
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 15, No. 3, 2024

An Efficient Blockchain Neighbor Selection
Framework Based on Agglomerative Clustering

Marwa F. Mohamed, Mostafa Elkhouly∗, Safa Abd El-Aziz, Mohamed Tahoun
Department of Computer Science, Faculty of Computers and Informatics, Suez Canal University,

Ismailia, Egypt 41522

Abstract—Blockchain-based decentralized applications have
garnered significant attention and have been widely deployed in
recent years. However, blockchain technology faces several chal-
lenges, such as limited transaction throughput, large blockchain
sizes, scalability, and consensus protocol limitations. This pa-
per introduces an efficient framework to accelerate broadcast
efficiency and enhance the blockchain system’s throughput by
reducing block propagation time. It addresses these concerns
by proposing a dynamic and optimized Blockchain Neighbor
Selection Framework (BNSF) based on agglomerative clustering.
The main idea behind the BNSF is to divide the network into
clusters and select a leader node for each cluster. Each leader
node resolves the Minimum Spanning Tree (MST) problem for
its cluster in parallel. Once these individual MSTs are connected,
they form a comprehensive MST for the entire network, where
nodes obtain optimal neighbors to facilitate the process of
block propagation. The evaluation of BNSF showed superior
performance compared to neighbor selection solutions such as
Dynamic Optimized Neighbor Selection Algorithm (DONS), Ran-
dom Neighbor Selection (RNS), and Neighbor Selection based on
Round Trip Time (RTT-NS). Furthermore, BNSF significantly
reduced the block propagation time, surpassing DONS, RTT-
NS, and RNS by 51.14%, 99.16%, and 99.95%, respectively. The
BNSF framework also achieved an average MST calculation time
of 27.92% lower than the DONS algorithm.

Keywords—Blockchain; scalability; agglomerative clustering;
broadcasting; optimized neighbor selection; minimum spanning
tree; parallel processing

I. INTRODUCTION

Blockchain (BC) is a decentralized ledger technology
that operates on a peer-to-peer (P2P) network, utilizing a
cryptographic chain of blocks and consensus algorithms to
verify and store data in decentralized networks [1]. BC was
initially introduced in 2008, credited to Satoshi Nakamoto
[2]. It enables nodes that do not have mutual trust to reach
a consensus on a sequential collection of blocks containing
multiple transactions, all without the need for a third party
[3]. In recent years, BC has garnered increasing attention due
to its numerous advantages compared to traditional databases
[4]. BC is immutable, transparent, secure, and decentralized,
resulting in a significant reduction in the likelihood of a Single
Point of Failure (SPF) [5]. This enhances its reliability and
efficiency in comparison to conventional data storage systems.
The networks within BC can manage information securely and
protect it from tampering, even when there are many malicious
nodes [6]. In addition, no third-party authentication is required,
as BC operates without central management. These features are
highly valuable and find application not only in cryptocurren-
cies but also in a wide range of fields [7]. Therefore, BC has
a broad spectrum of applications in emerging fields such as

5G [8], [9], [10], smart cities [11], [12], [13], the internet of
things [14], [15], [16], social networking [17], [18], [19], and
artificial intelligence [20], [21], [22].

Although BC has many great advantages, it still has some
drawbacks, such as the scalability problem that arises when
the number of users in the BC system increases significantly.
Scalability in BC is typically measured in transactions per sec-
ond (TPS) [23], [24]. A more scalable BC allows for a higher
number of transactions between network nodes, resulting in
increased bandwidth consumption and network latency. Con-
sequently, the primary challenge with BC technology lies in its
low transaction transfer rate and approval time. For instance,
Bitcoin can handle only 7 TPS, resulting in significantly lower
throughput compared to widely used mainstream payment
platforms such as PayPal, which achieves a transfer rate of
500 TPS, and Visa, which surpasses 4000 TPS. Ethereum is
Another example that can achieve approximately 15 TPS [25].
Obviously, neither Bitcoin nor Ethereum can meet the demands
of large-scale trading scenarios.

BC is mainly composed of three layers: the data layer,
the consensus layer, and the network layer [26]. Within the
data layer, there exists a chain of interconnected data blocks,
supported by hashing algorithms and Merkle trees to protect
the integrity and traceability of block data. The consensus layer
encompasses a variety of consensus algorithms that facilitate
data consistency among network nodes [27]. On the other
hand, the network layer comprises mechanisms for propagating
data and verifying transactions [28], [29].

Solutions for BC scalability are classified by implementa-
tion layer [30]. State-of-the-art BC research addresses scal-
ability in three key areas. In the data layer, compression
reduces transaction and block sizes, minimizing bandwidth use
[31]. The consensus layer improves communication for faster
transactions and lower latency [32]. In the network layer, the
gossip algorithm and P2P structure are optimized for enhanced
peer communication, boosting BC system performance [33],
[34].

Gossip broadcasting in the BC network results in the du-
plication of information and inefficient bandwidth utilization.
However, as the number of peers joining the network increases,
duplication and bandwidth utilization also increase due to a
higher probability of selected peers interfering with the gossip
process [35]. Therefore, alternative techniques for broadcasting
blocks in the network, such as Random Neighbor Selection
(RNS), where shared data propagates through random paths
[36], lead to an inefficient data propagation scheme. This
inefficiency arises from the probability of redundancy in the
exchanged messages between network nodes. This redundancy

www.ijacsa.thesai.org 1331 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 15, No. 3, 2024

occurs due to cycling in the randomly chosen data paths result-
ing in longer delivery times and lower levels of consistency.
Nevertheless, most BC systems support RNS. Some methods
have been proposed to improve the Neighbor Selection (NS)
process locally, addressing the dynamicity problem. Bi et al.
[37] introduced an NS protocol based on network latency,
where nodes assess the Round Trip Time (RTT) to their
neighboring nodes. Consequently, nodes prioritize neighbors
with the lowest RTT for the NS process. Nonetheless, none of
these solutions has proposed an ideal NS strategy.

In this paper, an Efficient Blockchain Neighbor Selection
Framework (BNSF) is introduced to accelerate block propaga-
tion and enable node communication with selected neighbors.
The network is divided into clusters using agglomerative
clustering. Within each cluster, a leader node is chosen to
resolve the Minimum Spanning Tree (MST) problem using
Dijkstra’s Algorithm. Subsequently, the MST for the entire
network is obtained by connecting the MSTs from the network
clusters.

The key contributions of this paper are summarized as
follows:

1) Addressing the scalability issue of the BC network
by optimizing the NS process in a dynamic network
topology.

2) Reducing the total calculation time to construct the
general MST for the entire network by dividing the
network into clusters using agglomerative clustering,
constructing the MST for each cluster, and finally
connecting them to obtain the general MST.

3) Utilizing multi-threading technology: each cluster
computes the MST in parallel to accelerate execution
time. This approach also takes advantage of multi-
ple CPUs or cores, resulting in further performance
improvements.

4) Reducing duplicates in data exchanged between net-
work nodes, as each node shares data with its MST
optimal neighbors (MON) without cycling in selected
paths.

5) Reducing the total propagation time of exchanged
data between network nodes.

The remaining sections of this paper are structured as
follows: Section II analyzes relevant literature, Section III
provides a detailed explanation of the proposed BNSF, Section
IV presents the evaluation of BNSF, and finally, Section V
summarizes the most significant findings and conclusions.

II. RELATED WORK

In this section, several modern network layer scalability
solutions are presented. These solutions primarily focus on
enhancing either the gossip algorithm or the P2P network
architecture. Research studies aiming to improve the gossip
algorithm focus on reducing duplicate data or increasing
block propagation speed [38]. The proposed solutions aim
to decrease the level of duplication caused by the gossip
algorithm or to reduce block propagation time through an
enhanced gossip protocol. Following are some of the recent
work representing such solutions.

The Fastchain protocol, designed to enhance the scalability
of BC as described in [39], operates through a mechanism in

which a node with limited bandwidth transmits a block to a
node possessing higher bandwidth capacity. Subsequently, the
latter node distributes the block to all other nodes in the net-
work. Nodes with restricted bandwidth prioritize connections
with nodes that possess higher bandwidth and disconnect from
nodes whose bandwidth is less than a specific threshold. The
implementation of Fastchain comprises two essential stages,
namely the bandwidth monitoring phase and the neighbor
update phase. In the bandwidth monitoring phase, every node
maintains a table containing the recent bandwidth information
of its neighboring nodes. During the neighbor update phase,
nodes periodically update their connections with neighbors,
continuously disconnecting from those with slow and low
bandwidth. FastChain enhances the effective block rate, re-
sulting in a 40% increase in the number of blocks added
to the chain compared to bitcoin. Furthermore, it improves
throughput by 20% to 40%.

Baniata and Anaqreh [40] introduced a Dynamic Optimized
Neighbor Selection Algorithm (DONS) for P2P network man-
agement within the BC. A leader peer is selected to oversee
the network and construct its topology using neighbor lists
from regular peers. The resulting MST guides the leader in
identifying optimal neighbors, enhancing transaction through-
put by minimizing propagation delay. However, leader changes
necessitate network topology reconstruction and requesting
neighbors’ lists. With growing peer numbers, MST compu-
tation time increases, leading to inefficient bandwidth use.
Additionally, leader unavailability risks both topology loss and
reselection overheads.

BlockP2P [41] is a clustering method designed to enhance
transaction throughput by reducing the latency within the BC
network. It proposes to group BC nodes into clusters based
on their geographic location, which leads to a cluster with
a small diameter and high connectivity, thus reducing the
diffusion time within the block. The authors defined three
types of nodes, leaf nodes, core nodes, and a routing node
for each cluster, which is randomly selected from the core
nodes. Routing nodes in different clusters are interconnected to
forward transactions or blocks, thus ensuring full connectivity
between clusters. Transaction throughput increased by about
90% due to reduced latency. The clustering method has better
bandwidth efficiency with a small network size compared to
random neighbor selection. However, congestion can occur in
the cluster as the network grows and the efficiency within
the cluster decreases. This approach is susceptible to network
partitioning and over-reliance on a single node.

The authors in [42], [43] proposed a score-based NS
protocol for constructing a BC network. This protocol assigns
higher scores to peers with lower propagation delays compared
to peers with higher propagation delays. Subsequently, peers
with the highest scores are chosen as neighbors. Every miner
node assesses its neighboring nodes based on the disparity
between the time the block was created and the time it
was received at the recipient node. Once a node successfully
receives ten blocks, it proceeds to update its list of neighbors.
In this update, the node randomly selects new neighbors and
includes only those with high scores. Neighbor nodes exhibit-
ing faster transfer of new blocks compared to other neigh-
bors are assigned higher scores, indicating superior network
communications capabilities. Thus, miners prefer neighbors

www.ijacsa.thesai.org 1332 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 15, No. 3, 2024

with higher scores in the NS process. This method leads to
excessive dependence on the nodes that have the shortest total
propagation time, which can reduce node performance.

Deshpande et al. [44] proposed a centralized solution. This
solution utilizes the principles of Software-Defined Network-
ing (SDN) to reduce the excessive overhead in managing
a distributed network for blockchains. Servers create a P2P
topology using clustering techniques and assign neighbors to
each peer using the RNS method. Unlike other clustering-based
approaches, the proposed method offered a flexible means
of network management, incorporating constraints to mitigate
congestion issues within the cluster. In the proposed central-
ized network model, topology management has demonstrated a
notable reduction in bandwidth consumption compared to the
traffic caused by managing distributed network models. This
approach can improve the transfer rate of transactions in BC
networks. Due to reduced responsibilities, network peers can
allocate all available resources to process a greater number of
transactions. However, it should be noted that as the network
size grows, the time required for calculating the structure also
increases.

Vu and Tewari [45] proposed a probability-based gossiping
method for neighbor selection. A network node sends several
inventory messages (INV) that are used in Bitcoin and count
the number of responses received. The sending and receiving
ratio is the probability used to determine which neighbor
gets the new block. As a result of this approach, there was
a reduction in the number of messages transmitted by the
network nodes. Additionally, this approach reduces duplication
compared to the default gossip protocol employed in Bitcoin.
Moreover, probability calculations are not disregarded but
retained for subsequent transmissions, as well as the size of
the network. However, excessive and frequent sending of INV
messages between network nodes results in network overhead
and consumption of network resources.

The authors in [46] propose Trust-based Optimum Neigh-
bor Selection (TONS), an optimized algorithm for blockchain
networks in IoT environments, addressing the challenge of
unreliable or malicious nodes. TONS employs a trust and
reputation model to evaluate node reliability, ensuring min-
ers communicate with the most trustworthy neighbors. The
algorithm computes optimal neighbor selection considering
both delivery time rates and node reputation. Experimental
simulations show TONS outperforms traditional methods in
efficiency and effectiveness. However, TONS introduces a high
time cost for computing trust measures, and the energy con-
sumption associated with computing trust measures between
nodes increases.

Table I summarizes the main works that have addressed
the neighbor selection problem in BC networks.

III. BLOCKCHAIN NEIGHBOR SELECTION FRAMEWORK
(BNSF)

In this section, a detailed explanation of the proposed
BNSF is provided, including all the used methods and imple-
mented algorithms as well. The proposed framework analyzes
and evaluates an alternative method for selecting neighbors for
the Gossip communication protocol in a public BC network to

accelerate the final latency. Furthermore, it introduces a multi-
leader scenario to reduce the calculation time of the MST
topology for the entire network as the network size increases.
Fig. 1 illustrates the BNSF architecture.

A. The Proposed System Model

The examined permission-less public BC network topology
denoted as G, consists of a set of nodes S = {s1, s2, . . . , sN},
where N represents the total number of nodes within the
network. The set S is divided into a set of clusters C =
{c1, c2, . . . , cM}, where M ≤ N . Each cluster ci ∈ C
comprises a set of nodes Si = {s1, s2, . . . , sni}, with i =
1, 2, 3, . . . ,M . The value of N is calculated as follows:

N =

M∑
i=1

ni (1)

Each cluster ci ∈ C can be represented as a weighted
undirected graph Gi = (Si, Ei,Wi). Si denotes the set of
nodes in cluster ci, Ei =

{
esisj | si, sj ∈ Si

}
represents the

finite set of edges (i.e., communication channels) connecting
the nodes, and Wi =

¶
wesisj

| esisj ∈ Ei

©
is a finite set of

weights assigned to Ei. It can be represented as a function
Wi : Ei → R+, where R+ denotes the set of positive real
numbers.

The MST for cluster ci in Gi is denoted as MSTi =
(Si, Ti,W

MST
i ), where Si represents the set of nodes, Ti

denotes the set of edges forming the MST, and WMST
i is

a finite set of weights assigned to Ti. Similarly to before, the
weights are defined by the function WMST

i : Ti → R+.

Each node sj ∈ Si, where j = 1, 2, 3, . . . , ni, has a
neighbor set denoted by Nci(sj). The neighbor set Nci(sj)
consists of nodes that are directly connected to sj within the
cluster ci. This can be represented as:

Nci(sj) = {sk | sk ∈ Si, sk ̸= sj , (sj , sk) ∈ Ei} (2)

Ei represents the set of edges in the graph Gi associated
with cluster ci. The expression (sj , sk) ∈ Ei checks if there
exists an edge between nodes sj and sk in the graph Gi

associated with cluster ci. The condition sk ̸= sj ensures that
sj is not included in its own neighbor set. With this notation,
each node sj ∈ Si is aware of its neighbor set Nci(sj).

The edge matrix AE is an N × N matrix with elements
{esisj}, where i, j = 1, 2, 3, . . . , N . It represents the connec-
tivity and relationships between nodes in the network G. Each
element esisj in the matrix represents the presence or absence
of an edge between nodes si and sj .

The distance between clusters ci and cj is represented as
D(ci, cj). It is initialized with the distances between nodes
si ∈ ci and sj ∈ cj , where si, sj ∈ {(i, j)|i = 1, 2, . . . , ni, j =
1, 2, . . . , nj}. The distance between clusters ci and cj is
determined using the Complete-linkage method, which selects
the largest distance among all pairs of nodes si ∈ ci and
sj ∈ cj :

D(ci, cj) = max
si∈ci,sj∈cj

{D(si, sj)} (3)

The distance between nodes si and sj is calculated using
the Euclidean distance formula:

www.ijacsa.thesai.org 1333 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 15, No. 3, 2024

TABLE I. A COMPARISON OF THE PROPOSED FRAMEWORK WITH RELATED WORK. NOTABLE ABBREVIATIONS: PB - PUBLIC BC, DT - DYNAMIC
NETWORK TOPOLOGY, CL - CLUSTERING, GV - GLOBAL VIEW, LN - EFFECTIVE IN LARGE NETWORKS

Ref PB DT Cl GV LN Limitations

[39] ✓ ✓ × × × Each node must maintain the latest bandwidth table which periodically updates neighbor connections to get the latest update.
Nodes with limited bandwidth always rely on the highest bandwidth nodes

[40] ✓ ✓ × ✓ × The network topology calculation time increases with the size of the network. The overhead incurred by frequent leader selections

[41] × ✓ ✓ × × The network is vulnerable to congestion and over-reliance on a single node in network traffic

[42], [43] × × × × × Network excessively depends on a single node with the shortest propagation time. Consequently, it is prone to congestion.

[44] ✓ ✓ ✓ × × As the number of nodes increases, the calculation time for network topology also rises.

[45] ✓ × × × × The excessive and frequent transmission of INV messages leads to network overhead.

[46] ✓ × × ✓ ✓ High time cost for computing trust measures and the increased energy consumption.

BNSF ✓ ✓ ✓ ✓ ✓

D(si, sj) =
»
(si.x− sj .x)

2
+ (si.y − sj .y)

2 (4)

The collection of root nodes of the MST for all clusters
can be denoted as:

R =

M⋃
i=1

ri (5)

Here, ri denotes the root node of its corresponding clus-
ter ci. The union symbol

⋃
indicates the combination of

root nodes from all clusters, forming the collection R. Sub-
sequently, the proposed framework establishes connections
among all these root nodes, creating a comprehensive MST
for the entire BC Network.

Optimal neighbor nodes for a given node si can be rep-
resented as MON (si) = {(s1, w1), (s2, w2), . . . , (sn, wn)},
where each pair ((sj , wj)) denotes an optimal neighbor node
sj and its corresponding weight value wj for the node si.

The MSTci of each cluster ci is computed in a sepa-
rate thread to reduce BNSF processing time, which is rep-
resented as xi ∈ X . The set of threads X , denoted as
X = {x1, x2, . . . , xn}, encompasses all the threads involved
in calculating the MSTs of the clusters. Each element xi ∈ X
represents an individual thread responsible for computing the
MSTci of cluster ci. Table II summarizes the main symbols
used in the BNSF model.

In the following sections, the phases of the proposed BNSF
framework are explained in detail.

B. Phase 1: Network Clustering

Agglomerative Clustering (AC) is applied in a bottom-
up manner to group network nodes by considering their
similarities [47]. Initially, each node is treated as an individual
cluster. Subsequently, clusters are successively combined until
all nodes are contained within a single large cluster. At each
iteration of the algorithm, the two clusters ci and cj that have
not been previously merged are examined, and the distance
D between the two clusters is computed. The pair with the
minimum value in distance D is then selected and joined
to form a new cluster, denoted as cnew. Once the clusters
are joined, the algorithm proceeds to calculate the distances
D(cnew, ck) between the newly formed cluster cnew and all

TABLE II. LIST OF SYMBOLS USED IN THE BNSF MODEL

S Set of nodes within the network G.
N Total number of nodes.
ni Number of nodes within cluster ci, where ni is a subset of N .
C Set of clusters within the network G.
ci Cluster of nodes, where ci ∈ C.
M Number of clusters within the network G.
Si Set of nodes within cluster ci, where i ≤ M .
sj Network node, where sj ∈ Si.

Nci
(sj) Neighbor set for every node sj ∈ Si in cluster ci.
k Number of neighbors for every node sj ∈ Si.
Ei Set of edges within the network Gi of cluster ci.
Wi Set of weights within the network Gi of cluster ci.
AE Edge matrix.

D(si, sj) Distance between two nodes si ∈ ci and sj ∈ cj .
MON (si) Set of optimal neighbor nodes sj for the node si.

X List of n threads, where each xi ∈ X represents an individual thread.

other clusters. This operation is repeated until the cluster set
C with size M is constructed (Fig. 2(B)).

In Step-1, the BNSF framework applies AC Algorithm 1
as follows:

First, the network graph G is converted into an edge
matrix AE for AC application. Then, distance or similarity
information is calculated for every pair of nodes using Eq.
4. Next, the complete linkage function is employed to group
the nodes into a hierarchical cluster tree. Close clusters are
linked to each other using the linkage function. Complete-
linkage clustering, also known as farthest-neighbor aggregation
[48], is a method of AC for calculating the distance between
clusters in hierarchical clustering, as shown in Eq. 3.

In complete linkage, the distance D(ci, cj) between two
clusters ci and cj is determined as the maximum distance
observed between any individual node si in the first cluster
ci and any individual node sj in the second cluster cj .
The dissimilarity between clusters ci and cj is defined as
max D (si, sj), where si ∈ ci and sj ∈ cj . The two
clusters ci and cj that exhibit the highest similarity with the
minimum value in D are merged into a new cluster, denoted
as cnew = ci ∪ cj .

Afterward, determine the point at which to divide the
hierarchical tree into clusters by specifying the number of
clusters M . Then, apply AC to the network edge matrix AE

until the desired number of clusters M is achieved. Finally,

www.ijacsa.thesai.org 1334 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 15, No. 3, 2024

Cluster Leader
Selection Phase

Network Clustering
Phase

MST Construction
Phase

Neighbor Selection
Process Phase

Apply Agglomerative Clustering

Leader Announcement

Select Leader Miner for each cluster

Broadcast MST

Each Leader Constructs MST

Find MST Optimal Neighbors (MON)

Using MON in NS Process

Fig. 1. The main steps involved in the proposed BNSF framework.

the cluster set C is obtained through the application of AC.

C. Phase 2: Cluster Leader Selection

This phase is responsible for two main steps: cluster leader
selection and leader announcement. The BNSF framework
requires a global view of the BC network. All nodes sj ∈ S
have equal privileges in the public and permissionless BC
network G. However, the proposed BNSF selects one of these
nodes to perform MST calculations for all other nodes. Each
cluster of nodes ci needs to choose a single node si ∈ Si

as its Leader Node (LN). LN possesses more privileges than
other nodes in the same cluster, granting it a global view of the
entire cluster. Additionally, LN collects information from the
other nodes within the same cluster and uses it to generate
the MST for the entire cluster ci. Thus, each node si in
cluster ci can select its optimal neighbors from the generated
MST for exchanging new blocks or transactions. Moreover,
the network’s global view is influenced by nodes joining or
leaving, necessitating regular updates to the calculated MST
to accommodate changes in the network G.

In Step-2, the cluster leader selection proposed by the
BNSF framework can be described as follows:

A random leader selection scenario is proposed. For each
cluster ci in the network topology G, BNSF selects a cluster
node si ∈ Si to be the LN of its cluster ci. The LN is randomly
chosen to build the MST for its cluster ci. Random leader
selection enhances network security because attackers cannot

Algorithm 1 Apply Agglomerative Clustering
Input: Number of nodes N , Number of clusters M and Set
of nodes S
Output: Clusters set C.

1: Set the edge matrix AE = 0. /* Initialize AE */
2: for j ← 1 to N do
3: for k ← 1 to N do
4: if sk is a neighbor of sj then
5: set esjsk ← 1 within the edge matrix AE .
6: end if
7: end for
8: end for

/* Apply Agglomerative Clustering(M , S, N ) on
AE*/

9: C = {c1, c2, . . . , cN}, where each ci contains one node
si. /* Initialize C*/

10: Calculate D(ci, cj) between every pair of clusters ci, cj ∈
C using E.q. 3

11: while M < length(C) do /*where M is the desired
number of C */

12: Find the pair of clusters with minimum D(ci, cj)
13: cnew ← ci ∪ cj .
14: Remove ci, cj from C and add cnew to C /* Update

C. */
15: Calculate D(cnew, ck), where ck represents the other

clusters.
16: end while
17: Return C.

www.ijacsa.thesai.org 1335 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 15, No. 3, 2024

(a) Original Network Topology (b) Network Node Clustering

(c) MST Construction for Each Cluster (d) Comprehensive MST by
Connecting Cluster MSTs

Fig. 2. An illustrative example showing the practical application of the proposed BNSF framework in a real-case scenario.

predict which node to target in advance. Moreover, it maintains
the decentralization of the network since no complex hardware
is required. This means that any node si can construct an MST
for its cluster ci without needing specialized equipment or high
power.

The process of re-selecting a new leader is performed
after a certain period to reduce network traffic. The BNSF
framework allows new nodes to join the BC network only
after the end of this period, so new nodes attempting to join the
network are added to a waiting queue by the BNSF framework.
New nodes in the waiting queue join the network when this
period expires. Then, the network topology is once again
divided into a set of clusters. Subsequently, a leader node is
selected for each cluster to create a new MST for its cluster.
If a node leaves the network, only the network topology of
the cluster to which it belongs will be changed. Consequently,
only a new leader for this cluster is re-selected. The new
leader node then creates an MST for its cluster. Afterward, the
BNSF framework connects it with the MSTs of other clusters.
This makes the proposed framework dynamic in response to
changes in network topology. The global MST of the entire
network is then used in the NS process.

In Step-3, the leader announcement proposed by the BNSF
framework can be described as follows:

Following the leader selection process, the BNSF notifies

all nodes si ∈ Si in cluster ci about the new leader by sending
announcement messages to all of them. Additionally, it informs
the new leader of their responsibility for creating the MST for
their cluster and broadcasting it to all nodes within the cluster.
This enables the nodes to choose the optimal neighbor for data
exchange within the BC network through the provided MST.

D. Phase 3: MST Construction using Dijkstra’s Algorithm

After announcing the cluster leader with their new respon-
sibility for creating the MST using Dijkstra’s Algorithm [49]
and subsequently broadcasting the MST to all nodes in the
cluster, the MST creation process can be described as follows:

In Step-4, each LN builds the MST network topology of
its cluster ci by collecting neighbor information Nci(si) for
each node si in cluster ci. When the nodes Si receive the
announcement message from the LN, every node transmits its
neighbors’ information Nci(si) back to the LN. The LN then
uses the collected information to generate a comprehensive
view of the network topology for its cluster ci and constructs
the MST for the cluster, as shown in Fig. 2(C). Subsequently,
the BNSF framework connects the generated MSTs for each
cluster with each other. Finally, a global MST network topol-
ogy is created for the entire BC network, as illustrated in Fig.
2(D). This global MST can be utilized by network nodes S in
the process of selecting neighbors for broadcasting data within

www.ijacsa.thesai.org 1336 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 15, No. 3, 2024

Algorithm 2 Construct MST for each Cluster using Dijkstra’s
Algorithm
Input: Network cluster ci = (Si, Ei)
Output: MST graph for cluster ci.
// d[i] represents the distances between a node si and its parent
node
// p[i] represents parent nodes for all nodes si ∈ Si.
// Q represents a temporary list of node Si

1: procedure COMPUTE MST(ci)
2: Initialize d[s1]← 0, p[s1]← None and Q← Si

3: Initialize MST as an empty graph.
4: for all si ∈ Si except{s1} do
5: d[si]←∞
6: p[si]← None
7: end for
8: while Q is not empty do
9: u← node in Q with the minimum distance d[u]

10: Remove u from Q
11: for all neighbor si of u do
12: if weight(u, s) < d[si] then
13: d[si]← weight(u, si)
14: p[si]← u
15: end if
16: end for
17: end while
18: //Constructs the MST for cluster ci
19: for all si ∈ Si do
20: if p[si] ̸= None then
21: Add edge (si, p[si]) with edge weight d[si] to

the MST
22: end if
23: end for
24: Return MST .
25: end procedure

Algorithm 3 Construct Comprehensive MST (MSTcom)
Input: Clusters set C, Network graph G.
Output: MSTcom : Comprehensive MST for all nodes.

1: MSTcom ← Empty Graph
2: R = {}. //R represents the set of root nodes for clusters

C
3: for ci in C do
4: MSTci ← run COMPUTE MST(ci) in a separate

thread xi

5: Add root node of MSTci to R
6: Add nodes and edges of MSTci to MSTcom
7: end for
8: Connect root nodes in R based on edges in G to form

MSTcom
9: Return MSTcom

the network. Algorithm 2 provides a detailed view of how the
leader node develops the network MST.

Algorithm 2 can be explained as follows:

First, select the first node s1 from cluster ci as the source
node and initialize the set Q as the cluster’s set of nodes (line
2). Then, initialize the distance set d[si] and the parent set p[si]
for each node si in cluster ci (lines 4 → 7). Subsequently, the

algorithm starts with the source node s1 and traverses multiple
adjacent nodes to explore all interconnected edges. It identifies
a collection of edges that form a tree encompassing every
vertex, with each vertex representing a BC network node (lines
11 → 17). Finally, the distance and parent for each node are
stored for use in constructing the MST topology (lines 19 →
23).

Afterward, the MST network topology of cluster ci is
constructed by acquiring the distances d[si] to reach nodes
from their parent nodes p[si], for each node si ∈ Si within
cluster ci. A node without a parent node is considered the
root node of the MST. Ultimately, the algorithm constructs
the MST of cluster ci using node predecessors p[si] and their
corresponding distances d[si] (lines 20 → 24). Finally, the
root node r of each MST cluster is connected. This results
in a global MSTcom for the entire BC network, as shown in
Algorithm 3, which is then used in the process of selecting the
optimal neighbor for data transmission in the network.

Algorithm 3 is used to compute the MSTci for each cluster
ci in parallel and build a comprehensive MSTcom for the entire
BC network topology by connecting all root nodes R of the
clusters’ MSTs.

The use of multiple threads X within Algorithm 3, also
known as parallel computing [50], can accelerate the exe-
cution of the idea in several ways. By dividing a problem
into smaller sub-problems that can be solved independently,
multiple threads can work on different parts of the problem
simultaneously, leading to faster execution times. Additionally,
parallel computing can be used to take advantage of multiple
CPUs or cores, resulting in further performance improvements.
Therefore, parallel computing can be a powerful tool for
accelerating the execution of ideas and achieving our goals
more efficiently.

In Step-5, each LN broadcasts the MSTcom to its cluster
members. In cluster ci, each node si derives its own optimal
neighbors MON (si) from the received MSTcom. These op-
timal neighbors are then used by nodes in the NS process to
transmit new blocks or transactions over the BC network.

E. Phase 4: Neighbor Selection (NS)

In Step-6, each node si in the BC network that receives
the MSTcom from the LN of its cluster, extracts its optimal
neighbor nodes MON (si) from the received MSTcom by
running Algorithm 4.

In Step-7, the proposed framework replaces the RNS
approach with more informed selection criteria, resulting in
improved metrics for the BC network, including the average
time it takes to broadcast a new block or transaction and
achieve lower finality times. Network nodes si ∈ S use their
MON(si) in the NS process to optimally select neighbors,
share data, and propagate new blocks and transactions. Each
node si within a cluster ci can determine the most suitable
neighbors for transmitting and broadcasting information to
both nodes within its cluster and nodes in other clusters. This
selection process relies on the MSTcom provided by the cluster
leader, allowing each node to identify the optimal neighbors
from the MON for data exchange. This proposed approach,
built upon the utilization of MSTcom rather than random selec-
tion, significantly improves network performance. It achieves

www.ijacsa.thesai.org 1337 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 15, No. 3, 2024

Algorithm 4 Find MON (si) for each node si
Input: MSTcom, Node si.
Output: MST Optimal Neighbors MON (si) for node si.

1: procedure FIND MON(MSTcom, si)
2: MON (si) = {}
3: for sj in MSTcom do // search for node si in the

MSTcom
4: if sj = si then
5: for all neighbor sk of sj do
6: w ← weight(sj , sk)
7: MON (si) = MON (si) ∪ {(sk, w)}
8: end for
9: break

10: end if
11: end for
12: return MON (si)
13: end procedure

this by decreasing the time required for broadcasting data or
blocks within the network, enabling quicker data exchange
among network nodes, reducing overall network bandwidth
utilization, and effectively reducing the possibility of duplicate
data. Consequently, the risk of transmitting the same informa-
tion to a particular node multiple times is diminished since the
selection of the same node from multiple neighbors is avoided
during data exchange.

F. An Illustrative Example

This section provides an example that demonstrates how
the MST works to construct a general MSTcom for the entire
permissionless public BC network. A random deployment of
10 nodes, denoted as S = {1, 2, 3, . . . , 10}, is used and
visualized in Fig. 2(A). The average number of neighbors is
denoted by k, which equals 5.

Table III summarizes the edge weights between the 10
nodes. A value of 0 represents that there is no edge between
these nodes.

TABLE III. EDGE WEIGHT BETWEEN THE 10 NODES

nodes 1 2 3 4 5 6 7 8 9 10

1 0 65 50 28 73 38 10 78 0 98

2 65 0 0 0 0 0 78 77 82 0

3 50 0 0 0 0 0 0 0 0 12

4 28 0 0 0 0 0 54 21 96 0

5 73 0 0 0 0 0 19 91 45 70

6 38 0 0 0 0 0 47 0 0 51

7 10 78 0 54 19 47 0 47 32 37

8 78 77 0 21 91 0 47 0 14 0

9 0 82 0 96 45 0 32 14 0 0

10 98 0 12 0 70 51 37 0 0 0

Algorithm 1 applies the agglomerative clustering algorithm
to segment these nodes into two distinct clusters (M = 2):
c1 = {3, 6, 10} and c2 = {1, 2, 4, 5, 7, 8, 9}, as displayed in
Fig. 2(b). Initially, each data node forms an individual cluster:
{1}, {2}, {3}, {4}, {5}, {6}, . . ., {10}. Algorithm 1 calculates
distances between all cluster pairs using Euclidean distance,
subsequently merging the closest clusters into single entities.

For instance, if the closest clusters are {3} and {10}, they
merge into a new cluster: {3, 10}. This process iterates, adjust-
ing the hierarchy to include {1}, {2}, . . ., {3, 10}, . . ., {9}.
After each merge, distances between the new cluster and other
clusters are recalculated. As an illustration, subsequent clusters
such as {3, 10} and {6} merge into {3, 6, 10}. This iterative
process persists until the desired number of clusters is achieved
(M = 2). Now we have the two clusters c1 = {3, 6, 10} and
c2 = {1, 2, 4, 5, 7, 8, 9}.

Algorithm 2, ”Construct MST for each Cluster,” is used to
calculate the MST for each of the two clusters individually.
The resulting MSTs for the clusters are presented in Fig. 2(c).
Consider the example of cluster c2 = {1, 2, 4, 5, 7, 8, 9}. We
begin by initiating the MST construction for this cluster. A
queue Q is established, containing nodes 1, 2, 4, 5, 7, 8, and
9. The initial distances and parent node references for each
node are outlined in Table IV at step 1. The MST construction
starts with node 1 as the source node, assigned a distance of
0. The algorithm removes node 1 from Q and proceeds to
evaluate neighboring nodes connected to 1 within the cluster
c2. Nodes {2, 4, 5, 7, 8} exhibit edge weights to node 1 that
are smaller than their initial distances (infinity). Consequently,
the algorithm updates the distances and parents of these nodes
as indicated in Table IV at step 2.

Subsequently, with Q = {2, 4, 5, 7, 8, 9}, node 7 emerges
as the node with the minimum-weight edge to node 1, weigh-
ing 10. Among the remaining nodes in Q, {2, 4, 5, 8, 9} possess
edge weights to node 7. However, nodes 2 and 4 do not have
their distances and parents updated due to their existing lower
distances compared to the new edge weights. After removing
node 7 from Q, the algorithm only updates the distances and
weights of nodes {5, 8, 9}, as presented in Table IV at step
3. Continuing with Q = {2, 4, 5, 8, 9}, node 5 stands out as
having the smallest edge weight to node 7, amounting to 19.
First, Node 5 is then removed from Q. Nodes {8, 9} exhibit
edge weights to node 5, but due to higher weights of 91 and
45 for nodes 8 and 9 respectively, their distances and parents
remain unchanged.

The progression leads to Q = {2, 4, 8, 9}. Among the
remaining nodes, node 4 stands out for its smallest edge weight
to node 1, measuring 28. Node 4 is removed from Q. Although
nodes {8, 9} also have edge weights to node 4, only node 8 has
its parent and distance updated due to its lower weight of 21,
as seen in Table IV at step 4. Continuing, with Q = {2, 8, 9},
node 8 displays the smallest edge weight to node 4, measuring
21. Node 8 is removed from Q. Among the remaining nodes
in Q, node 2 has a higher weight than its current distance,
leading to no update in its distance and parent. The algorithm
proceeds to update only the parent and distance of node 9 in
Table IV at step 5.

This leaves Q = {2, 9}. Node 9 holds the smallest edge
weight to node 8, weighing 14. However, node 2 does not have
its distance and parent updated due to its higher weight of 82.
The algorithm only removes node 9 from Q. Finally, node 2
remains within Q, connected to node 1 with an edge weight
of 65. The algorithm proceeds by removing node 2 from Q,
resulting in an empty queue. As node 2 does not have any
unvisited neighbors, the algorithm terminates.

The last step involves constructing the MST using the

www.ijacsa.thesai.org 1338 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 15, No. 3, 2024

stored distances and parent node values of the cluster nodes.
Furthermore, the root node of the MST for each cluster c is
denoted as rc. Consequently, the root nodes for the clusters
are r1 = {3} and r2 = {1}. The union of all root nodes from
the clusters is represented as R = {3, 1}.

TABLE IV. THE DISTANCES AND PARENT REFERENCES FOR CLUSTER c2

nodes 1 2 4 5 7 8 9

step 1 p[s] None None None None None None None
d[s] 0 ∞ ∞ ∞ ∞ ∞ ∞

step 2 p[s] None 1 1 1 1 1 None
d[s] 0 65 28 73 10 78 ∞

step 3 p[s] None 1 1 7 1 7 7

d[s] 0 65 28 19 10 47 32

step 4 p[s] None 1 1 7 1 4 7

d[s] 0 65 28 19 10 21 32

step 5 p[s] None 1 1 7 1 4 8

d[s] 0 65 28 19 10 21 14

Ultimately, the BNSF framework establishes connections
between all root nodes, resulting in a comprehensive MSTcom
for the entire BC Network, as illustrated in Fig. 2(d). This
MSTcom serves as the optimal pathway for data propagation
within the BC network, ensuring efficient communication and
dissemination of information among the nodes. Each node
within the network extracts its optimal neighbors (MONs) from
the comprehensive MSTcom based on Algorithm 4.

In this example, the MONs of node 1 encom-
pass a dictionary of nodes with their weight values
{(2, 65), (3, 50), (4, 28), (7, 10)}, enabling seamless data ex-
change. Notably, these MONs correspond to nodes with the
lowest weights compared to other neighbors in the original
BC network, thereby speeding up the data transfer process
throughout the network. Through the BNSF approach, the BC
network achieves an efficient structure, facilitating secure and
rapid data transmission across the entire network.

G. Complexity Analysis of Algorithms

Mainly BNSF consists of four algorithms, Algorithm 1
consists of two steps: filling the edge matrix AE from BC net-
work graph G and applying agglomerative clustering on AE .
The first step involves a loop and a nested loop, with O(N2)
time complexity where N is the total BC network nodes. The
second step has a loop with O(N) time complexity. Inside this
loop (line 12), Calculating pairwise distances between clusters
O(N2). Thus, the overall complexity is roughly O(N3).

Algorithm 2 operates in two phases: the first phase calcu-
lates the shortest paths using Dijkstra’s algorithm, which runs
in O(n2

i ) time. n denotes the number of nodes within cluster
ci, where ni is a subset of N . The second phase constructs
an MST using the calculated predecessor nodes. This phase
requires considering all nodes and their corresponding prede-
cessor edges, which results in an overall time complexity of
O(ni). Therefore, the complexity of the entire algorithm is
determined by Dijkstra’s algorithm phase, which is typically
O(n2

i ).

Algorithm 3 concurrently constructs MSTs for multiple
clusters. The complexity analysis centers on the function

Compute MST(ci), which exhibits a time complexity of
O(n2

i ), where ni represents the count of nodes within cluster
ci, and i ranges from 1 to M . The overall complexity is
bounded by max(O(n2

j )), where j indicates the cluster index
associated with the maximum number of nodes. This arises due
to the parallel construction of MSTs across all clusters. This
approach leverages the advantages of multi-threading while
respecting the underlying cluster computation complexity.

The complexity analysis of Algorithm 4 is as follows:
initializing MON(si) as an empty set takes O(1) time. The
outer loop iterates through each node sj in the MSTcom,
which depends on network nodes N . Inside, a loop iterates
through each neighbor sk of the current node sj . The overall
complexity is O(N) (outer loop) * O(k) (inner loop), where
k represents the average number of neighbors for a node si.
For sparse BC networks, complexity is nearly linear; for dense
networks, it approaches O(Nk).

IV. EXPERIMENTS AND RESULTS

This section includes the main experiments and evaluation
of the proposed framework. The used network datasets, perfor-
mance measures, and the conducted experiments are discussed
in detail. Network data used in this study was generated by
the simulator developed by [51]. The simulator built a random
network topology using a random network model, namely the
Barabási-Albert (BA) model [52]. It simulates nodes in real
networks, which can be found in many natural and human-
generated systems, including but not limited to the Internet,
social networks, and the World Wide Web.

The simulation starts by generating a random BC network,
where a miner node is selected at random as the source node
for a data block. Subsequently, the source node shares the
generated block with its neighboring nodes, and each neighbor
continues this process with its own neighbors, creating a
cascade effect. The simulation concludes once a block has
successfully reached all nodes in the network.

The experiments were conducted on a DELL laptop featur-
ing an Intel i5-5200U CPU (4 Cores, 2.2GHz), 12GB DDR3
RAM, a 250GB SSD Drive, and a Windows 10 operating
system. The experimental results are checked and evaluated
using the following performance metrics:

• Total Propagation Time (TP ) (µs): is the time it takes
for block data sent from a randomly selected miner
node to propagate to all nodes within the network.

• MSTcom calculation time (MST -CT ) (sec): is the
actual time required to build the MSTcom network
topology for the entire BC network.

• Number of exchanged blocks (NB): denotes the count
of blocks exchanged between network nodes in order
to broadcast the block sent from a randomly selected
miner node, including redundant or repeated blocks
that a node could receive from different neighbors
until it reaches all network nodes.

The experiments conducted in this paper are classified into
the following categories:

• Experiments 1 and 2 focus on analyzing the corre-
lation between the BNSF parameters (Avg. no. of

www.ijacsa.thesai.org 1339 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 15, No. 3, 2024

neighbors k, no. of clusters M , and no. of nodes N )
and performance metrics.

• Experiment 3 aims to enhance BNSF by employing
various clustering algorithms such as Agglomerative,
K-means, and Community Louvain.

• Experiment 4 involves comparing BNSF with other
methods, specifically DONS, RTT-NS, and RNS.

Experiment 1

This experiment examines and discusses the effect of the
average number of neighbors per node k on performance
metrics TP and MST -CT , considering various numbers of
nodes N (e.g., 500, 1000, and 1500). The number of clusters
C is constant, set to 5. In Fig. 3(A), on the left-hand side, TP
is plotted against k (e.g., 5, 10, 15, 20). TP decreases by up to
68.57% when k equals 20 and N equals 1500. In general, as
k increases, TP decreases correspondingly. This is due to the
increase in the number of potential neighbors for each node in
the network, providing more options to select the best neighbor
node and consequently build a better MSTcom network with
lower weight. The more neighbors a node has, the better the
MSTcom becomes. As a result, the process of broadcasting
new blocks improves, as it relies on the best-created MSTcom,
leading to faster block propagation in the network.

In Fig. 3(B), on the right-hand side, MST -CT is plotted
against k. As observed, MST -CT slightly reduces by 4.84%
when k is set to 20, and N is 1500. As k increases, the change
in MST -CT remains minimal for every N of nodes, indicat-
ing that varying the number of neighbors for each node in
the network does not significantly impact the calculation time
required to construct the MSTcom topology of the BC network.
Conversely, the increase in the number of nodes N within
the network significantly affects the MSTcom calculation time
MST -CT .

6 8 10 12 14 16 18 20
200

300

400

500

600

700

800

900

1,000

Avg Neighbors k

A
vg

T
P

(µ
s)

(A)

500 Node
1000 Node
1500 Node

6 8 10 12 14 16 18 20
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Avg Neighbors k

A
vg

M
ST

C
T

(s
ec

)

(B)

500 Node
1000 Node
1500 Node

Fig. 3. Average number of neighbors (k) vs. (A) The average total
propagation time (TP ) and (B) the MSTcom calculation time.

Experiment 2

In this experiment, the impact of the number of clusters M
on performance metrics TP and MST -CT is discussed while
considering different numbers of nodes N (e.g., 500, 1000,
and 1500). The average number of neighbors for every node
k is constant, set to 15. In Fig. 4(A), TP is plotted against M
(e.g., 2, 4, 6, 8, and 10). Generally, as M increases, the value of

TP changes correspondingly but with irregular values. When
N is equal to 500, it can be observed that with a significantly
increased number of clusters M and a small number of nodes,
there is a considerable increase in the propagation time TP .
Consequently, it is better to choose a small number of clusters
to match the small number of nodes. Furthermore, when N
equals 1000 and 1500, a larger number of clusters can be
selected due to the increased node count to obtain the best
performance and the lowest propagation time TP .

In Fig. 4(B), MSTcom calculation time (MST -CT ) is
plotted against the number of clusters M (e.g., 2, 4, 6, 8, and
10). When the number of clusters M increases, MST -CT
changes slightly for every N of nodes. Therefore, increasing
or decreasing the number of network clusters does not sig-
nificantly affect the calculation time required to construct the
MSTcom topology of the BC network. In contrast, MST -CT
is notably influenced by the increase in the number of nodes
N within the network.

2 3 4 5 6 7 8 9 10
200

250

300

350

400

450

500

550

600

no.clusters M

T
P

(µ
s)

(A)

500 Node
1000 Node
1500 Node

2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

no.clusters M

A
vg

M
ST

-C
T

(s
ec

)

(B)

500 Node
1000 Node
1500 Node

Fig. 4. Number of clusters (M ) vs. (A) The average total propagation time
(TP ) and (B) MSTcom calculation time.

Experiment 3

In this experiment, the BNSF framework was developed
using different clustering algorithms to examine the efficiency
of the proposed model, with a specific focus on agglomerative
clustering. Two clustering algorithms, namely K-means and
Community Louvain, were compared with the Agglomerative
algorithm. K-means clustering [53] is a method that aims to
group N nodes into M clusters by ensuring that each node is
assigned to the cluster with the closest mean value, also known
as the cluster center or centroid. On the other hand, Community
Louvain is a clustering technique designed for large networks.
It computes the best partition of the graph nodes by maximiz-
ing modularity using the Louvain heuristics. This results in the
partition with the highest modularity achieved by the Louvain
algorithm [54].

The number of clusters M is constant and set to 5 for
both the agglomerative and K-means clustering methods. The
configuration of the network size and the average number
of neighbors per node is modified. This is done to demon-
strate the advantages of the proposed framework with the
Agglomerative clustering method in various real-life scenarios.
Table V displays the best outcomes for the Total Propaga-
tion Time, highlighted in bold. As shown in Table V, the
BNSF framework with Agglomerative clustering achieves the
highest performance with the lowest propagation time. When

www.ijacsa.thesai.org 1340 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 15, No. 3, 2024

TABLE V. DEVELOPING THE BNSF FRAMEWORK WITH DIFFERENT CLUSTERING ALGORITHMS

Model Network parameter No.Nodes Total Propagation Time (µs)

Avg.no.neighbors Agglomerative K-means Community Louvain

Mean SD Mean SD Mean SD

BA

10
500 393.2 7.05 1399.2 330.66 2007.8 226.71
1000 409.6 53.36 1335.8 466.54 3030.4 367.69
1500 498.2 81.89 1750.4 369.61 3486.2 245.82

15
500 313 60.99 857.4 207.52 2112.6 405.23
1000 323.8 65.14 1216 398.4 2567.4 273.12
1500 344.4 29.71 1616.2 395.1 3185.6 352.66

20
500 277.2 21.73 1107.6 184.96 1435.4 208.94
1000 273.2 31.42 1190.4 238.18 1980.8 349.22
1500 294.4 33.32 1091.2 241.54 2368.2 307.62

comparing it to other clustering algorithms like K-means, it
outperforms by 73.02%, and when compared to Community
Louvain, it outperforms by 87.57%, with k set to 20 and N
set to 1500 in terms of TP .

Experiment 4

The proposed BNSF framework is assessed in terms of
total propagation time and message complexity in comparison
to commonly employed neighbor selection methods such as
DONS, RNS, and NS based on local RTT. The four neighbor
selection methods are compared under identical network con-
ditions, with the same block originating from the same source
node.

Several experiments have been conducted using a random
network model, specifically the Barabási-Albert (BA) model.
The number of nodes N and the average number of neighbors
for every node k were varied to capture the behavior of the
proposed framework under different network sizes.

The efficiency of BNSF was examined in terms of TP ,
MST -CT , and NB. The number of clusters M for BNSF
equals 3 for N = 500, equals 5 for N = 1000, and equals 7
for N = 1500.

In this part of the experiment, the network size and the
average number of neighbors for every node are varied with
k = 10, 15, and 20 to illustrate the robustness of the proposed
BNSF framework in diverse real-life scenarios. The results
obtained from all algorithms, along with the outcomes of
different simulation scenarios, are presented in Table VI.

According to Table VI, the BNSF framework and the
DONS algorithm do not have redundant blocks when ex-
changing information between nodes in the BC network,
as nodes keep track of the replicated blocks they receive.
The more redundant blocks, the more blocks are exchanged
between nodes in the network, resulting in higher overhead
on communication links and computational burden at the node
level. Consequently, this leads to an elevated total propagation
time. However, the BNSF framework outperforms the other
algorithms, namely RNS and RTT-NS, in terms of the number
of blocks exchanged within the network.

The proposed BNSF framework also outperforms the
DONS algorithm on other points like the propagation time
of blocks within the network (TP ) and the duration needed
to construct the MSTcom of the BC network (MST -CT ).

Furthermore, according to Table VI, the proposed BNSF
framework outperforms the other algorithms like DONS (by
51.14%), RTT-NS (by 99.16%), and RNS (by 99.95%) in terms
of TP , when k equals 20, and N equals 1500.

500 1,000 1,500
0

0.5

1

1.5

2

no.nodes N

A
vg

M
ST

-C
T

(s
ec

)

BNSF
DONS

Fig. 5. Average MST -CT for BNSF and DONS with Different Numbers of
Nodes N .

In Fig. 5, the proposed BNSF framework is compared with
the DONS algorithm in terms of MST -CT , which is plotted
against the number of nodes N (e.g., 500, 1000, and 1500).
As observed, the average MST -CT achieved by the proposed
BNSF framework is 28.48% lower than that of the DONS
algorithm. These results demonstrate the superior performance
of BNSF over the DONS algorithm.

When increasing the number of clusters, the MST -CT
should exhibit variations for different node counts N (e.g.,
500, 1000, and 1500), depending on the network topology and
the distribution of nodes within clusters. Thus, the calculation
time required for constructing the MSTcom topology of the BC
network is significantly influenced by the number of clusters in
the network and its size, reducing it to approximately 27.92%
below that of the DONS algorithm. Computing the MST
for each cluster of nodes in separate threads will result in
minimizing the calculation time for the complete BC network’s
MSTcom.

V. CONCLUSIONS AND FUTURE WORK

The paper introduces an improved dynamic neighbor selec-
tion BNSF framework to tackle neighbor selection and scal-

www.ijacsa.thesai.org 1341 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 15, No. 3, 2024

TABLE VI. PERFORMANCE OF THE PROPOSED BNSF FRAMEWORK AGAINST DONS, RTT-NS, AND RNS METHODS ON A RANDOMLY GENERATED
NETWORK MODEL (BA) WITH VARYING SIZES

Model Network parameter No.Nodes Total Propagation Time (µs)

Avg.no.neighbors BNSF DONS RTT-NS RNS

Mean SD Mean SD Mean SD Mean SD

BA

10
500 330.2 30.10 590.33 94.2 18837 723.82 167146.67 18073.32
1000 409.6 53.36 894 236.99 38864.33 1554.55 335111.33 30211.1
1500 536 58.51 999.67 157.05 60596 3977.12 546851.67 63705.87

15
500 298.6 34.46 499 113.92 14123 1182.76 135582.33 20082.65
1000 323.8 65.14 523.67 84.39 29934.33 2358.39 389176 19521.17
1500 335.8 82.33 892 94.16 45594.33 1127.41 586644.33 88479.45

20
500 263.4 17.83 390.4 59.81 10923.8 1193.06 135820 22940.17
1000 273.2 31.42 498.4 60.43 23308.2 722.98 327798 54554.98
1500 298.8 42.76 611.6 57.98 35393.6 2042.82 548139.4 64174.62

Avg Number of exchanged blocks (NB)

BNSF DONS RTT-NS RNS

Mean SD Mean SD Mean SD Mean SD

BA

10
500 500 0 500 0 674 13.64 6088.67 702.89
1000 1000 0 1000 0 1340.33 52.64 12047.67 1138.42
1500 1500 0 1500 0 2060 68.59 20227.67 2491.43

15
500 500 0 500 0 610.67 23.61 4929.33 734.42
1000 1000 0 1000 0 1266.33 49.88 14730 700.33
1500 1500 0 1500 0 1884.67 16.78 21983 3551.55

20
500 500 0 500 0 578.8 19.03 5071 936.52
1000 1000 0 1000 0 1166 8.44 12402.2 2208.76
1500 1500 0 1500 0 1768.2 26.76 20802.8 2561.74

ability issues in public blockchain networks. This framework
reduces block propagation time, enhancing block or transaction
throughput compared to traditional methods. As blockchain
networks expand, the BNSF framework adapts by dividing
the network topology into clusters and utilizing a multi-leader
node approach. Multi-threading is employed to compute the
MST of clusters concurrently, thereby enhancing scalability
and ensuring efficient neighbor selection for faster and more
streamlined block propagation.

The proposed BNSF framework demonstrates a significant
reduction in total block propagation time, with a decrease
of up to 68.57% when the average number of neighbors is
20 for each node and the total number of network nodes
is 1500. Utilizing agglomerative clustering achieves superior
performance, outperforming K-means by 73.02% and Com-
munity Louvain by 87.57% in total block propagation time,
with similar network parameters.

The results of the proposed work showed a significant
improvement in block propagation for networks of various
sizes, surpassing state-of-the-art methods. The proposed BNSF
framework is also effective in large-scale networks with a
high node count. These experiments also revealed the BNSF
framework’s exceptional performance compared to alternative
neighbor selection methods such as DONS, RNS, and RTT-NS.
Furthermore, it decreases the overall time for block propaga-
tion, surpassing DONS by 51.14%, RTT-NS by 99.16%, and
RNS by 99.95%. Additionally, the BNSF framework achieves
an average MSTcom calculation time of 27.92% lower than the
DONS algorithm. Finally, it ensures the absence of redundant
blocks during information exchange among nodes in the BC
network.

In future work, further investigation will be conducted into

alternative clustering methods for network partitioning and
the exploration of alternative protocols for identifying leader
nodes within clusters to enhance the efficiency of the BNSF
framework. The impact of these choices on the framework’s
performance and efficiency will be thoroughly examined. Ad-
ditionally, potential upgrades to the BNSF framework to serve
as a comprehensive gossip and consensus protocol for public
blockchain networks will be explored.

REFERENCES

[1] O. Akanfe, D. Lawong, and H. R. Rao, “Blockchain technology and
privacy regulation: Reviewing frictions and synthesizing opportunities,”
International Journal of Information Management, vol. 76, p. 102753,
2024.

[2] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” Decen-
tralized business review, p. 21260, 2008.

[3] G. Zhang, F. Pan, Y. Mao, S. Tijanic, M. Dang’ana, S. Motepalli,
S. Zhang, and H.-A. Jacobsen, “Reaching consensus in the byzantine
empire: A comprehensive review of bft consensus algorithms,” ACM
Computing Surveys, vol. 56, no. 5, pp. 1–41, 2024.

[4] L. K. Ramasamy and F. Khan, “Utilizing blockchain for a decentralized
database of educational credentials,” in Blockchain for Global Educa-
tion, pp. 19–35, Springer, 2024.

[5] A. K. Tyagi, “Decentralized everything: Practical use of blockchain
technology in future applications,” in Distributed Computing to
Blockchain, pp. 19–38, Elsevier, 2023.

[6] B. Wen, Y. Wang, Y. Ding, H. Zheng, B. Qin, and C. Yang, “Security
and privacy protection technologies in securing blockchain applica-
tions,” Information Sciences, vol. 645, p. 119322, 2023.

[7] J. Liu and J. Wu, “A comprehensive survey on blockchain technology
and its applications,” Highlights in Science, Engineering and Technol-
ogy, vol. 85, pp. 128–138, 2024.

[8] I. Mistry, S. Tanwar, S. Tyagi, and N. Kumar, “Blockchain for 5g-
enabled iot for industrial automation: A systematic review, solutions,
and challenges,” Mechanical systems and signal processing, vol. 135,
p. 106382, 2020.

www.ijacsa.thesai.org 1342 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 15, No. 3, 2024

[9] D. Das, S. Banerjee, K. Dasgupta, P. Chatterjee, U. Ghosh, and
U. Biswas, “Blockchain enabled sdn framework for security manage-
ment in 5g applications,” in Proceedings of the 24th International
Conference on Distributed Computing and Networking, pp. 414–419,
2023.

[10] S. Onopa and Z. Kotulski, “State-of-the-art and new challenges in
5g networks with blockchain technology,” Electronics, vol. 13, no. 5,
p. 974, 2024.

[11] L. Tan, H. Xiao, K. Yu, M. Aloqaily, and Y. Jararweh, “A blockchain-
empowered crowdsourcing system for 5g-enabled smart cities,” Com-
puter Standards & Interfaces, vol. 76, p. 103517, 2021.

[12] Z. Ullah, M. Naeem, A. Coronato, P. Ribino, and G. De Pietro,
“Blockchain applications in sustainable smart cities,” Sustainable Cities
and Society, p. 104697, 2023.

[13] S. F. A. Shah, T. Mazhar, T. Al Shloul, T. Shahzad, Y.-C. Hu, F. Mallek,
and H. Hamam, “Applications, challenges, and solutions of unmanned
aerial vehicles in smart city using blockchain,” PeerJ Computer Science,
vol. 10, p. e1776, 2024.

[14] P. Danzi, A. E. Kalør, Č. Stefanović, and P. Popovski, “Delay and
communication tradeoffs for blockchain systems with lightweight iot
clients,” IEEE Internet of Things Journal, vol. 6, no. 2, pp. 2354–2365,
2019.

[15] W. A. Al-Nbhany, A. T. Zahary, and A. A. Al-Shargabi, “Blockchain-iot
healthcare applications and trends: A review,” IEEE Access, 2024.

[16] L. N. CheSuh, R. Á. F. Dı́az, J. M. A. Perez, C. B. Cuellar, and
H. A. Moretón, “Improve quality of service for the internet of things
using blockchain & machine learning algorithms.,” Internet of Things,
p. 101123, 2024.

[17] L. Jiang and X. Zhang, “Bcosn: A blockchain-based decentralized
online social network,” IEEE Transactions on Computational Social
Systems, vol. 6, no. 6, pp. 1454–1466, 2019.

[18] F. Mlika, W. Karoui, and L. B. Romdhane, “Blockchain solutions for
trustworthy decentralization in social networks,” Computer Networks,
p. 110336, 2024.

[19] A. Gunawan, R. Richard, S. C. Chang, and S. Shilvi, “A review of data
security of blockchain applications in social media,” in AIP Conference
Proceedings, vol. 3026, AIP Publishing, 2024.

[20] A. K. Tyagi and S. Tiwari, “The future of artificial intelligence in
blockchain applications,” in Machine Learning Algorithms Using Scikit
and TensorFlow Environments, pp. 346–373, IGI Global, 2024.

[21] A. M. S. Saleh, “Blockchain for secure and decentralized artificial
intelligence in cybersecurity: A comprehensive review,” Blockchain:
Research and Applications, p. 100193, 2024.

[22] A. Kuznetsov, P. Sernani, L. Romeo, E. Frontoni, and A. Mancini, “On
the integration of artificial intelligence and blockchain technology: A
perspective about security,” IEEE Access, 2024.

[23] A. I. Sanka and R. C. Cheung, “A systematic review of blockchain
scalability: Issues, solutions, analysis and future research,” Journal of
Network and Computer Applications, vol. 195, p. 103232, 2021.

[24] I. S. Rao, M. Kiah, M. M. Hameed, and Z. A. Memon, “Scalability
of blockchain: a comprehensive review and future research direction,”
Cluster Computing, pp. 1–24, 2024.

[25] E. K. Kogias, P. Jovanovic, N. Gailly, I. Khoffi, L. Gasser, and B. Ford,
“Enhancing bitcoin security and performance with strong consistency
via collective signing,” in 25th usenix security symposium (usenix
security 16), pp. 279–296, 2016.

[26] M. N. M. Bhutta, A. A. Khwaja, A. Nadeem, H. F. Ahmad, M. K.
Khan, M. A. Hanif, H. Song, M. Alshamari, and Y. Cao, “A survey
on blockchain technology: Evolution, architecture and security,” Ieee
Access, vol. 9, pp. 61048–61073, 2021.

[27] J. Xu, C. Wang, and X. Jia, “A survey of blockchain consensus
protocols,” ACM Computing Surveys, vol. 55, no. 13s, pp. 1–35, 2023.

[28] N. Shi, L. Tan, W. Li, X. Qi, and K. Yu, “A blockchain-empowered
aaa scheme in the large-scale hetnet,” Digital Communications and
Networks, vol. 7, no. 3, pp. 308–316, 2021.

[29] A. Gangwal, H. R. Gangavalli, and A. Thirupathi, “A survey of
layer-two blockchain protocols,” Journal of Network and Computer
Applications, vol. 209, p. 103539, 2023.

[30] R. Antwi, J. D. Gadze, E. T. Tchao, A. Sikora, H. Nunoo-Mensah,
A. S. Agbemenu, K. O.-B. Obour Agyekum, J. O. Agyemang, D. Welte,
and E. Keelson, “A survey on network optimization techniques for
blockchain systems,” Algorithms, vol. 15, no. 6, p. 193, 2022.

[31] L. Zhang, T. Wang, and S. C. Liew, “Speeding up block propagation
in bitcoin network: Uncoded and coded designs,” Computer Networks,
vol. 206, p. 108791, 2022.

[32] C. Li, J. Zhang, X. Yang, and L. Youlong, “Lightweight blockchain
consensus mechanism and storage optimization for resource-constrained
iot devices,” Information Processing & Management, vol. 58, no. 4,
p. 102602, 2021.

[33] G. Saldamli, C. Upadhyay, D. Jadhav, R. Shrishrimal, B. Patil, and
L. Tawalbeh, “Improved gossip protocol for blockchain applications,”
Cluster Computing, vol. 25, no. 3, pp. 1915–1926, 2022.

[34] N. El Rharbi, H. Atteriuas, A. Younes, A. Harchaoui, and O. Izem, “A
comparative study of the recent blockchain consensus algorithms,” in E-
Learning and Smart Engineering Systems (ELSES 2023), pp. 316–327,
Atlantis Press, 2024.

[35] N. Loizou and P. Richtárik, “Revisiting randomized gossip algorithms:
General framework, convergence rates and novel block and accelerated
protocols,” IEEE Transactions on Information Theory, vol. 67, no. 12,
pp. 8300–8324, 2021.

[36] G. Danner, I. Hegedűs, and M. Jelasity, “Improving gossip learning via
limited model merging,” in International Conference on Computational
Collective Intelligence, pp. 351–363, Springer, 2023.

[37] W. Bi, H. Yang, and M. Zheng, “An accelerated method for message
propagation in blockchain networks,” DOI: 10.48550/arXiv.1809.00455,
2018.

[38] Q. Zhou, H. Huang, Z. Zheng, and J. Bian, “Solutions to scalability of
blockchain: A survey,” Ieee Access, vol. 8, pp. 16440–16455, 2020.

[39] K. Wang and H. S. Kim, “Fastchain: Scaling blockchain system with
informed neighbor selection,” in 2019 IEEE International Conference
on Blockchain (Blockchain), pp. 376–383, 2019.

[40] H. Baniata, A. Anaqreh, and A. Kertesz, “Dons: Dynamic optimized
neighbor selection for smart blockchain networks,” Future Generation
Computer Systems, vol. 130, pp. 75–90, 2022.

[41] W. Hao, J. Zeng, X. Dai, J. Xiao, Q. Hua, H. Chen, K.-C. Li, and
H. Jin, “Blockp2p: Enabling fast blockchain broadcast with scalable
peer-to-peer network topology,” in International Conference on Green,
Pervasive, and Cloud Computing, pp. 223–237, Springer, 2019.

[42] Y. Aoki and K. Shudo, “Proximity neighbor selection in blockchain
networks,” in 2019 IEEE International Conference on Blockchain
(Blockchain), pp. 52–58, 2019.

[43] C. Santiago and C. Lee, “Accelerating message propagation in
blockchain networks,” in 2020 International Conference on Information
and Communication Technology Convergence (ICTC), pp. 157–160,
IEEE, 2020.

[44] V. Deshpande, H. Badis, and L. George, “Efficient topology control of
blockchain peer to peer network based on sdn paradigm,” Peer-to-Peer
Networking and Applications, vol. 15, no. 1, pp. 267–289, 2022.

[45] H. Vu and H. Tewari, “An efficient peer-to-peer bitcoin protocol with
probabilistic flooding,” in Emerging Technologies in Computing: Second
International Conference, iCETiC 2019, London, UK, August 19–20,
2019, Proceedings, pp. 29–45, Springer, 2019.

[46] G. Fortino, F. Messina, D. Rosaci, and G. M. Sarnè, “Using trust
measures to optimize neighbor selection for smart blockchain networks
in the iot,” IEEE Internet of Things Journal, 2023.

[47] E. K. Tokuda, C. H. Comin, and L. d. F. Costa, “Revisiting agglomera-
tive clustering,” Physica A: Statistical Mechanics and its Applications,
vol. 585, p. 126433, 2022.

[48] P. Dawyndt, H. D. Meyer, and B. D. Baets, “The complete linkage
clustering algorithm revisited,” Soft Computing, vol. 9, pp. 385–392,
2005.

[49] J.-C. Chen, “Dijkstra’s shortest path algorithm,” Journal of formalized
mathematics, vol. 15, no. 9, pp. 237–247, 2003.

[50] R. Saavedra-Barrera, D. Culler, and T. Von Eicken, “Analysis of
multithreaded architectures for parallel computing,” in Proceedings
of the second annual ACM symposium on Parallel algorithms and
architectures, pp. 169–178, 1990.

www.ijacsa.thesai.org 1343 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 15, No. 3, 2024

[51] H. Baniata, A. Anaqreh, and A. Kertesz, “Dons simulator.” https:
//github.com/HamzaBaniata/DONS simulator/, 2022.

[52] R. Albert and A.-L. Barabási, “Statistical mechanics of complex net-
works,” Reviews of modern physics, vol. 74, no. 1, p. 47, 2002.

[53] A. Likas, N. Vlassis, and J. J. Verbeek, “The global k-means clustering
algorithm,” Pattern recognition, vol. 36, no. 2, pp. 451–461, 2003.

[54] V. D. Blondel, J.-L. Guillaume, R. Lambiotte, and E. Lefebvre, “Fast
unfolding of communities in large networks,” Journal of statistical
mechanics: theory and experiment, vol. 2008, no. 10, p. P10008, 2008.

www.ijacsa.thesai.org 1344 | P a g e

https://github.com/HamzaBaniata/DONS_simulator/
https://github.com/HamzaBaniata/DONS_simulator/

	Introduction
	Related Work
	Blockchain Neighbor Selection Framework (BNSF)
	The Proposed System Model
	Phase 1: Network Clustering
	Phase 2: Cluster Leader Selection
	Phase 3: MST Construction using Dijkstra's Algorithm
	Phase 4: Neighbor Selection (NS)
	An Illustrative Example
	Complexity Analysis of Algorithms

	Experiments and Results
	Experiment 1
	Experiment 2
	Experiment 3
	Experiment 4

	Conclusions and Future Work
	References

