
(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 15, No. 3, 2024 

9 | P a g e  

www.ijacsa.thesai.org 

Analysis of Gait Motion Sensor Mobile 

Authentication with Machine Learning 

Sara Kokal1, Mounika Vanamala2, Rushit Dave3 

Computer Science Department, University of Wisconsin-Eau Claire, Eau Claire, U.S.A1, 2 

Computer Information Science Department, Minnesota State University, Mankato, Mankato, U.S.A3 

 

 
Abstract—In recent decades, mobile devices have evolved in 

potential and prevalence significantly while advancements in 

security have stagnated. As smartphones now hold 

unprecedented amounts of sensitive data, there is an increasing 

need to resolve this gap in security. To address this issue, 

researchers have experimented with biometric-based 

authentication methods to improve smartphone security. 

Following a comprehensive review, it was found that gait-based 

mobile authentication is under-researched compared to other 

behavioral biometrics. This study aims to contribute to the 

knowledge of biometric and gait-based authentication through 

the analysis of recent gait datasets and their potential with 

machine learning algorithms. Two recently published gait 

datasets were used with algorithms such as Random Forest, 

Decision Tree, and XGBoost to successfully differentiate users 

based on their respective walking features. Throughout this 

paper, the datasets, methodology, algorithms, experimental 

results, and goals for future work will be described. 
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I. INTRODUCTION 

The demand for mobile device performance continues to 
increase as society and industry becomes more technology 
oriented. Nowadays, smartphones are used for an ever-
expanding array of problems including navigation, 
calculations, photography, and socialization. The ability to 
combine solutions to multiple daily functionalities into the 
applications of a smart device is expected by today’s mobile 
device users. Recently, the use of mobile financial transaction 
options and the holding of sensitive card data such as Apple 
Pay, Apple Wallet, PayPal, and Venmo have become popular. 
In the United States, 59% of in-person stores, restaurants, and 
other services allow for apple pay, only superseded by 70% in 
the U.K. [1]. While only needing to bring a phone into a store 
to complete transactions is appealing to consumers, financial 
security consequences arise if devices are stolen and broken 
into. Losing a phone can now have a similar impact to losing a 
wallet. With these advancements, it has been necessary to find 
secure ways to protect the sensitive data smart devices hold.  

In response to these concerns, researchers have been 
investigating the potential of novel authentication methods to 
improve mobile device security. The two current most 
common methods of authentication for devices are knowledge-
based and physiological-based. In knowledge-based 
authentication, information that is known only to the owner is 
used to secure the device. This method can be deployed as a 
sequence of characters and numbers, or as a graphical pattern. 

While knowledge-based authentication is widely popular and 
easy to use, it is also prone to security risks if this information 
is leaked or stolen by an adversary [2]. Physiological 
biometrics uses physical traits of the user for authentication, 
such as facial, fingerprint, palm or ocular characteristics 
scanned by the device. These methods have become more 
popular in recent years and have become implemented in 
phones and other devices. Unfortunately, physiological 
methods have found to be less accurate and more costly than 
expected, sometimes requiring additional hardware to 
accurately scan the user’s features [3]. Researchers have found 
an alternative solution in the form of behavioral biometrics. 
Behavioral biometrics uses an individual’s unique behavioral 
characteristics to secure a device. They are cost effective, as 
they collect data with low-cost sensors already within the 
device such as motion sensors and the touch screen [2]. It is 
also notable that while knowledge-based and physiological 
methods are generally used as a one-time authentication 
strategy, behavioral biometrics methods can continuously 
authenticate the device while it is being used. This strategy 
analyzes user behavior repeatedly to secure the device in the 
case that an initial one-time authentication has failed, and the 
device has already been accessed [4]. 

There are many different behavioral strategies used to 
secure a device with the innate sensors, including touch 
dynamics, keystroke dynamics, and motion dynamics. Motion 
dynamics utilize the motion sensors in a device, including the 
accelerometer, gyroscope, and magnetometer sensors. Motion 
dynamics can be captured anytime the device is being used 
where motion is involved. One subset is known as gait 
dynamics, where the device records data from the motion 
sensors while the user walks to capture their gait 
characteristics. As of late, these behavioral biometrics methods 
have been found to be effective in securing mobile devices 
when used with machine learning and deep learning algorithms 
with high accuracy metrics and low error rates [5].  

This paper aims to further research into this field of study 
with these contributions: 

 Expand knowledge into behavioral biometrics 
authentication with the comparison of two recently 
published gait datasets [6, 7]. 

 Develop Machine Learning models (Random Forest, 
Decision Tree, XGBoost) to evaluate the efficiency of 
gait biometric authentication and compare classifier 
results. 
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II. BACKGROUND AND RELATED WORK 

The direction of this study was inspired by the findings of a 
past work, reviewing the use of Machine Learning (ML) and 
Deep Learning (DL) algorithms with biometrics-based mobile 
authentication systems [5]. This review examined 66 of the 
latest experimental studies on behavioral biometrics with touch 
dynamics, keystroke dynamics, motion dynamics and gait 
dynamics with a focus on how they performed with various 
algorithms. It was found that studies on the usage of AI 
algorithms with biometrics have become popular in recent 
years as the increase in number and quality of public training 
datasets has allowed for the construction of better performing 
and more accurate models. Of the dynamics listed, touch 
dynamics and motion dynamics were the most popular, with 24 
and 18 studies cited respectively. Despite having decent 
performance metrics in comparison, gait dynamics were found 
to be under-researched, numbering at 11 cited studies, the 
lowest of the four dynamics. Therefore, this study has sought 
to breach this gap by analyzing the performance of recently 
published gait datasets with AI algorithms. 

In previous reviews [5, 8], it was established that to 
continue progress in the investigation of behavioral biometrics 
mobile authentication systems, it is worthwhile to focus on 
how systems can be advanced past previous boundaries and 
ensure models can hold up against real world contexts. One 
way to do this is to ensure datasets have larger sample sizes 
that can properly represent a population and effectively train a 
ML/DL model. In recent years, many high-quality biometrics 
datasets with larger sample sizes have been published for 
public use, allowing us to advance model quality. One example 
in gait dynamics would be the IDNet dataset, published in 2018 
[9]. This dataset has since been cited in over 200 papers with a 
majority published after the year 2020. The IDNet dataset 
consists of accelerometer and gyroscope data collected from 50 
subjects over a six-month period and was collected to classify 
gait cycles regardless of device orientation. Of the reviewed 
studies, [10], [11], and [12] used the IDNet dataset to evaluate 
various LSTM-based models and resulted in accuracy metrics 
ranging from 96-99%. Another notable dataset would be the 
WhuGait dataset, published in 2020 [13]. This dataset 
contained gait motion sensor data from 118 individuals 
collected in an unrestrained “wild” environment. Their 
presenting study analyzed the dataset performance with a 
hybrid Convolutional Neural Network (CNN) and Long-Short 
Term Memory (LSTM) model, resulting in an accuracy 
performance of 93.75%. 

Mobile gait authentication studies typically rely on the use 
of motion sensors within the phone such as accelerometer, 
gyroscope, and magnetometer to capture an individual’s gait 
cycle characteristics. Of the motion dynamics studies reviewed, 
pairing accelerometer and gyroscope sensor data was the most 
popular [5]. Within gait studies, a similar pattern was seen with 
studies preferring either accelerometer data alone or a pairing 
of accelerometer and gyroscope data. In the WhuGait study 
[13], accelerometer and gyroscope data were collected. Results 
from this study found that individually, accelerometer data 
performed better than gyroscope, but using both was 
complementary. 

Overall, recent studies in mobile gait authentication favored 
hybrid Deep Learning (DL) models. Of the gait studies 
reviewed, architectures using CNN feature extraction with 
LSTM classification numbered half of the cited papers with 
accuracy metrics ranging from 90.00-99.99% [5].  Within some 
of these studies, the hybrid models were also compared to ML 
algorithms in performance. In all the studies, DL algorithms 
outperformed ML algorithms, but in some the ML algorithms 
performed at adequate levels comparatively. In the IDNet 
paper, a model with CNN feature extraction and One-Class 
Support Vector Machine (OC-SVM) classification was tested 
on their data with a performance of < 0.15 False Acceptance 
Rate (FAR) and False Rejection Rate (FRR) [9]. In another 
study [14], a CNN model was proposed for gait authentication 
and evaluated with a large public dataset. Their model was 
compared with the performance of Random Forest (RF) and K-
Nearest Neighbors (KNN) algorithms. CNN had the best 
performance with 0.9882 accuracy, but RF did not lag too far 
behind with an accuracy of 0.9551. In a third study [15], 
walking data from a small dataset was tested on LSTM, CNN, 
Support Vector Machine (SVM) and Multi-Layer Perceptron 
(MLP) in two scenarios. In the binary classification scenario 
using training data from both the target user and other users, 
SVM had the best performance compared to MLP with 98.42% 
accuracy. In a scenario where the training data only included 
the target user’s data, LSTM significantly outperformed SVM 
with 90.24% accuracy. Overall, DL algorithms have proved to 
dominate current gait mobile authentication studies with high 
accuracy rates and low error rates, but it has been noted in 
some comparison studies that ML algorithms such as RF and 
SVM remain effective in certain scenarios. This can prove 
useful if one is attempting to build a smaller security system 
with less data than is required for advanced DL models. 

Studies most recently published demonstrating the 
continued relevance of gait dynamics mobile authentication 
research include [16], and [17]. In study [16], researchers 
collected accelerometer and angular velocity sensor readings 
from 10 individuals in pocket and hand-hold positions over 
periods of around 90 seconds. They trained a CNN model with 
the data, producing an average accuracy of 0.9175. The study 
concluded that gait data collected over short periods of time 
can be successfully used for authentication. In study [17], 
researchers proposed IRGA, their implicit real-time gait 
authentication system using a hybrid CNN+LSTM model. 
They collected accelerometer, gyroscope, and magnetometer 
sensor readings from 16 individuals in varying positions and 
walking styles, analyzing the impact of constrained vs 
unconstrained environments. They concluded that 
authentication based on gait characteristics is feasible despite 
limitations. Their model was tested on multiple datasets, 
achieving a highest average accuracy of 99.4% with the ZJU-
GaitAcc dataset. 

III. METHODOLOGY 

A. Datasets 

Two datasets were chosen to compare algorithm 
performance. They were each chosen for their similarities as 
well as their relatively recent publishing dates bearing a limited 
number of citations. The first, BB-MAS, is a large dataset 
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comprising of swiping, keystroke, and gait data collected from 
desktop, tablet, and mobile phone devices [2]. It was published 
in 2019 by Belman et al. The dataset demographic consists of 
117 individuals, 72 male and 45 female, of which the majority 
spoke English and was right hand dominant. The data 
collection process consisted of a sequence of events each 
individual performed to complete all dynamics activities. First, 
the individual would start the desktop and touch dynamics 
activities before walking down a corridor with their mobile 
device, passing through a stairwell, walking down another 
corridor, and returning along the same path. The files were split 
between device used and sensor collected from as well as 
device position. Gait accelerometer and gyroscope data was 
collected from a mobile device at a 50Hz sampling rate in two 
positions; one where the device was held in the hand, and one 
where the device was placed in the pocket. The X, Y, and Z 
axis values were recorded for each sensor. Gait data collection 
time for each individual ranged around 5-10 minutes. The 
mobile devices used in the study were Samsung-S6 and HTC-
One phones. Timestamps were included along with each user 
file folder to differentiate between corridor walking and stair 
climbing. Only data in which the individual was performing 
walking movements along a corridor with a mobile device was 
used. 

The second dataset, MMUISD, was published in 2020 by 
Permatasari et al [3]. The MMUISD dataset originally 
consisted of data from 322 undergraduate students (246 male 
and 76 female) which was cut down to 120 for the publicly 
available dataset. The data collection process was simple, 
requiring individuals to walk down a 15-meter corridor with 
their device. An android application was downloaded onto each 
device and used to collect accelerometer and gyroscope data at 
a 50Hz fixed sampling rate. X, Y and Z axis values were 
recorded for both accelerometer and gyroscope. There were six 
different device positions in the study, of which only the hand 
and pocket positions were used. Users were instructed to walk 
naturally without restraints in three different speeds: slow, 
normal, and fast. User file data was differentiated based on 
speed and position. Data collection time ranged from 5-8 
minutes for each individual to complete all speeds. Due to time 
constraints, the number of individual users per speed and 
position in the public dataset differed between 65 and 99 
individuals as can be seen in Table I. 

TABLE I.  MMUISD PARTICIPANTS 

Position / Speed # of Participants 

Left H slow 65 

Left H Normal 99 

Left H Fast 96 

Right H Slow 79 

Right H Normal 80 

Right H Fast 76 

Left P Slow 90 

Left P Normal 74 

Left P Fast 97 

Right P Slow 96 

Right P Normal 75 

Right P Fast 75 

B. Data Cleaning and Preprocessing 

Before feature extraction, it is important to properly 
preprocess and clean the data to prevent avoidable errors. The 
pandas python library and PyCharm environment were used to 
facilitate these steps. Both datasets selected had clear signals 
without significant outliers, so it was not needed to take many 
steps in the initial cleaning process. The null values in all rows 
were replaced with 0 for all user files in each dataset. 

The preprocessing steps were unique to each dataset since 
the organization of the user files and data signals differed 
slightly. The MMUISD dataset was straightforward, as both 
the gyroscope and accelerometer sensor readings were 
compiled in the same file for each user and only recorded 
walking data. BB-MAS instead separated gyroscope and 
accelerometer readings into different files. Due to how the data 
was collected, stair climbing and walking were recorded on the 
same files and required given timestamps to differentiate the 
two. Taking extra steps to preprocess the BB-MAS files was 
necessary to properly compare both datasets. First, the 
timestamp file matching the current user file being 
preprocessed was extracted and the checkpoints corresponding 
to the walking segments were identified. Then, the 
accelerometer and gyroscope signal files were merged based 
on the recording times. Using the checkpoints, walking 
sequence data was separated and concatenated into a new Data 
Frame to be used in the feature extraction process. 

C. Feature Extraction 

In time series analysis problems, time domain features are 
typically extracted from sequences of the recorded data. The 
sequence lengths were chosen by visualizing the mean of 

 m = √𝑥2 + 𝑦2 + 𝑧2 

From the x, y, and z axis of each signal with respect to the 
time. An example of this visualization is provided by Fig. 1. 
For the MMUISD dataset, a sequence length of 10 was chosen. 
The BB-MAS dataset has a greater amount of datapoints, thus 
a sequence length of 20 was found to be optimal. 

The same feature sets were chosen for both datasets for 
comparison purposes. Eight different statistical features were 
extracted from the x, y, z axes and m of both the accelerometer 
and gyroscope signal. In total, 64 features were extracted from 
each user file. The features were selected based on previous 
studies as well as the recommendations of the chosen datasets. 
In the BB-MAS readme document, Mean, Standard deviation, 
Band Power, Energy, Median Frequency, Interquartile Range, 
Range, Signal to Noise Ratio, Dynamic Time Warping 
Distance, Mutual Information and Correlation were suggested 
as possible gait features. Other gait authentication studies 
reviewed commonly included features such as Mean, Standard 
Deviation, Band Power, Median Frequency, Interquartile 
Range, Range, Dynamic Time Warping Distance, Average 
Max and Min, Root Mean Square, and Average Absolute 
Difference [9, 18, 19]. For the final feature set, the Mean, 
Standard Deviation, Average Min and Max, Interquartile 
Range, Range, Root Mean Square, and Absolute Deviation 
from x, y, z and m were extracted. 
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Fig. 1. Visualization of the mean m of the accelerometer and gyroscope 

signals from a user in the MMUISD dataset. 

D. Training and Testing 

Data from each user was split with 80% used for training 
the models and 20% used for testing. This 80/20 split was 
chosen as 80/20 and 70/30 splits for training and testing sets 
have been found by empirical research studies to be optimal for 
statistical model performance [20]. The authentic user data and 
imposter data was then concatenated together for the final 
training and testing sets. For the testing set, the user data was 
concatenated with a 40% random sample of the imposter data 
to prevent overfitting and bias. To enable the model to properly 
differentiate an authentic user from an imposter within the 
training data, each data point included a class label with a 0 or 
1. A 0 represented an authentic user and while a 1 was an 
imposter. During the testing process, these labels were used to 
determine how accurate the classifier’s decision making was. 
For data normalization, Standard Scaler was used for the 
Random Forest and Decision Tree Models, while Simple 
Imputer was used with the XGBoost model. 

During the initial testing process, the parameters of each 
ML model were fine tuned to produce the best classification 
results with the datasets. The Random Forest model comprised 
of a parameter set with 100 estimators, a max depth of 20, a 
minimum sample split of 2, a minimum number of trees of 1, 7 
jobs to run in parallel, and class weights determined by the 
number of positive and negative samples. The Decision Tree 
model included Gini Impurity function, a max depth of 10, and 
class weights determined by the number of positive and 
negative samples. The XGBoost model required more 
manipulation than the previous models, producing higher 
levels of overfitting. To combat this, the feature set was cut 
down to around 15 by evaluating feature importance with a 
basic binary logistic XGBoost model. Feature importance was 
visualized with a pyplot bar graph, and features that produced 
an importance level of less than 0.2 were removed. Features 
that produced high levels of feature importance in both datasets 
included Min and Max, Mean, Root Mean Square, and Range. 
The final XGBoost model parameters included binary logistic 
objective, a learning rate of 1.5 and a scale pos weight 
determined by class balance. 

IV. RESULTS 

This study intends to evaluate the efficiency of gait 
characteristics for differentiating mobile users by comparing 
the classification performance of ML algorithms with two 
recent gait datasets. For classification analysis, high 

performance binary classifiers were selected such as Random 
Forest, Decision Tree, and XGBoost. The classifiers were 
trained and evaluated as specified in the previous section on all 
users. 

To properly evaluate the performance of the models on the 
datasets, the following statistical evaluation metrics were 
included in the results for each user in each dataset: 

 The Accuracy (ACC): Rate of correctly predicted 
results. 

 F-Score (F1): Measure of the harmonic mean of 
precision and recall. 

 False Positive Rate (FPR): Rate of incorrectly identified 
authentic users. 

 False Negative Rate (FNR): Rate of incorrectly 
identified imposters. 

 Equal Error Rate (ERR): Threshold where FPR and 
FNR are equal. 

When observing these metrics, lower EER, FPR and FNR 
rates are desired over higher ones, as they represent how well a 
model can differentiate between authentic users and imposters. 
The accuracy metric is helpful for measuring overall model 
performance accuracy. Similarly, a larger F1 score is indicative 
of strong overall model performance. 

Table II shows the results from training the models with the 
MMUISD dataset. Random Forest had the best overall 
classification performance using MMUISD with an average 
accuracy of 98.90% and an average EER of 4.18%. Random 
Forest achieved the highest accuracy in the right pocket 
position at slow speed with 99.18% and a lowest EER of 
2.76% in the right pocket at fast speed. While the XGBoost 
model achieved a higher average accuracy than Random Forest 
with 98.98%, it also had higher average error rates of 18.94%. 
DT had a lowest error rate with 3.69% but had a smaller 
overall average accuracy than Random Forest. The XGBoost 
model had tended to overfit to the user, resulting in higher and 
more varied error rates after tuning. 

BB-MAS results are shown in Table III. Random Forest 
had the best performance with an overall accuracy of 99.03% 
and an EER of 1.04%. Decision Tree and XGBoost had similar 
differences in performances with Decision Tree achieving 
lower accuracy scores but a similar EER score. XGBoost again 
achieved the highest accuracy score but with higher EER 
scores due to a tendency to overfit the data. 

Table IV compares the performance of the two datasets. In 
both datasets, Random Forest had the best overall performance. 
The Pocket Phone position achieved the best accuracy and 
EER results in both datasets as well. One noticeable difference 
is that Decision Tree achieved a better accuracy in the hand 
position with the MMUISD dataset, with a score of 95.41% 
compared to 88.98% with the BB-MAS dataset. It is also 
notable that the pocket position achieved better error results 
with the BB-MAS dataset compared to the MMUISD dataset, 
with an average EER of 1.04% compared to 3.37% when 
evaluated with the Random Forest model.  
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TABLE II.  MMUISD RESULTS 

DT 
     

RF 
     

XGB 
     

 
ACC F1 FPR FNR EER 

 
ACC F1 FPR FNR EER 

 
ACC F1 FPR FNR EER 

LHF 
0.95574

8 

0.97607

6 

0.03312

3 

0.04487

8 

0.03312

3 
LHF 

0.98746

608 

0.99340

466 

0.03972

127 

0.01166

933 

0.03972

127 
LHF 

0.98922

657 

0.99435

532 

0.24901

326 

0.00476

506 

0.23859

66 

LHN 
0.95495
2 

0.97597
1 

0.03480
1 

0.04543
3 

0.03480
1 

LHN 
0.98684
145 

0.99316
609 

0.04872
764 

0.01234
906 

0.04872
764 

LHN 
0.98936
387 

0.99416
29 

0.22193
526 

0.00541
354 

0.21183
425 

LHS 
0.94799

9 

0.97228

8 

0.05192

5 

0.05204

6 

0.05192

5 
LHS 

0.98612

967 

0.99281

256 

0.07339

557 

0.01245

069 

0.07339

557 
LHS 

0.98534

627 

0.99179

774 

0.19992

959 

0.00746

016 

0.19992

959 

RHF 
0.95731
339 

0.97690
606 

0.02951
584 

0.04332
765 

0.02951
584 

RHF 
0.98682
726 

0.99310
342 

0.04148
482 

0.01229
703 

0.04148
482 

RHF 
0.99153
528 

0.99562
666 

0.22648
091 

0.00181
062 

0.22648
091 

RHN 
0.96369

2 

0.98057

818 

0.03153

369 

0.03657

686 

0.03153

369 
RHN 

0.98808

698 

0.99377

241 

0.03478

625 

0.01123

549 

0.03478

625 
RHN 

0.98263

13 

0.98957

693 

0.17738

651 

0.01226

052 

0.16488

651 

RHS 
0.94524
112 

0.97039
549 

0.04467
154 

0.05509
845 

0.04467
154 

RHS 
0.98671
675 

0.99306
046 

0.06145
487 

0.01171
924 

0.06145
487 

RHS 
0.99139
401 

0.99555
724 

0.22672
113 

0.00209
414 

0.21406
29 

LPF 
0.95678

003 

0.97689

944 

0.02885

721 

0.04372

551 

0.02885

721 
LPF 

0.99082

847 

0.99523

198 

0.02823

727 

0.00868

765 

0.02823

727 
LPF 

0.99152

836 

0.99558

237 

0.21429

292 

0.00323

139 

0.19367

436 

LPN 
0.95375
327 

0.97506
313 

0.03527
954 

0.04691
968 

0.03527
954 

LPN 
0.99180
405 

0.99570
664 

0.02831
68 

0.00760
468 

0.02831
68 

LPN 
0.99283
632 

0.99629
31 

0.17612
441 

0.00181
231 

0.14909
739 

LPS 
0.95678

119 

0.97699

14 

0.03822

965 

0.04344

612 

0.03822

965 
LPS 

0.99155

894 

0.99562

532 

0.04358

728 

0.00759

491 

0.04358

728 
LPS 

0.99062

831 

0.99495

116 

0.18969

212 

0.00474

206 

0.17858

101 

RPF 
0.94633
884 

0.97115
474 

0.03107
917 

0.05437
761 

0.03107
917 

RPF 
0.99031
528 

0.99498
51 

0.02765
891 

0.00920
545 

0.02765
891 

RPF 
0.99263
35 

0.99619
316 

0.19892
363 

0.00164
841 

0.15892
363 

RPN 
0.94539

075 

0.97053

521 

0.03729

241 

0.05531

901 

0.03729

241 
RPN 

0.99026

087 

0.99491

03 

0.03528

433 

0.00892

481 

0.03528

433 
RPN 

0.98612

486 

0.99164

37 

0.18623

141 

0.00870

4 

0.17289

808 

RPS 
0.95022
956 

0.97312
576 

0.04139
241 

0.05015
763 

0.04139
241 

RPS 
0.99185
715 

0.99576
096 

0.03915
885 

0.00712
121 

0.03915
885 

RPS 
0.99440
606 

0.99712
603 

0.16481
417 

0.00154
831 

0.16481
417 

Hand 

Avg 

0.95415

759 

0.97536

912 

0.03759

501 

0.04622

666 

0.03759

501 
Hand 

Avg 

0.98701

136 

0.99321

993 

0.04992

84 

0.01195

347 

0.04992

84 
Hand 

Avg 

0.98824

955 

0.99351

28 

0.21691

111 

0.00563

401 

0.20929

846 

Pocket 

Avg 

0.95154
561 

0.97396
161 

0.03535
507 

0.04899
093 

0.03535
507 

Pocket 

Avg 

0.99110
413 

0.99537
005 

0.03370
724 

0.00818
978 

0.03370
724 

Pocket 

Avg 

0.99135
957 

0.99529
825 

0.18834
644 

0.00361
441 

0.16966
477 

Right 

Avg 

0.95136

761 

0.97378

257 

0.03591

418 

0.04914

287 

0.03591

418 
Right 

Avg 

0.98901

072 

0.99426

544 

0.03997

134 

0.01008

387 

0.03997

134 
Right 

Avg 

0.98902

638 

0.99387

832 

0.16588

691 

0.00637

815 

0.15491

468 

Left 

Avg 

0.95433
558 

0.97554
816 

0.03703
59 

0.04736
752 

0.03703
59 

Left 

Avg 

0.98910
478 

0.99432
454 

0.04366
431 

0.00999
757 

0.04366
431 

Left 

Avg 

0.98982
162 

0.99452
377 

0.20849
793 

0.00457
075 

0.19528
553 

Final 

Avg 

0.95235

192 

0.97439

374 

0.03697

765 

0.04809

945 

0.03697

765 
Final 

Avg 

0.98905

775 

0.99429

499 

0.04181

782 

0.01007

163 

0.04181

782 
Final 

Avg 

0.98980

456 

0.99440

553 

0.20262

878 

0.00462

421 

0.18948

162 

TABLE III.  BB-MAS RESULTS 

 
ACC F1 FPR FNR EER 

HP DT 0.88989423 0.93963771 0.04713927 0.11153753 0.04713927 

PP DT 0.95189307 0.97445261 0.01750336 0.04881871 0.01750336 

HP RF 0.98119212 0.99026581 0.04277626 0.01829441 0.04277626 

PP RF 0.99037403 0.99503812 0.01046715 0.00962724 0.01046715 

HP XGB 0.9941452 0.99701005 0.19952382 0.00152353 0.19952382 

PP XGB 0.99547658 0.99766044 0.12219224 0.00198634 0.12219224 

TABLE IV.  BB-MAS VS MMUISD 

 
BB-MAS 

    
MMUISD 

    

 
ACC F1 FPR FNR EER ACC F1 FPR FNR EER 

HP DT 0.88989423 0.93963771 0.04713927 0.11153753 0.04713927 0.95415759 0.97536912 0.03759501 0.04622666 0.03759501 

PP DT 0.95189307 0.97445261 0.01750336 0.04881871 0.01750336 0.95154561 0.97396161 0.03535507 0.04899093 0.03535507 

HP RF 0.98119212 0.99026581 0.04277626 0.01829441 0.04277626 0.98701136 0.99321993 0.0499284 0.01195347 0.0499284 

PP RF 0.99037403 0.99503812 0.01046715 0.00962724 0.01046715 0.99110413 0.99537005 0.03370724 0.00818978 0.03370724 

HP XGB 0.9941452 0.99701005 0.19952382 0.00152353 0.19952382 0.98824955 0.9935128 0.21691111 0.00563401 0.20929846 

PPXGB 0.99547658 0.99766044 0.12219224 0.00198634 0.12219224 0.99135957 0.99529825 0.18834644 0.00361441 0.16966477 
 

V. DISCUSSION AND ANALYSIS 

The three chosen algorithms had very similar classification 
performance between the two datasets with slight differences 
in EER regarding device positioning. The performance of the 
models did not differ between the between positions and 

speeds with relation to the number of participants that collected 
in each position as described in Table I. Between both datasets, 
Random Forest was found to be the best performing algorithm 
overall with high accuracy rates paired with lower EER rates. 
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Fig. 2. Visualization difference in EER performance of Random Forest 

between different phone positions. 

The results for the MMUISD dataset have interesting 
implications on the effect of position and speed on model 
performance. As shown in Fig. 2, Random Forest EER 
generally increased as the user’s speed became slower. This 
could imply more variation in the data as the walk speed 
decreases, as opposed to a fast speed with a lower EER rate. A 
similar pattern was found in the Decision Tree model. The 
XGBoost did not follow this pattern as it had more varied error 
rates. The pocket position achieved generally better results 
overall compared to the hand position with all algorithms. This 
could imply that keeping the device closer to the body results 
in more stability and less variation and noise in the signal 
compared to holding the device in the hand. The difference in 
performance was seen more prominently with Random Forest 
and XGBoost compared to Decision Tree. For Random Forest, 

the EER was 3.37 % in the pocket compared to 4.99% in the 
hand. Model accuracy and F1 score did not differ significantly 
between the right and left positions but EER increased slightly 
with the left-hand position. 

The BB-MAS dataset had nearly identical results to 
MMUISD as shown in Table IV. Once again, Pocket Phone 
position achieved better accuracy scores and EER values with 
all algorithms compared to the hand phone position, 
emphasizing the possibility that having the device closer to the 
body provides a more stable and predictable signal for the 
models. Compared to the MMUISD dataset, with BB-MAS the 
pocket position had better error results with an average of 
1.04% EER with Random Forest. 

In Table V, results with the MMUISD and BB-MAS 
datasets have been compared with recent reviewed studies 
utilizing datasets of similar participant size [10, 11, 12, 13, 14]. 
The comparative studies utilized well-known public datasets 
such as IDNet and WhuGait with various LSTM models. It 
was observed that the produced results outperformed in 
average accuracy rates with Random Forest. Most notably, 
Random Forest trained on MMUISD dataset achieved one of 
the highest accuracies overall of 0.9911 on similar and higher 
levels than comparative studies using high performance DL 
models such as LSTM and CNN. The accuracies with RF were 
also achieved with suitably low error rates. This is indicative 
that ML models still have the potential to meet and even 
exceed the authentication performance of DL models with 
careful selection of parameters and quality datasets. 

TABLE V.  COMPARATIVE ANALYSIS 

Dataset MMUISD 
 

BB-MAS 
 

IDNet 
  

WhuGait 
 

Kaggle  

Model RF DT RF DT ContAuth LSTM [10] CNN+LSTM [11] HDLN LSTM [12] HDLN LSTM [12] CNN+LSTM [13] 
CNN 

[14] 

RF 

[14] 

Accuracy 0.99110413 0.95415759 0.99037403 95189307 0.97 0.977 0.9965 0.9789 0.9375 0.9882 0.9551 

 

VI. LIMITATIONS AND FUTURE WORK 

While gait authentication demonstrates potential as a form 
of behavioral biometrics authentication for mobile devices, it 
faces limitations that prevent it from logically being used as a 
sole security method. Gait authentication has a downside in 
that it requires an individual to move to collect samples. It also 
faces various obstacles in behavioral variation related to the 
surrounding environment, such as stairs, hills, and user health 
[4]. Thus, it is recommended that current gait dynamics 
authentication methods are used in low security applications as 
a supporting security method in a multimodal system [4]. 

One limitation acknowledged in this study would be that 
the model training strategy utilized is a simplified version that 
uses only time-domain features extracted directly from the 
accelerometer and gyroscope sensors and segmented with fixed 
time intervals. Nowadays, many gait studies are using more 
advanced methods of characterizing an individual’s gait 
walking pattern [2]. For example, in study [19], the signal was 
segmented according to the gait cycle instead of a fixed time 
interval. This was done by using an autocorrelation algorithm 
to detect the points in the signal at which a heel touch can be 
identified with the Z-axis signal magnitude. Then, the signal 
was segmented based on these points. In study [20], a similar 

strategy was used in which gait cycle segmentation was 
performed by identifying accelerometer signal change points 
with autocorrelation coefficients and segmenting based on the 
identified patterns. From there, a feature vector was extracted 
from each pattern in time and frequency domains. Due to 
complexity and time constraints, this study did not utilize these 
strategies. In the future, it could be beneficial to the expansion 
of research in gait dynamics authentication if the code for some 
of these strategies was documented and made accessible for 
public use and analysis. 

Another limitation in this study would be the construction 
of the XGBoost model. Despite attempts at parameter 
manipulation and feature analysis, the XGBoost model 
remained somewhat overfit, resulting in high accuracy at the 
expense of suitable EER rates. For future research, the 
XGBoost is not recommended for use with these datasets 
unless further steps are taken to properly avoid overfitting. 

For today’s ML and DL models, it is considered best 
practice to produce a model that can properly represent a 
diverse population. The datasets chosen for this study, while 
including a greater number of individuals than used in previous 
datasets historically, still included bias towards certain groups. 
For example, both datasets included a larger number of male 
participants than female. While this study did not test for how 
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gender bias affected model performance on different 
individuals, this could be analyzed in future work. Another 
possible form of bias could be the balance of right-handed and 
left-handed individuals. In the demographic file of the BB-
MAS dataset it can be found that nearly all participants are 
listed as right-handed. 

As established in the background section of this paper, 
while ML models have been found to perform well with gait 
dynamics authentication, DL models generally outperform by 
great margins in both accuracy and error rates. With the results 
of this study, it was found that ML models such as Random 
Forest can still match and exceed the performance accuracy of 
recent studies using DL algorithms while maintaining 
acceptable error rates. For future work, the next direction of 
study would be to analyze and compare the performance of DL 
models such as CNN or LSTM with ML models, using the 
selected or similar gait datasets. Current trends in research have 
expanded from ML into the potentials of DL, thus it is 
encouraged that gait authentication should be further 
investigated with DL algorithms to advance potential for 
security. As devices have progressively become mobile in 
nature, it is necessary to take advantage of motion-sensing in 
security applications and pursue study in their advancements 
with both ML and DL algorithms. 

VII. CONCLUSION 

From the results of this study, it can be concluded that both 
datasets perform well with machine learning algorithms to 
classify gait walking characteristics. The MMUISD dataset 
may be preferable in a study that aims to observe the effects of 
different speeds or positions on gait classification performance. 
The BB-MAS dataset could also be preferable in a study that 
aims to identify a broader context for behavioral biometrics 
security including movement and touch interactions across 
different devices and environments. 

After analyzing classifier performance, Random Forest was 
recognized as an optimal ML classifier for gait dynamics 
classification capable of achieving similar results to DL 
models. While XGBoost achieved the highest average accuracy 
and Decision Tree achieved the lowest average EER rates 
between datasets, Random Forest resulted in the best overall 
metrics balancing both categories. In the pocket position, 
Random Forest had an average accuracy of 99.03% with the 
BB-MAS dataset and 99.11% with the MMUISD dataset. 
Random Forest also achieved optimal EER rates below 5% 
with 1.04% in the pocket position. XGBoost could possibly be 
manipulated further to combat overfitting and achieve lower 
error rates. 

Through compared analysis of the performance in different 
scenarios, it has been observed that position and speed can 
influence classifier performance. In both datasets and all 
algorithms, placing the device in the pocket position had better 
accuracy and EER scores compared to the hand position. This 
could imply that keeping the mobile device in a position closer 
and secured to the body results in motion signals with more 
stability and less variation. It was also observed that as the 
walking speed increased, EER rates increased as well. This 
could suggest that slower walking speeds can result in more 
variation in the gait cycle signal, resulting in less favorable 

algorithm performance. While noticeable, these differences did 
not differ too significantly, demonstrating the potential for gait 
dynamics authentication in real world scenarios.   

Regardless of these results, in the real world, an individual 
will not be confined to a set walking speed or corridor. It is 
recommended that future studies endeavor to build datasets 
with more variation in position and activity to allow for the 
construction of feasible gait authentication models in real 
world contexts. It is hoped that this study can provide 
worthwhile information to contribute to the advancement of 
behavioral biometrics mobile authentication models. 
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