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Abstract—A time-delay neural system is an accurate class
of neural system that exposes delays in both the state values
and their derivatives. In this case, it is critical to maintain the
system stability. Here, the stability investigation on uncertain
switched-neutral systems with state-time delays is the focus of
this paper. In fact, a novel adequate condition in terms of the
feasibility of Linear Matrix Inequalities (LMIs) is offered to
guarantee the global asymptotically stability of this category of
systems with parameter uncertainties, based on the Lyapunov-
Krasovskii functional method. Additionally, resistance against
errors and disturbances can be ensured using the Multiple
Quadratic Lyapunov Functions (MQLFs). Through a numerical
example, the designed method’s effectiveness is proven.
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I. INTRODUCTION

Researchers have become more intrigued by neural systems
in recent years due to their ability to be practice to numerous
real-dynamical systems in different domains of knowledge.
Engineering encompasses information science, combinatorial
optimization, automatic control, signal processing, and fault
diagnosis [1], [2], [3], [4].

Indeed, a time-delay neural is a specific type of neural
system that exhibits lags (retards or delays) in the state values
along with their derivatives. In fact, time delays can widely
arise during the electronic realization of neural networks, by
dint of the finite switching speed of amplifiers and the time
needed for communication. For this reason, there has been a
significant amount of interest in delayed neural networks. It
is crucial to maintain stability when using neural networks
for tasks such as designing associative memory and pattern
recognition...etc. The hardware realization of neural networks
can cause delays in signal transmission, which can result
in undesirable dynamical behaviors, such as oscillation and
instability [5], [6].

Hence, when studying the stability of the neural system, it’s
important to take into account time delays. Numerous valuable
stability criteria have been developed due to the extensive
research on the stability analysis of delayed neural networks in
the past several decades [7], [8]. The stabilization of delayed
dynamical systems has further appealed to a lot of interest,
and many feedback stabilization control techniques have been
proposed [9], [10], [11].

Despite that, switched systems, which are an important
subclass of hybrid systems, feature a logic rule that governs
the switching between a finite number of subsystems [12].
During the beyond few decades, switched structures had been
investigated due to their fulfillment in real-global applications
[13], [14], [15]. Exponential stabilisation and L2-gain for un-
certain switched nonlinear systems with interval time-varying
delays have been discussed by Dong et al. [16]. Moreover,
the average dwell time approach has been used by Liu et al.
Robust stability requirements for discrete-time switched neural
networks with different activation functions has been provided
through Arunkumar et al. [17]. Ma et al.’s study [18] looked
into the use of an asynchronous switching delay system to
stabilize networked switched linear systems. After that, global
exponential stability for switched stochastic neural networks
with time-varying delays was examined by Wu et al. [19].

Referring to [20], stability study for uncertain switched
systems with time-varying latency has been examined. In [21],
the semi-tensor product of matrices was used to study the
stabilization analysis and stabilizing switching signal design of
switched Boolean networks. The conversation above demon-
strates the need to research switched neural networks with
parametric uncertainty and time delay.

The robust stability issue for uncertain switched neutral
time-delay systems has not roughly been studied. The focus
of this paper is on analysing the stability of switched neutral
delayed systems with parameter uncertainties. To offer updated
stability conditions in the occurrence of faults and disturbances
within the investigated system, the research work introduces a
novel criteria for ensuring robust asymptotic stability by using
(MQLF) approach.

Moreover, LMI is used for optimization, problem verifi-
cation, and deriving feasibility conditions. Lastly, numerical
example is provided to show the efficiency of the proposed
theorems.

The remainder of this work is demonstrated below: Section
II contains the problem formulation. In Section III, the robust
stability study for like systems with affected by faults and
disturbances is clarified, as well as the suggested theorems
are hereafter shown in details. The simulation results of the
developed stability method is provided in Section IV. At last,
Section V gives a conclusion.
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II. PROBLEM FORMULATION

The following describes a class of uncertain switched linear
neutral systems with state delays:

ẋ(t)− J̄σẋ(t− ε2) = R̄σx(t) + D̄σx(t− ε1)
+B̄σu(t)+Fσd(t)+Eσf(t)

y(t) = Cσx(t) +Kdσd(t) +Kfσf(t)
x(t) = θ(t) ; ∀t ∈ [−γ, 0]

(1)

The state vector of the system, denoted as x(t) ∈ Rn, is
influenced by an input vector for control, u(t) ∈ Rm, while the
output vector is represented by y(t) ∈ Rp. A switching signal,
σ : [0,∞[→ N = {1, 2, 3, ..., n}, manages the switching of
subsystems i ∈ N . The constant matrices R̄i, D̄i, J̄i, B̄i,
and Ci are confirmed to have appropriate dimensions. The
disturbance input is denoted by d(t) ∈ LP

2 [0,∞[, and the
fault vector is represented as f(t) ∈ Rl. Each subsystem is
characterized by known real matrices Ffi , Edi

, Kfi , and Kdi

for every i. The state’s derivative and delay time are specified
by ε1 > 0 and ε2 > 0, with γ = max {ε1, ε2}, and θ(t) is an
initial continuous vector-valued function.

III. MULTIPLE QUADRATIC LYAPUNOV FUNCTIONS

In system theory, developing Lyapunov functions is essen-
tial, especially when determining whether the system under
study is internally stable. Stability is indicated by the exis-
tence of a suitable Lyapunov function. A common option is
the Common Quadratic Lyapunov Function, which acts as a
total Lyapunov candidate function for all of the modes that
comprise the switched dynamical system. On the other hand,
by connecting several quadratic Lyapunov functions, MQLFs
provide an unorthodox method. Every function is maximized
in the area that it is assigned.

In fact, MQLFs are preferred over CQLFs due to their less
conservative nature, even though the global function may allow
discontinuities and exhibit non-decreasing behavior over state
trajectories. Relevant literature has emphasized the usefulness
of MQLFs and their intuitive results, as discussed in [11]. It is
noteworthy that MQLFs show a decrease in each active mode,
as shown in [12], with their values post-switching instances
staying lower than beforehand.

A. New Stability Criterion

The subsequent paper investigates the stability study of
the switched neutral system in linear form with state delay-
dependent (1) behavior. From this, choose a Lyapunov func-
tional candidate using the following criteria:

Vi(x, t) = V1i(x, t) + V2i(x, t) + V3i(x, t) (2)

When given positive constants Pi, Qi, and Hi, the following
theorem holds for system (Eq. 1) with the Lyapunov functional
candidate given by (Eq. 3).
The parameter uncertainties are expressed through the follow-
ing formulations:

J̄ = Jσ +∆Jσ , R̄ = Rσ +∆Rσ , D̄ = Dσ +∆Dσ , and
B̄ = Bσ +∆Bσ .

These uncertain matrices, denoted by the symbol ∆, are
time-dependent, with ∆Jσ , ∆Rσ , ∆Dσ ,and ∆Bσ varying

with time t.
Furthermore, the parameter uncertainties are subject to
norm-bounded terms: As well, the norm-bounded parameter
uncertainty terms are given as

∆Ji = Zi1

∑
i1
W1i ,∆Ri = Zi2

∑
i2
W2i ,

∆Di = Zi3

∑
i3
W3i ,

∆Bi = Zi4

∑
i4
W4i where Zi1 , Zi2 , Zi3 , Zi4 , Wi1 ,

Wi2 , Wi2 and W4i are known constant matrices. After that,
T∑
1i

∑
<Ii,

T∑
2i

∑
<Ii,

T∑
3i

∑
<Ii and

T∑
4i

∑
<Ii

Theorem 1:
The stability of the switched neutral system together with
state-time delays (Eq. 1) is established for a fixed value
ε > 0, γ > 0, under the condition that there exist positive
definite symmetric matrices Xi, Ti, and Yi, along with
scalar λi. This stability is satisfied by the satisfaction of the
following LMI.

N(Xi) 0 J̄iYi B̄i E
i
+ Ci

TKfi
∗ −Ti 0 0 0
∗ ∗ −Yi 0 0
∗ ∗ ∗ Ii 0
∗ ∗ ∗ ∗ −λi2Ii +KT

fi
Kdi

∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗

Fi + Ci
TKdi XiR̄

T
i XiCi

T Xi EiYi
0 TiD̄

T
i 0 0 0

0 YiJ̄
T
i 0 0 0

0 B̄T
i 0 0 0

0 ET
i

0 0 0
KT

di
Kdi

FT
i

0 0 0
∗ − 1

1+γYi 0 0 0

∗ ∗ −Ii 0 0
∗ ∗ ∗ −Ti 0
∗ ∗ ∗ ∗ − 1

γYi


< 0

(3)
The expression N(Xi) is given by
N(Xi) = (R̄i + D̄i)Xi +Xi(R̄i + D̄i)

T ,

where (T ) represents the transposition operation applied
symmetrically and I stands for the identity matrix.

Proof:
In essence, express x = x(t), xε1 = x(t−ε1), xε2 = x(t−ε2),
f1 = f(t) d1 = d(t) and α1 = (t+ α).
Additionally, denote ω = (1 + ε1) in the subsequent
demonstration. The (MQLF) functional (2)is introduced.
with

• V1i(x, t) = xT (t)Pix(t)

• V2i(x, t) =
∫ t

t−ε1
xT (s)Qix(s)ds

• V3i(x, t) =
∫ t

t−ε2
ẋT (s)Hiẋ(s)ds

+
∫ 0

−ε1

(∫ t

t+α
ẋT (s)Hiẋ(s)ds

)
dα
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The (MQLF) function is fulfilled when the matrices Pi,
Qi, and Hi are symmetric positive definite.

V̇i(x, t) = 2ẋTPix+ xTLix− xTε1Qixε1 + ẋTHiẋ

−ẋTε2Hiẋε2 +
∫ 0

−ε1

[
ẋTHiẋ −ẋTα1Hiẋα1

]
dα

= 2ẋTPix+ xTQix− xTε1Qixε1 + ηẋTHiẋ

−ẋTε2Miẋε2 −
∫ 0

−ε1
ẋTα1Hiẋα1dα

= xT
(
Pi(R̄i + D̄i) + (R̄i + D̄i)

T
Pi +Qi

)
x

−2xTPi

∫ 0

−ε1
D̄iẋα1dα+ 2xTPiJ̄iẋε2

+2xTPiB̄iu(t) + 2xTPiEif1 + 2xT (t)PiFid1
−xTε1Qix

T
ε1 + ηẋTHiẋ− ẋTε2Hiẋε2

−
∫ 0

−ε1
ẋTα1Hiẋα1dα

−2xTPi

∫ 0

−ε1
D̄iẋα1dα = −

∫ 0

−ε1
2xTPiD̄iẋα1dα

≤
∫ 0

−ε1
xTPiD̄iH

−1
i D̄T

i Pix+ ẋTα1Hiẋα1dα

≤ ε1x
TPiD̄iH

−1
i D̄T

i Pix+
∫ 0

−ε1
ẋTα1Hiẋα1dα

(4)

Additionally substituting,

ẋT (Hi + ε1Hi)ẋ = xT R̄T
i ωHiR̄ix+ 2xT R̄T

i ωHiD̄ixε1
+2xT R̄T

i ωMiJ̄iẋε2 + 2xT R̄T
i ωHiB̄iu(t)

+2xT R̄T
i ωHiEif1 + 2xT R̄T

i ωHiFid1
+2xTε2D̄

T
i ωHiJ̄iẋε2 + 2xTε1D̄

T
i ωHiB̄iu(t)

+2xTε1D̄
T
i ωHiEi

f1 + 2xTε1D̄
T
i ωHiFid1

+xTε1D̄
T
i ωHiD̄ixε1 + 2ẋTε2 J̄

T
i ωHiB̄iu(t)

+2ẋTε2 J̄
T
i ωHiEi

f1 + 2ẋTε2 J̄
T
i ωHiFi

d1
+ẋTε2 J̄

T
i ωHiJ̄iẋε2 + uT (t)B̄T

i ωHiB̄iu(t)
+uT (t)B̄T

i ωHiEi
f1 + uT (t)FT

i ωHiFi
d1

+dT1 Fi
ωHiB̄iu(t) + dT1 Fi

ωHiEi
f1

+dT1 FiωHiFid1 + fT (t)ET
i
ωHiB̄iu(t)

+fT1 E
T
i ωHiEif1 + fT1 E

T
i
ωHiFid1

(5)
Finally, the candidate Lyapunov function is rewritten as:

V̇i(x, t) = xT
(
Pi(R̄i + D̄i) + (R̄i + D̄i)

T
Pi +Qi

+ε1PiR̄iM
−1
i R̄T

i Pi

)
x+ 2xTPiJ̄iẋε2 + 2xTPiB̄iu(t)

+2xTPiEif1 + 2xT (t)PiFid1 − xTε1Qixε1
+xT R̄T

i ωHiR̄ix+ 2xT R̄T
i ωHiD̄ixε1

+2xT R̄T
i ωHiJ̄iẋε2 + 2xT R̄T

i ωHiB̄iu(t)
+2xT R̄T

i ωHiEi
f1 + 2xT R̄T

i ωHiFi
d1

+2xTε1D̄
T
i ωHiJ̄iẋε2 + 2xTε1D̄

T
i ωHiB̄iu(t)

+2xTε1D̄
T
i ωHiEi

f1 + 2xTε1E
T
i ωHiFi

d1
+xTε1E

T
i ωHiEixε1 + 2ẋTε2D

T
i ωHiB̄iu(t)

+2ẋTε2 J̄
T
i ωHiEi

f1 + 2ẋTε2 J̄
T
i ωHiFi

d1
+ẋTε2 J̄

T
i ωHiDiẋε2 + uT (t)B̄T

i ηHiB̄iu(t)
+ẋTε2 J̄

T
i ωHiJ̄iẋε2 + uT (t)B̄T

i ωHiB̄iu(t)
+uT (t)B̄T

i ωHiFi
f1 + uT (t)B̄T

i ωHiFi
d1

+dT1 B̄i
ωHiB̄iu(t) + dT1 Fi

ωHiEi
f1

+dT1 FiωHiFid1 + fT1 E
T
i
ωHiB̄iu(t)

+fT1 E
T
i
ωHiEif1 + fT1 E

T
i
ωHiFid1 − ẋTε2Hiẋε2

(6)
The primary objective is to ensure the reduction of the impact
of faults represented by the function f1 and the output signal
y(t).

ψi = sup
f1∈ L2−0

∥y∥2
∥f1∥2

< λi (7)

The criterion ψi will be used to minimise energy so that we
can examine the stability of the system presented in the Eq.
(1), as explained below.

Moreover, the objective is to reduce the criterion function
in the manner shown below:

ψi =
∞∫
0

yT (t)y(t)− λ2i f
T
1 f1 + V̇i(x, t)dt

+Vi(x, t)|t=0 − Vi(x, t)|t=∞

(8)

with

yT (t)y(t) =

[Cix(t) +Kfif1 +Kdi
d1]

T
[Cix(t) +Kfif1 +Kdi

d1]
= xT (t)CT

i Cix(t) + xT (t)CT
i Kfif1 + xT (t)CT

i Kdid1
+fT1 K

T
fi
Cix(t) + fT1 K

T
fi
Kfif1 + fT1 K

T
fi
Kdi

d1
+dT1K

T
di
Cix(t) + dT1K

T
di
Kfif1 + dT (t)KT

di
Kdid1

(9)
Simplifying Eq. (8) is given as:

ψi =

∞∫
0

{
βT ς(ε1) β

}
dt (10)

wherein:
β =

[
xT xTε1 ẋTε2 uT (t) fT1 dT1

]T
such that ψi is

defined in the following manner:
µ(ε1) = 

ς11 ς12 ς13 ς14 ς15 ς16
∗ ς22 ς23 ς24 ς25 ς26
∗ ∗ ς33 ς34 ς35 ς36
∗ ∗ ∗ ς44 ς45 ς46
∗ ∗ ∗ ∗ ς55 ς56
∗ ∗ ∗ ∗ ∗ ς66

 (11)

ς11 = Pi(R̄i+ D̄i)+(R̄i + D̄i)
TPi+Qi+ ε1PiD̄iH

−1
i D̄T

i Pi

+ ωR̄T
i HiR̄i + CT

i C
ς12 = ωR̄T

i HiD̄i

ς13 = PiJ̄i + ωR̄T
i HiJ̄i

ς14 = PiB̄i + ωR̄T
i HiB̄i

ς15 = CT
i Kdi + PiBfi + ωAT

i HiEi

ς16 = CT
i Kdi

+ PiBdi
+ ωAT

i HiFi

ς22 = ωD̄T
i HiD̄i −Qi

ς23 = ωD̄T
i HiJ̄i

ς24 = ωD̄T
i HiB̄i

ς25 = ωD̄T
i HiEi

ς26 = ωD̄T
i HiFi

ς33 = ωD̄T
i HiJ̄i −Hi

ς34 = ωD̄T
i HiJ̄iB̄i

ς35 = ωD̄T
i HiEi

ς36 = ωD̄T
i HiFi

ς44 = ωB̄T
i HiB̄i − Ii

ς45 = ωB̄T
i HiEi

ς46 = ωB̄T
i HiFi

ς55 = −γ2i Ii +KT
di
Kdi + ωET

i HiEi

ς56 = KT
fi
Kdi

+ ωET
i
HiFi

ς66 = KT
di
Kdi + ωFT

i
HiFi
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It’s clear that inequality (8) V̇i < 0, if ς(ε1) < 0.
The matrix µ(ε1) < 0 is considered monotonic rising
according to γ < 0 , thus, keeps towards 0 < δ ≤ γ if
Ξ(γ) < 0 The inequality(13) can be rewritten by means of
the Schur complement.

S(Pi, Qi) 0 PiJ̄i PiB̄i CT
i Kfi + PD̄

i

∗ −Qi 0 0 0
∗ ∗ −Hi 0 0
∗ ∗ ∗ −Ii 0
∗ ∗ ∗ ∗ −λi2Ii +KT

fi
Kdi

∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗

CT
i Kdi

+ PB̄
i

R̄T
i PD̄i

0 D̄T
i 0

0 J̄T
i 0

0 B̄T
i 0

KT
fi
Kdi ET

i
0

KT
di
Kdi

FT
i

0

∗ − 1
1+γHi

−1 0

∗ ∗ − 1
γHi


< 0

(12)
where:
S(Pi, Qi) = Pi(R̄i + d̄i) + (R̄i + D̄i)

TPi + Li + CT
i Ci

From diag(Ξ1i
,Ξ2i

,Ξ3i
, Ii,Ξ3i

) which can be multiplied
on both sides of the Eq. (12)and after that, using the Schur
complement, one gets

[Γij ] 10×10 < 0 (13)

Γ11 = (R̄i + D̄i)Ξ1i + Ξ1i(R̄i + D̄i)
T

Γ13 = J̄iΞ3i
Γ14 = B̄i

Γ15 = E
i
+ CT

i Kfi

Γ16 = Fi + CT
i Kdi

Γ17 = Ξ1iR̄
T
i

Γ18 = Ξ1iC
T
i

Γ19 = Ξ1i
Γ110 = D̄iΞ3i

Γ22 = −Ξ2i
Γ27 = Ξ2iD̄

T
i

Γ33 = −Ξ3i
Γ37 = Ξ3i J̄

T
i

Γ44 = Ii
Γ47 = B̄T

i
Γ55 = KT

di
Kdi

Γ57 = ET
i

Γ66 = −λ2i Ii +KT
fi
Kdi

Γ67 = FT
i

Γ77 = − 1
1+γYi

Γ88 = −Ii
Γ99 = −Ξ2i
Γ1010 = − 1

γΞ3i

Γij = 0 if not

End demonstration
As a result, from Theorem 1, one holds that V̇i < 0.

IV. NUMERICAL EXAMPLE

This section presents an illustrated example that was
obtained from [22]. The pertinence of the developed theorems
is shown and considered in this letter.
Consider a system of uncertain switched neutral (1) that
consists of two subsystems. The parameters of these
subsystems are as follows:

• Mode 1

R1 =

[
−5 0
0 −3

]
, D

1
=

[
−0.1 0.1
0 0.1

]

J1 =

[
0.1 0.1
0 −0.1

]
, B1 =

[
1 0
0 1

]

C1 =

[
1 0
0 1

]
, F

1
=

[
0.01 0.01
0.02 0.1

]

E
1
=

[
0.01 0.01
0.02 0.1

]
, Kd1

= [ 0.1 0.1 ]

Kf1 = [ 0.2 0.2 ] and γ = 0.5

Z11 =

[
0.1
0.1

]
, Z12 =

[
0.1
−0.1

]
, Z13 =

[
−0.1
0.1

]
,

Z14 =

[
−0.1
0

]
,W11 = [ 0.01 0.3 ],

W21 = [ 0.01 0.2 ], W31 = [ 0.01 0.2 ],
W41 = 0.02

• Mode 2

R2 =

[
−4.5 0
0 −0.1

]
, D

2
=

[
−0.2 0
0 0.3

]

J2 =

[
0.2 0.1
0 −0.1

]
, B2 =

[
1 0
0 1

]

C2 =

[
1 0
0 1

]
, F1 =

[
0.01 0.01
0.02 0.1

]

E2 =

[
0.01 0.01
0.02 0.1

]
, Kd2

= [ 0.1 0.1 ]

Kf2 = [ 0.2 0.2 ] and γ = 0.5

Z21 =

[
0.1
0.1

]
, Z22 =

[
0.1
−0.1

]
, Z23 =

[
−0.1
0.1

]
,
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Z24 =

[
−0.1
0

]
,W12 = [ 0.01 0.3 ],

W22 = [ 0.01 0.2 ], W32 = [ 0.01 0.2 ],
W42 = 0.02

Theorem 1 proves that LMI (3) is feasible. After solving
the LMI, the stability of (1) is dictated. The matrices that
correspond are determined as follows:

• Mode 1

Ξ11 =

[
0.4500 −0.0003
−0.0003 0.7218

]
> 0

Ξ21 =

[
12.7884 −0.0031
−0.0031 12.9149

]
> 0

Ξ31 =

[
0.3101 −0.0004
−0.0004 0.3199

]
> 0

• Mode 2

Ξ12 =

[
0.6659 −0.0005
−0.0005 2.2668

]
> 0

Ξ22 =

[
17.6291 0.0269
0.0269 15.1129

]
> 0

Ξ32 =

[
2.8709 0.0159
0.0159 2.2215

]
> 0

0 2 6 8 10 15

Time (s)

1

2

S
y
s
te

m
 M

o
d
e

Fig. 1. The switching signal.

The switching signal and output responses are shown in
Fig. 1 and 2, respectively.

V. CONCLUSION

The stability issue related to switched neutral time-delay
systems with uncertainties which are norm-bounded has been

0 2 5 6 8 10 15

Time (s)

0

0.5

1

1.5

2

2.5

3

y
(t

)

Fig. 2. Output response of uncertain switched neutral system.

addressed throughout the present research. It has been illus-
trated and computed that a new set of criteria can be generated
from (MQLF) through resolving a set of LMIs.

Ultimately, the forcefulness and effectiveness of sufficient
stability conditions have been illustrated from simulation re-
sults.

In forthcoming studies, the proposed methodologies will be
expanded to encompass broader, uncertain stochastic switched
neural using intervals and time-varying delays.
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