monitoring capabilities of power con-
verters in smart grid applications. Second, we strive to enhance
fault detection mechanisms, enabling the early identification of
potential issues within the converter systems. Additionally, the
research seeks to optimize maintenance strategies, providing a
proactive approach to addressing challenges and ensuring the
longevity and resilience of smart grid infrastructures [3]. By
leveraging the capabilities of machine learning algorithms, this
study aims to unravel intricate patterns within the operational
data of power converters, facilitating timely interventions, and
ultimately contributing to the overall stability and efficiency
of smart grid systems [4]. The proposed solution aligns with
the overarching goal of advancing smart grids into adaptive,
self-regulating entities capable of seamlessly accommodating
the evolving landscape of renewable energy integration.

A. Literature Review

Predictive maintenance is becoming increasingly important
for power electronic converters. In [5] proposes a circuit-
based approach. It utilizes a combination of filters and a
Relevance Vector Machine (RVM) algorithm to analyze the
output voltage response of the converter. The cosine distance
between the measured response and a reference is fed to the
RVM, which then estimates the remaining useful life (RUL)
of the entire circuit. In [6] focuses on individual component
health. It uses a Buck converter as a test case. By monitoring
various electrical parameters (inductor current, capacitor volt-
age/current, output voltage, and their ripple) under controlled
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component degradation, the authors train an Artificial Neural
Network (ANN) to estimate the current parameter value of a
degrading component (e.g., inductor or capacitor). This allows
preventative maintenance before the component reaches critical
failure. The ANN is also used for fault diagnostics. In [7]
explores fault identification using a simulated three-parallel
power conversion system for a wind turbine. By analyzing
the dq-transformed three-phase measured currents, a neural
network is trained to identify faulty switches based on char-
acteristic current patterns that emerge in the dq-frame when a
switch malfunctions. In [8] focuses on anomaly detection. The
authors vary component values (capacitor and inductor) in a
super-buck converter and collect statistical features (mean and
standard deviation) of the output voltage. By calculating the
Mahalanobis distance between these features and a baseline,
they can detect deviations caused by component degradation.
This information is then used to train a Machine Learning
(ML) algorithm for RUL prediction of the entire converter.
In [9] proposes a method to identify problems in power
converters early, especially for modular multilevel converters
(MMCs). Method involves training a special type of artificial
intelligence (AI) called a one-class classifier. This AI learns
what normal operation looks like and can then flag any
unexpected changes, even if it hasn’t been specifically trained
to recognize every possible problem. In [10] focuses on find-
ing problems within the system that converts electricity into
motion (electromechanical conversion chain) in both regular
and self-driving electric vehicles (EVs). Electric vehicles have
many sensors that track things like electricity flow (current),
voltage, and motor speed. This information is used to identify
any issues within the system. This study offers a new way
to diagnose faults by using a special technique called “feature
extraction” which helps identify important patterns in the data.
The specific approach proposed here is called Long Short-
Term Memory (LSTM), a type of artificial intelligence well-
suited for analyzing sequences of data like sensor readings. In
[11] introduces a method for estimating important properties
(parameters) in electronic circuits (power converters) that
combines machine learning with the known physics of how
the circuits work (Physics-informed machine learning, PIML).
This method is demonstrated using a common circuit called
a dc-dc Buck converter. Combine deep neural network with
the existing knowledge about how the circuit behaves. In [12]
examines how reliable boost converters (a type of electrical
circuit) with feedback control are over time. The research
shows that these converters become less reliable as they age.
The paper introduces a method to calculate this decreasing
reliability, considering how different parts of the circuit wear
out and change over time. In [13] proposes a method to predict
how well DC-DC power converters will function over time
(prognosis). First, the authors review existing methods for
predicting converter health. They then focus on how capacitors
degrade over time, considering both the heating caused by
small current fluctuations (ripple current) and the underlying
physics of how heat damages capacitors. This information
about capacitor degradation is then fed back into the overall
model of the DC-DC converter to see how its performance
changes. The researchers use computer simulations (Monte
Carlo methods) to explore this under various conditions. Fi-
nally, they discuss the results of these simulations and how
real-world experiments can be used to verify the accuracy of
their model.

B. Contribution

Unlike previous research, in this paper, the establish-
ment and validation of a monitoring system designed for
identifying faults in DC-DC converters involve defining its
operational parameters. This process is meticulously executed
and subsequently verified through a comprehensive simulation
procedure conducted within the Matlab-Simulink environment
[14]. The converter under scrutiny in this investigation is
specifically a Zeta converter, chosen for its unique capabilities
in achieving a substantial voltage gain and minimizing output
current ripple. This advantageous feature is made possible
through the strategic utilization of four passive components.
This paper focuses on the specialized domain of prognostics,
honing in on the prognostic challenges presented by a DC-DC
converter integrated with a photovoltaic (PV) input [15]-[16].
This particular scenario introduces two distinct challenges that
complicate the prognostic analysis. The first challenge stems
from the non-linear current-voltage characteristics of the PV
source, leading to non-conforming trends in converter current
and voltages when compared to the more predictable ideal
voltage and current sources commonly employed in diagnostic
and prognostic scenarios. The second challenge involves the
intricate functional relationship between these characteristics
and environmental factors such as temperature and irradiance.
This dynamic interplay introduces complexities that have the
potential to result in inaccurate classifications of the converter’s
operational state. To tackle this inherent problem, a specialized
normalization approach is employed. This approach serves the
crucial purpose of untangling the prognostic-sensitive quanti-
ties from the environment-dependent nature of the PV source.
By doing so, it aims to mitigate potential errors in the prognos-
tic classification of the converter’s working condition, ensuring
a more accurate and robust analysis in the presence of non-
linear Photovoltaic characteristics and environmental variables
[17]. Subsequently, we subject the system to three distinct
operating conditions to meticulously record readings about
the current and voltages across the passive elements of the
converter, relative to their inductance and capacitance values
[18]. This process is crucial in establishing a comprehensive
dataset that serves as the foundation for subsequent training
endeavors. Following the data collection phase, we employ
various machine learning techniques to process and train the
acquired dataset. Our objective is to evaluate the performance
of these techniques and discern the most effective approach
in terms of classification accuracy. The ensuing comparative
analysis sheds light on the strengths and weaknesses of each
method, facilitating the identification of the most promising
technique for robust classification results. Through this me-
thodical exploration, our research contributes valuable insights
to the selection of the optimal machine-learning technique for
converter monitoring [19]. The identification of a superior
technique holds significant implications for enhancing the
accuracy and reliability of monitoring systems in photovoltaic
applications within smart grid environments. The main ele-
ments of originality may be summarized as follows:

• Development and Validation of a Machine Learning-
Based Monitoring System: The paper introduces a
novel machine learning-based system specifically tai-
lored for monitoring zeta converters in pv systems
[20]. This system’s ability to accurately predict the
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condition of components and distinguish between
nominal and malfunctioning states underpins its orig-
inal contribution to the field of smart grid technology.

• Comprehensive evaluation of multiple machine learn-
ing techniques for fault detection: A significant con-
tribution of the research is the thorough comparison
and evaluation of various machine learning techniques,
including Support Vector Machine (SVM) with differ-
ent kernels, K-Nearest Neighbors (KNN) with various
distance metrics, and Decision Trees with different
complexities. This comprehensive analysis offers valu-
able insights into the most effective methods for fault
detection in Zeta converters, highlighting the superi-
ority of the linear SVM approach [21].

• Optimization of multi-class SVM for predictive main-
tenance: The paper showcases the optimization of a
multi-class SVM classifier, demonstrating its outstand-
ing performance in predicting component conditions
across a wide range of operational scenarios. This
includes the algorithm’s robustness in identifying spe-
cific components undergoing degradation, marking a
notable advancement in the predictive maintenance of
photovoltaic systems.

• In-depth analysis of renewable energy variations on
zeta Converter performance: The research provides
a detailed investigation into how fluctuations in re-
newable energy sources impact the operational stabil-
ity and efficiency of zeta converters. By simulating
various renewable energy conditions and analyzing
their effects on the converter’s passive components,
the study contributes novel insights into optimizing
photovoltaic systems for improved performance [22].

• Practical implications for real-time monitoring and
preventive maintenance: The study’s findings have sig-
nificant practical implications for the real-time mon-
itoring and preventive maintenance of zeta convert-
ers within smart grid applications. By leveraging the
developed machine learning-based monitoring system,
the paper offers a scalable solution for enhancing the
reliability and sustainability of systems integrated with
renewable energy sources, addressing a critical need
in the evolving landscape of smart [23].

In the subsequent sections, we delve into an extensive review
of existing literature, outline our robust methodology, present
empirical results, and discuss the broader implications and
future directions of this machine learning-based approach
to converter monitoring in smart grid applications. Through
this exploration, we seek to fortify the foundations of smart
grid technologies and propel the transition toward a more
sustainable and resilient energy future [24].

II. PHOTOVOLTAIC SYSTEM DESIGN PROCEDURE

The proposed analytical approach is centered around a
photovoltaic system comprising a 230 W solar panel integrated
with a zeta converter, connected to a 48 V DC microgrid.
The primary function of the DC-DC converter is to facilitate
efficient energy transfer from the solar source to the grid.
Multiple techniques, such as Maximum Power Point Tracking

(MPPT) control [25], can be employed to optimize this energy
transfer process. The MPPT algorithm, specifically tasked
with controlling the converter duty cycle (D), is instrumental
in attaining an optimal operating point on the photovoltaic
source. While traditional MPPT algorithms often focus on
setting the source voltage close to the maximum power voltage,
the choice of a tracking algorithm or model-based algorithm,
potentially leveraging machine learning methods, depends on
the desired outcome. Notably, this paper does not simulate the
MPPT algorithm as it is not a pivotal aspect of the prognostic
analysis. The core concept of the monitoring procedure lies in
maintaining a fixed duty cycle during the brief intervals nec-
essary for extracting voltage and current measurements. This
strategic approach avoids disrupting the converter’s operation,
allowing the definition of its state of health without interrupting
energy transfer. During the prognostic analysis, the duty cycle
remains constant, avoiding the pursuit of the maximum power
point. This deliberate choice limits measurement variability,
streamlining the identification of malfunctions. Post-prognosis,
the MPPT algorithm can once again adjust the duty cycle.
Importantly, the measurement procedure’s minimal impact
on energy production, requiring only a few periods at the
converter switching frequency, ensures that the prognostic
analysis does not significantly interfere with the overall energy
generation process [25].

A. Renewable Energy Source

The energy source under examination within this study
is a solar panel with a power rating of 230 W, incorpo-
rating a configuration of 60 multicrystalline cells identified
as TW230P60-FA, courtesy of Tianwei New Energy. Crucial
electrical parameters characterizing the panel are derived from
its datasheet and comprehensively outlined in Table I. In this
table, VMPP and IMPP represent the maximum power point
voltage and current, respectively, while VOC signifies the
open-circuit voltage, and ISC denotes the short-circuit current.
These fundamental specifications serve as the foundation for
understanding and analyzing the solar panel’s performance
characteristics in the subsequent phases of the research [25].
Leveraging these inherent characteristics, the implementation
of an equivalent circuit model within the Simulink environment
for the solar panel becomes feasible. This model allows for the
extraction of voltage–current curves, offering a dynamic rep-
resentation of how these curves respond to variations in solar
irradiance and operational temperature. Undoubtedly, the input
current and voltage of the DC-DC converter are intricately
linked to prevailing environmental conditions, manifesting in
the internal electrical characteristics of the converter. As the
measurements derived from the converter serve as critical
indicators for assessing its state of health, their sensitivity to
fluctuations in input current and voltage extends to the envi-
ronmental conditions of the PV device. This dual sensitivity
poses a challenge during the classification of malfunctions,
demanding the monitoring system’s capability to distinguish
variations induced by component aging from those arising due
to alterations in solar irradiance and operational temperature.
To address this potential confusion, a straightforward approach
could involve incorporating irradiance and temperature values
into the set of measurements processed by the classifier.
However, the practical feasibility of measuring these quanti-
ties is often challenging, and such an approach significantly
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TABLE I. CHARACTERISTICS OF THE PHOTOVOLTAIC PANEL

Vmpp Impp Voc Isc Ncell

29.4V 7.82A 37.3V 8.22A 60

Fig. 1. Photovoltic system with DC-DC converter.

complicates the training stage by necessitating an extensive
dataset. In this paper, a novel graphical method is proposed
to circumvent these challenges, aiming to select time-domain
measurements that exhibit lower sensitivity to variations in
solar irradiance and temperature.

B. Zeta Converter

A zeta converter is a type of DC-DC power converter that
operates with a unique topology, making it particularly suitable
for applications like PV systems. The zeta converter com-
bines the features of a buck and a boost converter, providing
advantages such as a high voltage gain and reduced output
current ripple [25]. zeta converter is a non-isolated converter
topology that combines the buck-boost and buck converters. It
allows both step-up and step-down voltage conversion. The
basic components of a zeta converter include an inductor
(L), a capacitor (C), a diode (D), and a switch (S). The key
advantage of the zeta converter is its ability to achieve a high
voltage gain. This is particularly beneficial in photovoltaic
systems where maximizing the voltage output is crucial for
efficient energy harvesting. In a photovoltaic system, the zeta
converter is often employed to interface the solar panel with
the power grid or energy storage system Fig. 1. The zeta
converter can operate with a variable input voltage from the
solar panel, accommodating fluctuations in solar irradiance
[25]. The zeta converter facilitates energy transfer from the
photovoltaic source to the load or grid by efficiently adjusting
the duty cycle of the switching operation. It ensures optimal
power transfer by dynamically adapting to changes in solar
irradiance and operating conditions. The entire system, as
depicted in Fig. 2 and employed throughout the simulation
process in Simulink, showcases the implementation of a Pulse
Width Modulation (PWM) technique to drive the converter
switches S1 and S2. These switches, consisting of N-channel
Power MOSFETs, operate in opposite phases. During the
conduction mode of switch S1, the inductor L1 absorbs energy
from the DC source, while concurrently, L2 absorbs energy
from both the source and capacitor C1. This dynamic results
in the input current, iS(t), being the sum of iL1(t) and iL2(t).
Conversely, in the opposite condition (S1 Off and S2 On),
the input current becomes zero, and the current iL1(t) flows
through S2 to charge capacitor C1. Simultaneously, iL2(t)

Fig. 2. Circuit diagram of the zeta converter.

traverses the circuit (C2-R) and returns through the closed
switch S2. This alternating operation of the switches, in tandem
with the energy absorption and flow through the inductors and
capacitors, forms the operational essence of the zeta converter
in the photovoltaic system. The intricacies of these current and
voltage dynamics, influenced by varying solar irradiance and
temperature conditions, are effectively captured and analyzed
within the Simulink model, contributing to a comprehensive
understanding of the system’s behavior. The currents iL1(t) ,
iL2(t), and iS2(t) exhibit distinct ripples, denoted as ∆iL1(t),
∆iL2(t), and ∆iS2(t), respectively. Among these, ∆iS2(t)
holds particular significance as it determines the conduction
mode of the circuit. If the current iS2(t) reaches zero during the
switch-Off period, the converter operates in the Discontinuous
Conduction Mode (DCM). Conversely, if iS2(t) maintains a
non-zero value during the switch transition from off to on, the
Continuous Conduction Mode (CCM) is established. Opting
for CCM proves advantageous as it allows for a reduction in
electrical stress on the converter components and results in a
diminished ripple on the output quantities. Therefore, this work
exclusively considers the CCM, and the analog components are
dimensioned accordingly to ensure this operational condition.
This deliberate choice aligns intending to achieve optimal
performance and reliability in the zeta converter, emphasizing
the importance of meticulous component sizing to maintain
continuous conduction and mitigate potential issues associated
with discontinuous operation [25].

C. Mathematical Modeling

Modeling a zeta converter mathematically involves creating
a set of equations that describe its behavior. A zeta Converter
is a type of DC-DC converter that combines the features of a
buck-boost converter and a sepic converter. Here, a simplified
mathematical model is being provided of a zeta Converter [26].
The zeta Converter circuit consists of an input inductor (L1),
an input capacitor (C1), a switch (S), a diode (D), an output
inductor (L2), an output capacitor (C2), and a load resistor
(R).

D. Voltage Relations

Input Voltage (Vin) and Output Voltage (Vout)

V in = L1.
diL1

dt
+ V c1 = L2.

diL2

dt
+ V c2 + V out (1)

where VC1 and VC2 are the voltages across capacitors C1 and
C2, respectively.
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Fig. 3. Voltage and current waveforms of inductor L1 [26].

E. Current Relations

Current through the input inductor iL1

V in = L1.
diL1

dt
+ V c1 (2)

V in = L2.
diL2

dt
+ V c2 (3)

Current through the output inductor iL2

V c2 = L2
diL2

dt
+ V out (4)

Current through the diode iD

ID = IL1− IL2 (5)

F. Derivation of the Zeta Converter

In the following section, we use lowercase letters ‘v’ and
‘i’ to denote instantaneous values of voltages and currents,
respectively. Meanwhile, uppercase letters ‘V’ and ‘I’ are
utilized to represent average voltage and currents. The switch
commences operation at t = 0 and stays active until t = DTs,
where Ts represents the switching period, and D corresponds
to the duty cycle [26]. The voltage and current waveforms
of inductor L1 are depicted in Fig. 3. In the context of the
converter functioning in a steady state and CCM, we assume
that the inductor’s current commences and concludes a full
switching period at the same level. This condition is often
referred to as the volt-second balance, signifying that the
average applied voltage across the inductor amounts to zero
during a single switching period, as expressed by the equation.

1

Ts

∫ Ts

0

V L1dt = 0 (6)

Fig. 4. Voltage and current waveforms of inductor L2 [26].

Dividing the complete switching period, Ts, into two intervals
during which the switch is activated and deactivated.

1

Ts
(

∫ DTs

0

V L1dt+

∫ Ts

DTs

V L1dt) = 0 (7)

1

Ts
(V d.DTs− V c1(1−D)Ts) = 0 (8)

V d.DTs− V c1(1−D) = 0 (9)

Rearranging to get an expression for VC1 equals

V c1 = V d.
D

1−D
(10)

Likewise, Fig. 4 illustrates the voltage and current profiles of
inductor L2. The determination of the volt-second balance for
L2 is computed as follows:

1

Ts

∫ Ts

0

V L1dt = 0 (11)

D(V c1 + V d− V o)− V o(1−D) = 0 (12)

D.V c1 +D.V d−D.V o− V o+D.V o = 0 (13)

By collecting terms this equals

V o = D.V c1 +D.V d (14)

[?] Again, this is rearranged for VC1 to equal

V d.
D

1−D
=

V o

D
− V d (15)

By combining (1) and (2)

V o

D
= V d.

D

1−D
+ V d (16)
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Expression is then solved for the conversion ratio, M = Vo

V o

D
=

D2 +D(1−D)

1−D
(17)

M =
V o

V d
=

D

1−D
(18)

D =
V o

V d+ V o
(19)

by combining all terms

V d = V o.
1−D

D
(20)

Alternatively, it may be solved for the duty cycle

V c1 = V d.
D

1−D
= V o.

1−D

D

D

1−D
(21)

V c1 = V o (22)

During steady-state operation, the volt-second balance implies
that the average voltage across the inductors is zero. Conse-
quently, in steady-state operation, applying Kirchhoff’s voltage
law to the loop involving L1, C1, L2, and the output Vo
indicates that the average voltage across the capacitor must
be equal to the output Vo. Under the steady-state assumption
that the output capacitor Co is adequately sized to maintain a
stable voltage, we can also infer that.

V c2 = V o (23)

As we analyze the information provided in the diagram, it
becomes apparent that, during steady-state conditions, the
average current in the capacitors is zero. Consequently, by
applying Kirchhoff’s current law, we derive the following:

IL1 = Id (24)

and
IL2 = Io (25)

G. Fault Classes

In proposing a prognostic approach for photovoltaic sys-
tems, specifically targeting parametric faults, it is essential to
establish corresponding classes by defining tolerance ranges
around the nominal values of system components. Parametric
faults involve deviations of components from their nominal
values, leading to a partial loss of functionality. While these
deviations may initially have subtle effects on the system’s
performance, selecting appropriate measurements enables the
identification and localization of variations in specific com-
ponents or groups of components. Table II summarizes the
operating ranges for each component with a 15 percent toler-
ance applied. These variations are deemed acceptable as they
ensure an output ripple of less than 10 percent and maintain
CCM operation. Parametric failure conditions are defined as a
maximum decrease of 70 percent for each passive component
[27]. It is crucial to underscore the adoption of the single
failure hypothesis due to its high probability, and there is an
expectation of no fault propagation. This means that only one
passive component at a time is assumed to be faulty, leading
to the identification of five classes of failure. The nominal
operating condition of the converter is denoted as “class 0”,
where all components remain within their nominal ranges. The
additional classes are detailed in Table III.

TABLE II. PASSIVE ELEMENTS OPERATING RANGES

L1 (mH) L2 (mH) C1 (uF) C2 (uF)

Nominal Range (4.25-5.75) (4.25-5.75) (2.04-2.76) (2.04-2.76)

Malfunction Condition (1.5-4.25) (1.5-4.25) (0.72-2.04) (0.72-2.04)

TABLE III. DEFINING FAULTS CLASSES

Fault Class Description

FC0 All components in nominal range

FC1 Fault occur in inductor L1

FC2 Fault occur in inductor L2

FC3 Fault occur in capacitor C1

FC4 Fault occur in capacitor C2

III. TRAINING DATASET FROM ZETA CONVERTER MODEL

Ensuring similarity between training and testing datasets
that an SVM will classify during testing is crucial. The most
effective way to acquire training datasets is by gathering
patterns from the same sensors and circuits utilized for the
testing datasets. However, applying a two-class SVM to a
real-world circuit makes this impractical. This is due to the
necessity for training datasets to encompass example patterns
from each class intended for classification, often abundant for
normal conditions but typically lacking for faulty conditions
[28]. Two potential solutions are identified: first, physically
altering the circuit, posing risks of permanent damage; sec-
ond, simulating faulty conditions using a model. Given the
unfeasibility of the first option, example patterns and training
datasets will be derived using finite element converter models.
Implementing converter models introduces a new layer of
complexity to this paper. Decisions regarding model complex-
ity, passive elements, and shell types become pivotal. These
decisions hinge on simulating the complexity of the faults to
be replicated. Upon making these decisions, validating and
updating the model to align with the actual circuit is essential.
A typical validation approach involves a modal comparison
with the real circuit, along with passive elements tests. Chal-
lenges arise in extracting dynamic data from the model and
applying appropriate excitation. Though an ideal approach
involves random loadings similar to real-world environmental
and operational conditions, statistical information on these
loadings is challenging to obtain and computationally intensive
to simulate. Instead, the chosen approach concentrates on
utilizing impact loading. Characteristics of this impact include
duration based on the circuit’s frequency content, an arbitrary
magnitude ensuring the circuit’s response remains linear, and
selecting a regularly excited point on the actual circuit as the
location [30]. Following these considerations, a training dataset
can be constructed according to Table IV.

TABLE IV. FEATURE CONSIDERED FOR TRAINING DATA SET

Temp Irrad VC1 VC2 IL1 IL2

20 600 -85.87 32.53 4.901 3.182
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A. Generate Data under Various Operating Conditions

Conducted an in-depth analysis of the behavior of passive
elements within the Zeta converter under varying tempera-
ture and irradiance conditions. The Zeta converter comprises
four crucial passive components Capacitor C1, Capacitor C2,
Inductor L1, and Inductor L2. Each of these components
possesses specific specifications within nominal ranges, as
well as malfunction ranges, which have been meticulously
documented. Under different temperature and irradiance con-
ditions, observed that the capacitance and inductance of these
passive elements fluctuated over time. To capture this dynamic
behavior, collected extensive data through a comprehensive
procedure:

1) Initial data gathering 400 readings: Initiated the data
collection process under specific conditions—temperature at
20 degrees Celsius and irradiance at 600 units. Recorded
400 data points for voltages across capacitors C1 and C2
and currents across inductors L1 and L2. As temperature and
irradiance changed, the capacitance and inductance of these
passive elements evolved, subsequently affecting the voltages
and currents across them.

2) Data recording and structuring: To systematically
record these changes, created an Excel spreadsheet. It featured
ten columns: the first two columns maintained a constant
temperature of 20 degrees and irradiance of 600 units, respec-
tively. The subsequent columns captured varying parameters:
capacitance of C1, inductance of L1, capacitance of C2, and
inductance of L2. These parameters changed over time within
the nominal ranges, which were defined for data collection.
The final four columns represented voltage across C1, current
across L1, voltage across C2, and current across L2, respec-
tively.

3) Defining fault classes: To categorize the data appropri-
ately, introduced four fault classes fault class 1 (FC1), fault
class 2 (FC2), fault class 3 (FC3), and fault class 4 (FC4) based
on specific conditions and readings. When the capacitance and
inductance of passive elements fell within the nominal range,
the data points belonged to the zero-fault class.

4) Subsequent data collection 100 readings: Following the
initial phase, continued data collection with identical condi-
tions but introduced variations. The capacitance and inductance
ranges of passive elements shifted from nominal to malfunction
ranges. Divided this phase into four segments:

• The first 25 readings involved altering the capacitance
of C1 while maintaining the other three elements
within their ideal specifications falling under fault
class 1.

• The next 25 readings focused on changing the in-
ductance of L1 while keeping the other elements
unchanged falling under fault class 2.

• Similarly, the third set of 25 readings pertained to
modifying the inductance of L2, while the other
elements retained their original values falling under
fault class 3.

• The final 25 readings centered on adjusting the capac-
itance of C2, with the other element values remaining
unchanged falling under fault class 4.

5) Total data collection: In total, 500 readings under the
same temperature of 20 degrees, and irradiance of 600 units.

6) Variation in conditions: To expand the dataset, altered
the temperature to 70 degrees and irradiance to 1000 units,
resulting in an additional 500 readings. Among these readings,
400 had all passive elements within their nominal ranges,
classifying as the zero-fault class. The remaining 100 readings
exhibited variations, with each passive element’s capacitance
or inductance changing while the others remained unaltered.
These 100 readings were divided into four sets of 25 readings,
each assigned a fault class.

7) Further temperature and irradiance variation: Repeated
this procedure with a temperature of 80 degrees and irradiance
at 1200 units, adding another 500 readings.

B. Data Splitting

After compiling the dataset, partitioned it into two sets:
a training dataset comprising 70 percent of the data and a
test dataset containing 30 percent of the data. This separation
facilitated model training using the training dataset, followed
by testing and evaluation using the test dataset.

IV. SENSITIVITY ANALYSIS

In an electrical circuit, the values of its components will
probably change over time. These modifications will affect
the circuit’s output response, particularly the output voltage,
with other current and voltages throughout the circuit. As-
sess the magnitude of the impact of a specific parameter
change on a particular voltage or current, Analysis becomes
indispensable. Hence, Analysis is employed to scrutinize the
consequences of a deviation in the value of one component
from its standard state on a specific output of interest in a
system. Sensitivity analysis is widely applicable in diverse
fields such as ecology, chemistry, semiconductor materials, and
economics, contributing to decision-making processes. In the
realm of power converters, Analysis plays a pivotal role in
optimizing the design of electrical circuits. However, in our
context, By using sensitivity methods to know how specific
features change their properties by changes in one of the
parameter components properties within the zeta converter.
This investigation is valuable for comprehending alterations in
features (or inputs) when a component undergoes modification,
thereby aiding in the generation of training data for machine
learning applications [25]. Sensitivity analysis in microsoft
excel involves assessing how changes in certain input variables
(parameters) affect the output of a model or calculation.
Here’s a step-by-step guide on how to perform sensitivity
analysis using Excel: Following these steps, you can conduct
sensitivity analysis in Excel to assess the impact of varying
input parameters on your model or calculations, helping you
make informed decisions and understand the robustness of
your models.

1) Set up Your excel spreadsheet:

• Open a new or existing excel spreadsheet.

• Organize the data including temperature, irradiance,
capacitor 1 voltages (VC1), capacitor 2 voltages
(VC2), inductor current (IL1), inductor 2 current
(IL2). Collected the 1500 voltages and currents read-
ings of passive components C1, C2, L1, and L2.
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Fig. 5. IL1 variations.

Fig. 6. IL2 variations.

A. Identify the Input and Output Cells

• Temperature, irradiance, IL1, VC1, VC2, and IL2 are
the input parameters containing cells E1, F1, G1, H1,
I1, and J1 these are the parameter which would have
to vary for sensitivity analysis.

• E2, F2, G2, H2 cells that contain the formula or
calculation whose results would be analyzed. H2 is
the output cell that will display the impact of changing
input values.

B. Analyze and Interpret the Results

After setting the Excel sheet data set which contained 3
different operating conditions which are given below:

• 20 degree temperature and 600 irradiance.

• 70 degree temperature and 1000 irradiance.

• 80 degree temperature and 1200 irradiance.

Collected 1500 current and voltage of passive elements read-
ings, each operating condition contained 500 readings. After
setting the data set now analyzed how each passive ele-
ment’s Voltages and Current changes for some readings and
3 operating conditions mentioned above: Fig. 5 and 6 depict
graphs illustrating the variation of IL1 and IL2, respectively,
across different operating conditions. Meanwhile, Fig. 7 and
8 display graphs representing the variation of VC1 and VC2,
respectively, under various operating conditions. Graph IL1

Fig. 7. VC1 variations.

Fig. 8. VC2 variations.

and IL2 present current across inductors with 3 operating
conditions changes for some readings

V. SVM ARCHITECTURE

SVM is a supervised machine learning algorithm employed
for classification and regression tasks, with notable popularity
in solving classification problems [28]. SVM operates on the
principle of identifying a hyperplane that effectively separates
distinct classes of data points within a high-dimensional feature
space. Below is a concise overview of the architecture and
fundamental components of an SVM:

A. Input Data

The SVM algorithm is initiated by feeding it a meticulously
labeled dataset, much like the dataset has been carefully
assembled. This dataset comprises an array of distinctive
features or attributes, each bearing significance in the analysis.
These encompass temperature, irradiance, capacitance values
for C1 and C2, inductance values for L1 and L2, as well as
voltage and current measurements across C1, C2, L1, and L2.
Alongside these feature attributes, the dataset also includes
corresponding class labels, signifying specific fault conditions.
It’s noteworthy that SVM, renowned for its prowess in binary
classification, is the chosen methodology for this particular
dataset. This means that SVM is employed to categorize
the data into one of two classes. The SVM algorithm will
diligently scrutinize the interplay of these attributes and their
relevance to the fault classes, effectively classifying the data
points into the aforementioned fault categories. The goal is
to distinguish between these classes with precision, leveraging
the distinctiveness of the dataset’s attributes.
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Fig. 9. Two class SVM network.

B. Multi-class Classification with SVM Networks

The term “two-class SVM” implies its restricted capacity
to classify patterns into just two classes. This limitation poses a
challenge for circuit fault detection due to the diverse range of
potential fault conditions or classes that may occur in any given
circuit. To address this issue, employing a network of two-class
SVMs becomes a viable solution. Fig. 9 is the two-class SVM
network that is capable of detecting the fault between two fault
classes. From the depicted diagram, a testing dataset is input
into SVM-1, which classifies it as originating from either a
normal circuit condition or from a faulty circuit afflicted with
FC1 or FC2. If the majority of the dataset is labeled as normal,
the tree-like network concludes at that point. However, if the
majority of the data is identified as a faulty condition, the
dataset is directed to SVM-2, where it determines whether the
structure is experiencing FC1 or FC2. Notably, this paper does
not employ a specific routine to define an optimal network.
Instead, these decisions are made based on considerations of
the circuit and the specific faults targeted for detection [29].
Detection of the faults will be done using the tree-like SVM
network shown in Fig. 10. A testing dataset is input to SVM-
1 and classified as either class-1 which is normal operating
mode, or class-2 which is any of the faults FC1-FC4. If the
majority of data is classified as healthy the tree-like network
ends. However, if the majority of data is classified as class-2
then more SVMs must be used to determine the location of the
faults. Accordingly, data is input to SVM-2 which determines
the capacitors that the fault is located on. And then, depending
on the results from SVM-2, the data is input to either SVM-3
or SVM-4 to determine whether the fault is on inductors.

C. Types of Multi-class SVM

There are three types of multi-class SVM:

1) One-against-rest (OvR)
2) One-against-one (OvO)
3) Direct acyclic graph (DAG)

Used one-against-rest type to evaluate our results. its algo-
rithms is given below:

1) One-against-rest: OvR also known as one-vs-all, is a
strategy used in multiclass classification. In the case of SVM,
it involves training multiple binary classifiers, where each class

is treated as a binary classification problem against all other
classes [29]. Let’s denote the set of classes as

C = {C1, C2, , , , , , Ck} (26)

where k represents the total number of classes. The mathemati-
cal equation for the one-against-rest multi-class SVM involves
training k binary SVM classifiers, one for each class. For a
class Ci the classifier is trained to distinguish instances of Ci
from all the other classes collectively. The decision function
for each class Ci is:

Fi(x) = sign(Wi.x + bi) (27)

Fi(x) = sign(Wi.x + bi) (28)

Where:

1) Fi(x) represents the decision function for class Ci.
2) Wi is the weight vector for class Ci.
3) x represents the input feature vector.
4) bi is the bias term for class Ci.

During training, the SVM is trained to learn the decision
boundary that separates instances of the current class C i
from all other classes (as a binary classification problem). This
process is repeated for each class in the dataset, resulting in
k separate binary classifiers, each handling the distinction of
one class from the rest. At prediction time, the final class
assignment for a new instance is determined by selecting
the class associated with the classifier that yields the highest
confidence or decision value [29]-[30]. This OvR approach
allows the SVM to handle multi-class classification problems
by breaking them down into a series of binary classification
sub-problems, which are then collectively used to predict the
final class for a given input.

VI. EVALUATION METRICS

To ascertain the efficacy of these techniques and sub-
techniques, several key evaluation metrics were calculated
from the confusion matrices generated for each method. These
metrics included:

A. Precision

Precision serves as a pivotal performance metric for assess-
ing the accuracy of a classification model. It quantifies the ratio
of accurately predicted positive observations (true positives) to
all instances predicted as positive by the model, encompassing
both correct and incorrect predictions (true positives and false
positives). In the context of fault detection in a Zeta converter
using a multi-class SVM:

• True Positives (TP): These are instances where the
model correctly predicts a specific fault class among
the Zeta converter faults.

• False Positives (FP): These are instances where the
model incorrectly predicts a fault class when there
is no fault or a different fault occurred in the Zeta
converter.
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Fig. 10. Multi class SVM framework.

The precision score is calculated as:

precision =
TP

TP + FP
(29)

A heightened precision value signifies that when the model
predicts a fault class, it is more likely to be accurate. Precision
gauges the model’s accuracy in terms of minimizing false
alarms, indicating that a higher precision corresponds to fewer
false positives. This aspect is particularly crucial in situations
where inaccurate fault predictions could result in unwarranted
maintenance or intervention.

B. Recall

Recall, alternatively referred to as sensitivity or the true
positive rate, is a performance metric employed to assess
a classification model’s capability to accurately identify all
pertinent instances of a specific class or category within a
dataset. The calculation for the recall score is:

Recall =
TP

TP + TN
(30)

A heightened recall value signifies that the model excels in
capturing all instances of a specific fault class. It evaluates
the model’s capacity to minimize the omission of positive
instances or, in the context of fault detection, its effectiveness
in identifying all instances of a particular fault in the Zeta
converter.

C. F1 score

The F1 score serves as a unified metric that strikes a
balance between precision and recall in classification tasks.
It proves particularly valuable when taking into account both
false positives and false negatives in the predictions made by
my model.

• Precision is the proportion of correctly predicted pos-
itive observations out of all instances predicted as
positive.

• Recall (or Sensitivity) is the proportion of correctly
predicted positive observations out of all actual posi-
tive instances.

The F1 score is calculated as the harmonic mean of precision
and recall. The formula for the F1 score is:

F1Score =
2.precision.Recall

precision+Recall
(31)

The F1 score considers both false positives and false negatives
and provides a balance between precision and recall. It helps
to assess the overall accuracy of a classification model by con-
sidering both its ability to identify relevant instances (recall)
and the proportion of correct positive predictions (precision).
A high F1 score indicates both high precision and high recall,
signifying a model that provides accurate positive predictions
while capturing the most positive instances. In contrast, a low
F1 score might indicate a model that either misses a lot of
positive instances (low recall) or has many false positives (low
precision).

D. Accuracy

Accuracy is a foundational performance metric employed
to assess the overall correctness of a classification model. It
quantifies the ratio of correctly predicted instances, encom-
passing both positive and negative, out of the total instances
in the dataset.

• True Negatives (TN): Instances where the model cor-
rectly predicts the absence of a particular fault class
in the Zeta converter.

• False Negatives (FN): Instances where the model
incorrectly fails to predict a fault class when it is
present.

The accuracy score is calculated as:

Accuracy =
TP + TN

TP + FN + FP + TN
(32)

A higher accuracy value indicates that the model has made a
higher proportion of correct predictions across all fault classes
in the Zeta converter dataset.

E. Specificity

Specificity stands as a vital performance metric in clas-
sification tasks, especially in binary classification, to gauge
a model’s capability to accurately identify negative instances
(true negatives) among all actual negative instances in a
dataset. The calculation for specificity is:

Specificity =
TN

TN + FP
(33)
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A heightened specificity value signifies that the model excels
in accurately identifying instances that are genuinely negative
or instances that do not pertain to the considered class (such
as the absence of faults in the context of fault detection).
Specificity is especially beneficial in situations where the cost
of false positives, i.e., incorrectly predicting a fault when
none exists, is significant. In the case of fault detection in
Zeta converters, accurately confirming the absence of certain
faults is essential for ensuring the system’s reliability. A
high specificity implies a lower incidence of false alarms or
erroneous identification of faults when they are not present,
a critical aspect for maintaining the operational integrity of
the Zeta converter. The analysis included the computation of
these metrics for each sub-technique, relying on their respec-
tive confusion matrices. These metrics act as benchmarks to
validate the models’ performance in fault detection for the Zeta
converter. This extensive evaluation framework aspired to offer
a comprehensive insight into the strengths and limitations of
each technique and sub-technique in fault detection, making a
substantial contribution to the development of an effective fault
detection system for Zeta converters. The classification process
encompassed the application of diverse machine learning tech-
niques and their corresponding sub-techniques, resulting in a
thorough assessment of fault detection in the Zeta converter.
These techniques comprised:

VII. RESULTS

The SVM classification method was implemented us-
ing different kernel functions to explore distinct decision
boundaries and their effectiveness in fault classification. The
employed kernels encompassed linear, cubic, and quadratic
functions, each offering a unique approach to delineating fault
boundaries within the Zeta converter’s operational data.

A. Linear SVM

A Linear SVM is a supervised machine learning algorithm
used for classification tasks that work to create a linear decision
boundary between different classes in a dataset. In the context
of fault detection in a Zeta converter, the Linear SVM aims to
separate various fault types using a straight line or hyperplane
based on extracted features from the Zeta converter’s oper-
ational data. It focuses on maximizing the margin (distance
between the decision boundary and the nearest data points) to
efficiently classify different fault instances. Table V presents
the outcomes of the linear SVM as derived from the confusion
matrices depicted in Fig. 11. Fig. 12 provides a graphical il-
lustration demonstrating the efficacy of each evaluation metric
in response to the results of each class.

B. Cubic SVM

A Cubic SVM is a variation of the SVM algorithm used
for classification tasks, aiming to create a non-linear decision
boundary between different classes within a dataset. In the
context of fault detection in a zeta converter, the Cubic SVM
extends the capabilities of the linear SVM by utilizing a cubic
kernel function, allowing the model to capture more complex
relationships between features. This cubic kernel transforms
the input features into a higher-dimensional space, enabling the
SVM to find nonlinear decision boundaries and classify Zeta
converter fault instances that might not be linearly separable.

TABLE V. RESULTS FROM CONFUSION MATRIC LINEAR SVM

Fault Classes FC0 FC1 FC2 FC3 FC4 Average

precision 1 0.866 0.9066 0.866 0.858 0.8993

Recall 0.970 0.984 1 1 1 0.990

F1 Score 0.9847 0.921 0.951 0.928 0.9235 0.941

Accuracy 0.975 0.992 0.995 0.993 0.992 0.9897

Sensitivity 1 0.8666 0.9066 0.8666 0.8589 0.8997

Specificity 0.8778 0.999 1 1 1 0.9753

Fig. 11. Confusion matric linear SVM.

Fig. 12. Graphical representation of results from a confusion matrix for a
linear SVM model.
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TABLE VI. RESULTS FROM CONFUSION MATRIC CUBIC SVM

Fault Classes FC0 FC1 FC2 FC3 FC4 Average

precision 1 0.906 0.920 0.866 0.923 0.9232

Recall 0.9787 0.985 0.971 1 1 0.9870

F1 Score 0.989 0.944 0.945 0.928 0.959 0.9531

Accuracy 0.9827 0.9946 0.995 0.993 0.9960 0.9922

Sensitivity 1 0.9066 0.92 0.8666 0.9230 0.9232

Specificity 0.9141 0.999 0.998 1 1 0.9822

Fig. 13. Confusion matric cubic SVM.

Table VI presents the outcomes of the cubic SVM as derived
from the confusion matrices depicted in Fig. 13. Fig. 14
provides a graphical illustration demonstrating the efficacy of
each evaluation metric in response to the results of each class.

Fig. 14. Graphical representation of results from a confusion matrix for a
cubic SVM model.

TABLE VII. RESULTS FROM CONFUSION MATRIC QUADRATIC SVM

Fault Classes FC0 FC1 FC2 FC3 FC4 Average

precision 1 0.92 0.920 0.88 0.8846 0.9209

Recall 0.9756 1 1 1 1 0.9951

F1 Score 0.9876 0.9583 0.9583 0.9361 0.9387 0.9546

Accuracy 0.9800 0.9960 0.9960 0.9940 0.9940 0.992

Sensitivity 1 0.92 0.92 0.88 0.8846 0.9209

Specificity 0.9009 1 1 1 1 0.9801

Fig. 15. Confusion matric quadratic SVM.

C. Quadratic SVM

A Quadratic SVM is a variant of the SVM algorithm used
for classification tasks, specifically designed to create a non-
linear decision boundary between different classes in a dataset.
In the context of fault detection within a zeta converter, the
Quadratic SVM extends the capabilities of linear SVM by
employing a quadratic kernel function. This kernel allows
the model to capture more complex relationships between
features, transforming the input data into a higher-dimensional
space where it can identify nonlinear patterns in the Zeta
converter’s operational data. Table VII presents the outcomes
of the quadratic SVM as derived from the confusion matrices
depicted in Fig. 15. Fig. 16 provides a graphical illustration
demonstrating the efficacy of each evaluation metric in re-
sponse to the results of each class.

VIII. KNN

Utilized the KNN algorithm, and multiple distance metrics
were applied to evaluate the proximity of data points within
the feature space. The variations in distance metrics, including
fine, cubic, cosine, and coarse distances, provided a compre-
hensive analysis of different neighborhood structures and their
influence on fault classification accuracy.
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Fig. 16. Graphical representation of results from a confusion matrix for a
quadratic SVM model.

TABLE VIII. RESULTS FROM CONFUSION MATRIC FINE KNN

Fault Classes FC0 FC1 FC2 FC3 FC4 Average

precision 0.9842 0.9480 0.9594 0.8933 0.9473 0.9464

Recall 0.8069 0.0487 0.0475 0.0449 0.04828 0.1992

F1 Score 0.8867 0.0926 0.0905 0.0855 0.0918 0.2494

Accuracy 0.9787 0.9927 0.9953 0.9926 0.9933 0.9905

Sensitivity 0.9891 0.9733 0.9466 0.9571 0.9230 0.9578

Specificity 0.9372 0.9971 0.9978 0.9944 0.9971 0.9755

A. Fine KNN

A fine KNN is a variant of the KNN algorithm used
for classification tasks, focusing on a finer level of granu-
larity in assessing neighboring data points. In the context of
fault detection in a zeta converter, the fine KNN algorithm
involves considering a smaller number of nearest neighbors
within the feature space. This approach aims to make more
precise distinctions between different fault classes based on the
characteristics of the zeta converter’s operational data. Table
VIII presents the outcomes of the fine KNN as derived from
the confusion matrices depicted in Fig. 17. Fig. 18 provides
a graphical illustration demonstrating the efficacy of each
evaluation metric in response to the results of each class.

B. Cubic KNN

A Cubic KNN is a variation of the KNN algorithm used
for classification tasks, aiming to consider a larger and more
expanded neighborhood of neighboring data points within the
feature space. Table IX presents the outcomes of the cubic
KNN as derived from the confusion matrices depicted in Fig.
19. Fig. 20 provides a graphical illustration demonstrating the
efficacy of each evaluation metric in response to the results of
each class.

C. Cosine KNN

Cosine KNN is a variant of the KNN algorithm that lever-
ages the cosine similarity metric to determine the proximity
of data points within the feature space. In the context of fault
detection in a zeta converter, cosine KNN measures the angle
between data points in a multi-dimensional space rather than

Fig. 17. Confusion matric fine KNN.

Fig. 18. Graphical representation of results from a confusion matrix for a
fine KNN model.

TABLE IX. RESULTS FROM CONFUSION MATRIC CUBIC KNN

Fault Classes FC0 FC1 FC2 FC3 FC4 Average

precision 0.9672 0.9843 0.9714 1 1 0.9845

Recall 0.8202 0.0422 0.0458 0.0435 0.0429 0.1989

F1 Score 0.8876 0.0809 0.0874 0.0833 0.0822 0.2442

Accuracy 0.9733 0.9913 0.9940 0.9933 0.9906 0.9885

Sensitivity 1 0.84 0.9066 0.8666 0.8205 0.8867

Specificity 0.8674 0.9992 0.9985 1 1 0.9730
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Fig. 19. Confusion matric cubic KNN.

Fig. 20. Graphical representation of results from a confusion matrix for a
cubic KNN model.

the direct Euclidean distance. Table X presents the outcomes
of the cosine KNN as derived from the confusion matrices
depicted in Fig. 21. Fig. 22 provides a graphical illustration
demonstrating the efficacy of each evaluation metric in re-
sponse to the results of each class.

TABLE X. RESULTS FROM CONFUSION MATRIC COSINE KNN

Fault Classes FC0 FC1 FC2 FC3 FC4 Average

precision 0.970 0.984 0.971 1 1 0.985

Recall 0.8185 0.0429 0.0525 0.0502 0.0442 0.2012

F1 Score 0.8877 0.0821 0.0995 1.0478 0.0846 0.4394

Accuracy 0.9753 0.9920 0.9930 0.9940 0.9920 0.9892

Sensitivity 1 0.8533 0.9066 0.8666 0.8461 0.8945

Specificity 0.8728 0.999 0.9983 1 1 0.9740

Fig. 21. Confusion matric cosine KNN.

Fig. 22. Graphical representation of results from a confusion matrix for a
cosine KNN model.

D. Coarse KNN

The Coarse KNN is a variant of the KNN algorithm used
for classification tasks, where it considers a broader and more
generalized neighborhood of data points within the feature
space. In the context of fault detection in a zeta converter,
the coarse KNN algorithm involves examining a larger set
of neighboring data points to provide a more generalized
analysis of the zeta converter’s operational data. Table XI
presents the outcomes of the coarse KNN as derived from
the confusion matrices depicted in Fig. 23. Fig. 24 provides
a graphical illustration demonstrating the efficacy of each
evaluation metric in response to the results of each class.

IX. DECISION TREE

The Decision Tree methodology was implemented with
varying tree complexities to discern the hierarchy of fault
features. Different tree complexities fine tree, medium tree,
and coarse tree were employed to study the trade-off between
model simplicity and the ability to capture intricate fault
patterns in the zeta converter’s operation.
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TABLE XI. RESULTS FROM CONFUSION MATRIC COARSE KNN

Fault Classes FC0 FC1 FC2 FC3 FC4 Average

precision 0.8426 0.9615 1 1 1 0.9608

Recall 0.9382 0.0172 0.0076 0.0151 0.0138 0.1983

F1 Score 0.8878 0.0337 0.0150 0.0297 0.0272 0.1986

Accuracy 0.8509 0.9667 0.9574 0.9647 0.9614 0.9402

Sensitivity 1 0.333 0.1466 0.2933 0.2564 0.4058

Specificity 0.2607 0.999 1 1 1 0.8519

Fig. 23. Confusion matric coarse KNN.

Fig. 24. Graphical representation of results from a confusion matrix for a
coarse KNN model.

TABLE XII. RESULTS FROM CONFUSION MATRIC FINE TREE

Fault Classes FC0 FC1 FC2 FC3 FC4 Average

precision 0.9916 1 0.9729 0.9605 0.9615 0.9782

Recall 0.8024 0.0486 0.0480 0.0487 0.0499 0.1995

F1 Score 0.8870 0.0926 0.0915 0.0926 0.0948 0.2517

Accuracy 0.9866 0.9986 0.9966 0.9966 0.9960 0.9948

Sensitivity 0.9916 0.9733 0.96 0.9733 0.9615 0.9719

Specificity 0.9669 1 0.9985 0.9978 0.9979 0.9922

Fig. 25. Confusion matric fine tree.

A. Fine Tree

A Fine Tree is a classification model that employs a deci-
sion tree algorithm with a more detailed or intricate structure.
In the context of fault detection in a zeta converter, a fine
decision tree aims to create a tree structure with more levels,
nodes, or branches, allowing for a more intricate analysis of
features related to different fault classes. Table XII presents
the outcomes of the fine Tree as derived from the confusion
matrices depicted in Fig. 25. Fig. 26 provides a graphical il-
lustration demonstrating the efficacy of each evaluation metric
in response to the results of each class.

B. Medium Tree

A Medium Tree is a classification model that utilizes a
decision tree algorithm with a moderate level of complexity.
In the context of fault detection in a zeta converter, a medium
decision tree involves creating a tree structure with a moderate
number of levels, nodes, or branches. This balanced complex-
ity allows for a middle-ground analysis of features related to
different fault classes. Table XIII presents the outcomes of the
medium tree as derived from the confusion matrices depicted in
Fig. 27. Fig. 28 provides a graphical illustration demonstrating
the efficacy of each evaluation metric in response to the results
of each class.

www.ijacsa.thesai.org 1304 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 15, No. 3, 2024

Fig. 26. Graphical representation of results from a confusion matrix for a
fine tree model.

TABLE XIII. RESULTS FROM CONFUSION MATRIC MEDIUM TREE

Fault Classes FC0 FC1 FC2 FC3 FC4 Average

precision 0.9916 0.9733 0.9729 0.9605 0.9615 0.9719

Recall 0.8024 0.0486 0.0480 0.0486 0.0501 0.1995

F1 Score 0.8870 0.0925 0.0914 0.0925 1.9504 0.6227

Accuracy 0.9866 0.9973 0.9966 0.9966 0.9960 0.9945

Sensitivity 0.9916 0.9732 0.9729 0.9605 0.9615 0.9719

Specificity 0.9916 0.9733 0.5675 0.9605 0.9615 0.8908

Fig. 27. Confusion matric medium tree.

Fig. 28. Graphical representation of results from a confusion matrix for a
medium tree model.

TABLE XIV. RESULTS FROM CONFUSION MATRIC COARSE TREE

Fault Classes FC0 FC1 FC2 FC3 FC4 Average

precision 0.9558 1 0.9729 0.9361 0.9615 0.9652

Recall 0.8275 0.0383 0.0480 0.0299 0.0501 0.1987

F1 Score 0.8870 0.0737 0.0914 0.0579 0.0952 0.2410

Accuracy 0.9580 0.9880 0.9966 0.9773 0.9960 0.9831

Sensitivity 0.9933 0.76 0.96 0.5866 0.9615 0.8522

Specificity 0.8184 1 0.9985 0.9978 0.9978 0.9625

Fig. 29. Confusion matric coarses tree.

C. Coarse Tree

A Coarse Tree is a classification model that employs a
decision tree algorithm with a simpler or more generalized
structure. In the context of fault detection in a zeta converter,
a Coarse decision tree aims to create a tree structure with
fewer levels, nodes, or branches, facilitating a more generalized
analysis of features related to different fault classes. Table
XIV presents the outcomes of the coarse tree as derived from
the confusion matrices depicted in Fig. 29. Fig. 30 provides
a graphical illustration demonstrating the efficacy of each
evaluation metric in response to the results of each class.

X. DISCUSSION

The research demonstrates the viability of SVMs for mon-
itoring Zeta converters. The chosen quadratic SVM achieved

Fig. 30. Graphical representation of results from a confusion matrix for a
coarse tree model.
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Fig. 31. Graphical representation of performance comparison across various
machine learning techniques.

promising results in identifying converter health based on
the collected passive element data.This suggests that ana-
lyzing these readily available measurements holds promise
for preventative maintenance and fault detection in smart
grids. While various SVM algorithms were explored, the
quadratic SVM emerged as the most effective in this specific
application. This could be attributed to the underlying non-
linear relationships between the passive element data and
converter health. The quadratic SVM’s ability to learn and
exploit these non-linear relationships likely contributed to
its superior performance. This research acknowledges certain
limitations. Firstly, the study utilized a simulated dataset or a
controlled experimental setup. Real-world data from deployed
converters might introduce additional complexities and noise
that could impact model performance. Secondly, the chosen
features (passive element current and voltage) might not be the
most comprehensive. Exploring additional features or feature
engineering techniques could potentially improve the model’s
accuracy. The goal is to In Fig. 31, provide a comprehensive
overview of how these techniques fare concerning criteria such
as accuracy, precision, recall, ,F1 score and Specificity among
others, and quadratic SVM yields superior results compared
to other machine learning techniques employed in training
our dataset. quadratic SVMs can handle various data types as
long as they are numerically represented. The key factor for
successful application is whether the data can be effectively
separated (linearly or using kernels) in the high-dimensional
space for classification. Building on this work, future research
could explore the following avenues:

1) Real-world data integration: Test the model’s effec-
tiveness with data collected from actual Zeta convert-
ers deployed in smart grid environments.

2) One-against-one (OvO)Feature engineering and opti-
mization: Investigate the incorporation of additional
data points or the optimization of existing features to
enhance the model’s discriminatory power.

3) Hybrid model development: Explore the potential of
combining SVMs with other machine learning algo-
rithms, such as deep learning architectures, for more
robust and comprehensive converter health monitor-

ing.

XI. CONCLUSION

In this paper, we embarked on a journey to explore the
intricate relationship between renewable energy variations and
their impact on the passive components of Zeta converters.
Utilizing MATLAB Simulink for simulation, we meticulously
gathered and analyzed data on the currents and voltages across
these components under varying renewable energy conditions.
Our objective was to deeply understand how fluctuations
in renewable energy sources affect the operation and sta-
bility of Zeta converters. To achieve this, we employed a
sophisticated machine learning approach, leveraging a multi-
class SVM classifier. This method proved instrumental in
distinguishing between nominal and malfunctioning conditions
of the Zeta converter with remarkable accuracy. We com-
pared several machine learning techniques, including SVM
with different kernel functions (linear, cubic, and quadratic),
KNN with a range of distance metrics (fine, cubic, cosine,
coarse), and Decision Trees with varying complexities (fine,
medium, coarse). Among these, the linear SVM emerged as
the standout performer, delivering superior results in terms
of accuracy, sensitivity, specificity, precision, recall, and F1
score. Additionally, the SVM’s computational efficiency, es-
pecially when using RBF and polynomial kernels, highlighted
its practicality for real-world applications. One of the pivotal
challenges encountered in training the classification learner
was the algorithm’s performance variability across different
scenarios, such as changes in the size of training data and
solar operating conditions. Despite these challenges, the multi-
class SVM consistently demonstrated optimal performance,
accurately predicting component conditions under a wide range
of operational scenarios. This included both gradual degra-
dation and critical failure conditions, affirming its robustness
and reliability as a diagnostic tool. Moreover, the SVM’s
unparalleled accuracy in forecasting component health under
varied operational states, including during the degradation
phase, underscores its potential for real-time monitoring and
preventive maintenance of Zeta converters. This capability is
particularly valuable in ensuring the longevity and efficiency of
systems integrated with renewable energy sources, where op-
erational conditions are inherently dynamic and unpredictable.
Thus, this research not only sheds light on the dynamic
effects of renewable energy variations on Zeta converters
but also establishes the multi-class SVM as a powerful tool
for predictive maintenance and fault diagnosis in smart grid
applications. The insights gained from this study pave the way
for further exploration into machine learning-based solutions
for enhancing the reliability and sustainability of renewable
energy systems.

REFERENCES

[1] H. Sharma et al. “Feasibility of Solar Grid-Based Industrial Virtual Power
Plant for Optimal Energy Scheduling: A Case of Indian Power Sector”,
Energies, 2022 doi.org/10.3390/en15030752.

[2] F. Azeem et al. “Load Management and Optimal Sizing of Special-
Purpose Microgrids Using Two Stage PSO-Fuzzy Based Hybrid Ap-
proach”, Energies, 2022 doi.org/10.3390/en15176465.

[3] Asif, Rao Muhammad, et al. ”Design and analysis of robust fuzzy
logic maximum power point tracking based isolated photovoltaic energy
system.” Engineering Reports 2.9 (2020): e12234.

www.ijacsa.thesai.org 1306 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 15, No. 3, 2024

[4] N. Vasudevan et al. ”Design and Development of an Intelligent Energy
Management System for a Smart Grid to Enhance the Power Quality,
Energy Engineering 120, 1747-176, 2023

[5] Zhang, Chaolong, et al. ”A novel approach for analog circuit fault
prognostics based on improved RVM.” Journal of Electronic Testing 30
(2014): 343-356.

[6] Luchetta, Antonio, et al. ”MLMVNNN for parameter fault detection in
PWM DC–DC converters and its applications for buck and boost DC–DC
converters.” IEEE Transactions on Instrumentation and Measurement
68.2 (2018): 439-449.

[7] Ko, Y-J., et al. ”Fault diagnosis of three-parallel voltage-source converter
for a high-power wind turbine.” IET Power Electronics 5.7 (2012): 1058-
1067.

[8] Wang, Li, et al. ”A novel remaining useful life prediction approach
for superbuck converter circuits based on modified grey wolf optimizer-
support vector regression.” Energies 10.4 (2017): 459.

[9] Markovic, Nikola, et al. ”Condition monitoring for power converters via
deep one-class classification.” 2021 20th IEEE International Conference
on Machine Learning and Applications (ICMLA). IEEE, 2021.

[10] Kaplan, Halid, Kambiz Tehrani, and Mo Jamshidi. ”A fault diagnosis
design based on deep learning approach for electric vehicle applications.”
Energies 14.20 (2021): 6599.

[11] Zhao, Shuai, et al. ”Parameter estimation of power electronic converters
with physics-informed machine learning.” IEEE Transactions on Power
Electronics 37.10 (2022): 11567-11578.

[12] Alam, Mohammed Khorshed, and Faisal H. Khan. ”Reliability analysis
and performance degradation of a Boost converter.” 2013 IEEE Energy
Conversion Congress and Exposition. IEEE, 2013.

[13] Kulkarni, C., Gautam Biswas, and Xenofon Koutsoukos. ”A prognosis
case study for electrolytic capacitor degradation in DC-DC converters.”
PHM Conference. 2009.

[14] H. Maqbool et al. “An Optimized Fuzzy Based Control Solution for
Frequency Oscillation Reduction in Electric Grids”, Energies, 2022,
doi.org/10.3390/en15196981.

[15] S Balouch et al. ”Optimal Scheduling of Demand Side Load Manage-
ment of Smart Grid Considering Energy Efficiency”, Energy Res., 2022,
doi.org/10.3389/fenrg.2022.861571

[16] M. Asif et al. “Industrial Automation Information Analogy for Smart
Grid Security”, CMC-Computers, Materials & Continua 71, 3985-3999,
2022, doi:10.32604/cmc.2022.023010

[17] M.L. Katche, Musong L. et al. ”A Comprehensive Review of Maximum
Power Point Tracking (MPPT) Techniques Used in Solar PV Systems”
Energies, 2023, doi.org/10.3390/en16052206

[18] A. Yousaf et al. ”An improved residential electricity load forecasting us-
ing a machine-learning-based feature selection approach and a proposed
integration strategy.” Sustainability 13.11 (2021): 6199.

[19] K. Mahmoud, and M. Lehtonen, ”Comprehensive analytical expressions
for assessing and maximizing technical benefits of photovoltaics to
distribution systems.” IEEE Transactions on Smart Grid 12.6 (2021):
4938-4949.

[20] K. Rahbar, J. Xu, and R. Zhang. ”Real-time energy storage manage-
ment for renewable integration in microgrid: An off-line optimization
approach.” IEEE Transactions on Smart Grid 6.1 (2014): 124-134.

[21] W. Wang et al. ”Energy management and optimization of vehicle-to-
grid systems for wind power integration.” CSEE Journal of Power and
Energy Systems 7.1 (2020): 172-180.

[22] Yousaf, Adnan, et al. ”A novel machine learning-based price forecasting
for energy management systems.” Sustainability 13.22 (2021): 12693.

[23] A. Waqar, et al. ”Machine learning based energy management model
for smart grid and renewable energy districts.” IEEE Access 8 (2020):
185059-185078.

[24] Siddique, Muhammad Abu Bakar, et al. ”Maximum power point track-
ing with modified incremental conductance technique in grid-connected
PV array.” 2020 5th International Conference on Innovative Technologies
in Intelligent Systems and Industrial Applications (CITISIA). IEEE,
2020.

[25] M. Bindi et al. ”Comparison between pi and neural network controller
for dual active bridge converter.” 2021 IEEE 15th International Confer-
ence on Compatibility, Power Electronics and Power Engineering (CPE-
POWERENG). IEEE, 2021.

[26] Jørgensen, Asger Bjørn. ”Derivation, Design and Simulation of the Zeta
converter.” (2021).

[27] Divyasharon, R., R. Narmatha Banu, and D. Devaraj. ”Artificial neural
network based MPPT with CUK converter topology for PV systems
under varying climatic conditions.” 2019 IEEE International Conference
on Intelligent Techniques in Control, Optimization and Signal Processing
(INCOS). IEEE, 2019.

[28] Ni, Yuanping, and Junli Li. ”Faults diagnosis for power transformer
based on support vector machine.” 2010 3rd International Conference on
Biomedical Engineering and Informatics. Vol. 6. IEEE, 2010.

[29] M. Galar et al. ”An overview of ensemble methods for binary classifiers
in multi-class problems: Experimental study on one-vs-one and one-vs-
all schemes.” Pattern Recognition 44.8 (2011): 1761-1776.

[30] Widodo, Achmad, and Bo-Suk Yang. ”Support vector machine in
machine condition monitoring and fault diagnosis.” Mechanical systems
and signal processing 21.6 (2007): 2560-2574.

www.ijacsa.thesai.org 1307 | P a g e


