
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 3, 2024

273 | P a g e

www.ijacsa.thesai.org

Design and Implementation of a Real-Time Image

Processing System Based on Sobel Edge Detection

using Model-based Design Methods

Taoufik Saidani1*, Refka Ghodhbani2, Mohamed Ben Ammar3, Marouan Kouki4, Mohammad H Algarni5,

Yahia Said6, Amani Kachoukh7, Amjad A. Alsuwaylimi8, Albia Maqbool9, Eman H. Abd-Elkawy10

Department of Computer Sciences-Faculty of Computing and Information Technology,

Northern Border University, Rafha, Saudi Arabia1, 2, 9, 10

Department of Information Systems-Faculty of Computing and Information Technology,

Northern Border University, Rafha, Saudi Arabia3, 4, 7

Department of Computer Science, Al-Baha University, Saudi Arabia5

Department of Electrical Engineering-College of Engineering, Northern Border University, Saudi Arabia6

Department of Information Technology-Faculty of Computing and Information Technology,

Northern Border University, Rafha 91911, Saudi Arabia8

Abstract—Image processing and computer vision applications

often use the Sobel edge detection technique in order to discover

corners in input photographs. This is done in order to improve

accuracy and efficiency. For the great majority of today's image

processing applications, real-time implementation of image

processing techniques like Sobel edge detection in hardware

devices like field-programmable gate arrays (FPGAs) is required.

Sobel edge detection is only one example. The use of FPGAs

makes it feasible to have a quicker algorithmic throughput,

which is required in order to match real-time speeds or in

circumstances when it is critical to have faster data rates. The

results of this study allowed for the Sobel edge detection

approach to be applied in a manner that was not only speedy but

also space-efficient. For the purpose of actually putting the

recommended implementation into action, a one-of-a-kind high-

level synthesis (HLS) design approach for intermediate data

nodes that is based on application-specific bit widths was used.

The high-level simulation code known as register transfer level

(RTL) was generated by using the MATLAB HDL coder for

HLS. The code written in hardware description language (HDL)

that was produced was implemented on a Xilinx ZedBoard with

the aid of the Vivado software, and it was tested in real time with

the assistance of an input video stream.

Keywords—Image processing; sobel edge detection; high level

synthesis; model based design; Zynq7000 MATLAB HDL coder

I. INTRODUCTION

The evolving requirements and technological
advancements have led to a growing demand for real-time
image processing systems, widely utilized across several
industries. Real-time embedded system designs prioritize
completing tasks within a certain timeframe overachieving
high speed. These systems are commonly utilized in driving
support systems, driverless vehicles, flight control, security,
and military systems. Predictability characteristics and time
stability are essential requirements for real-time systems. [1].

The majority of contemporary image processing and
computer vision systems still struggle with the basic challenge

of identifying the area of interest in a picture. This is necessary
for a wide range of applications, including advanced driving
assistance systems (ADAS), which identify things like
pedestrians, traffic signals, and blind spots; lane departure
warning systems; video surveillance applications; and
simultaneous localization and mapping (SLAM) [1]. One
example of this kind of feature in a picture is a corner, which is
the place at where two distinct edges meet. Image corner
detection often involves the employment of many algorithms.
The Moravec method [2], the Susan algorithm, and the Sobel
edge detector are just a few examples of the kinds of corner
extraction techniques that see regular application. The Sobel
edge detector is one of the corner detecting algorithms that has
the highest level of accuracy. The method is quite
computationally demanding, despite the fact that its operation
is remarkably simple. It is frequently utilized in systems that
demand data processing in real time; as a result, traditional
CPUs are unable to fulfill the requirements of these systems.
CPUs are only useful when there are big amounts of data
involved or when we need to execute calculations using
floating point numbers. As a result, field-programmable gate
arrays, often known as FPGAs, are great candidates for
implementing such algorithms in real time as a result of their
rapid processing rates and parallel implementations. It's
possible that corner detection will need to be developed on the
FPGA in addition to the other algorithms if you're going to be
using it for sophisticated computations. Some examples are
non-maxima suppression, matrix computation, and
triangulation [3]. Other examples include matching by utilizing
the sum of absolute differences. As a result of this prerequisite,
it is essential to enhance the effectiveness as well as the space
needs of the FPGA implementations for these algorithms [4].

A large number of academics have recently released
original work on innovative implementations of the Efficient
implementation of Sobel edge detection on FPGAs in terms of
both space and time. Liu and colleagues proposed a method
capable of processing RGB565 video at 640x480 resolution
with a frame rate of 154 frames per second. Liu and colleagues

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 3, 2024

274 | P a g e

www.ijacsa.thesai.org

implemented the idea using a Xilinx ZedBoard. Xu et al. [5]
introduced a modified approach that incorporates a pre-filter
and use a simplified matrix instead of the original Gaussian
kernel matrix. The researchers devised this novel algorithm. As
a result, the design complexity was reduced, allowing robotics
applications utilizing a Spartan 3 FPGA to efficiently utilize
their hardware resources. In the experiments, a 256 x 256 pixel
input picture was processed in 2.3 milliseconds. Chao et al. [6]
utilized the Sobel edge detector to simplify the maximum
suppression technique. They achieved a data rate of 144 frames
per second in their simulations with a design specifically
tailored for ZedBoard. Research by Lee and colleagues [7],
who created a modified Sobel edge detector, focused on breast
cancer identification utilizing MRI and x-ray images. An
automated method was employed for adaptive radius
suppression to mitigate corner clustering. They were thus able
to prevent the loss of important corners that oversuppression
would have brought about. John and his colleagues devised a
universal picture feature extractor technique and implemented
it on a Cyclone 4 FPGA for real-time processing. They
succeeded in obtaining a frame rate of 70 frames per second as
a consequence. Hisham and colleagues developed a self-
adaptive system on a chip for the Sobel edge detection
technique using dynamic partial reconfiguration. Their solution
consumed less electricity and had a little discernible effect on
performance [8, 9, 10].

This article presents a real time implementation of the
Sobel edge detector on a Xilinx ZedBoard and demonstrates
that the implementation is better to earlier implementations in
terms of performance and area utilization on the FPGA. The
study also offers a real time implementation of the Sobel edge
detector on a Xilinx ZedBoard. The design was created with
the use of an innovative high-level design process that
synthesizes the design using intermediate signal widths that are
restricted based on the application (the input stimuli). The
remaining portions of this document are structured as follows:
In the next section, "Section II," you will be introduced to
high-level synthesis. The Sobel edge detector's internal
workings are broken out in detail in Section III. The technique
that was employed in the suggested design is broken forth in
Section IV. The results of the simulations and synthesis are
reported in Section V, along with a comparison to the findings
that were uncovered by other researchers. The final
observations may be found in Section VI.

II. HIGH-LEVEL SYNTHESIS BASED ON MODEL-BASED

DESIGN

A technique that's gaining popularity is called high-level
synthesis, or HLS, and it allows designers to continuously
validate their designs at every stage of the design process while
describing behaviors at high abstraction levels. Examples of
HLS utilities include Vivado HLS, MATLAB HDL Coder, and

various more open-source tools. These are frequently
employed by researchers and digital designers to develop and
run algorithms for a wide range of applications including fields
like deep learning, neural networks, image processing,
communications, and aerospace [11]. The code written on the
skin can be simplified by a factor of eight using HLS
technology. It enables the reuse of behavioral intellectual
property in various projects and allows validation teams to
employ abstraction-level modeling methods like transaction-
level modeling [12].

Most modern chip systems utilize integrated CPUs. The
microprocessors digital signal processors (DSPs), custom
logic, and memory must all coexist on a single chip. In order
for this to happen, the design process must include the creation
of additional software or firmware. An automated HLS method
enables designers and architects to explore different
algorithmic and implementation options based on a single
functional specification, thereby investigating space, power,
and performance tradeoffs [13].

Because of recent developments in register transfer level
(RTL) synthesis methods, the industrial deployment of high-
level synthesis (HLS) tools is becoming an increasingly viable
option. Companies that are considered to be industry leaders in
semiconductor design, such as IBM [13], Motorola [14],
Philips [15], and Siemens [16], have created their own
proprietary tools. Major EDA (Electronic Design Automation)
suppliers have also begun to commercialize various HLS
products. For instance, Synopsys developed a tool known as
the "Behavioral Compiler" [17] in 1995. This tool generates
RTL implementations from behavioral HDL code and links to
tools farther down the production line. Tools such as "Catapult
HLS" by Mentor Graphics [18] and "Stratus High Level
Synthesis" by Cadence [19] are examples of similar programs.
A proposed methodology of a typical flow for HLS in VLSI
designs based on MATLAB Simulink HDL Coder is shown in
Fig. 1.

The industrial deployment of high-level synthesis (HLS)
technology has become more realistic as a result of
advancements in record transfer level (RTL) synthesis
methods. Specialized tools have been developed by major
semiconductor design firms such as IBM [12], Motorola [14],
Philips [15], and Siemens [13]. Electronic Design Automation
(EDA) industry leaders have also started selling High-Level
Synthesis (HLS) solutions. For example, in 1995 Synopsys
created the "Behavioral Compiler" tool [15], which generates
RTL programs from behavioral HDL code and links to
secondary tools. This was accomplished via the use of
behavioral HDL. The "Catapult HLS" [18] and "Stratus High
Level Synthesis" [19] tools produced by Mentor Graphics and
Cadence respectively are similarly comparable. The HLS flow
that is often used in VLSI is shown in Fig. 1.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 3, 2024

275 | P a g e

www.ijacsa.thesai.org

Fig. 1. High level synthesis flow based on MBD.

III. SOBEL EDGE DETECTOR

The Sobel operator is utilized in the processing of images
and computer vision, namely in edge recognition algorithms to
emphasize edges in a picture. It is named after Irwin Sobel and
Gary Feldman. Sobel and Feldman proposed a proposal of a
"Isotropic 3x3 Image Gradient Operator." It is a discrete
operator used to produce gradient estimations of the intensity
function of an image. Every point within the image represents a
gradient vector produced by the Sobel operator. The Sobel
operator is computationally efficient since it convolves the
image in both vertical and horizontal axes using a small,
separable, integer-valued filter. The color gradient estimate it
produces lacks precision, particularly for high-frequency
variations in the image.

Sobel is a primary edge detection operator that relies on

gradients. On an image, it applies a spatial gradient analysis in
two dimensions. When trying to estimate derivatives, the
operator convolves the original image with two 3x3 kernels.
One kernel is used for horizontal alterations, while the other is
used for vertical alterations. Each point includes estimations of
the both vertical and horizontal derivatives. Here are the
kernels:Rotating a kernel through 90 degrees yields a different
kernel, as seen in Fig. 1. Gx is used to detect horizontal edges,
while Gy is used to detect vertical edges. The two gradients Gx
and Gy are utilized to calculate the orientation and magnitude
of the edge at a certain location in the image. By combining
gradient approximations, an absolute gradient magnitude may

be determined at every location in the image. Just square the
total value of the squares of the horizontal and vertical
components to get the gradient's magnitude: G=

√(𝐺𝑥2 + 𝐺𝑦2)

IV. DESIGN METHODOLOGY

The Full Sobel edge detector (see Fig. 2) for a streaming
video was created in MATLAB/Simulink using HDL coder
and the required toolbox for modeling. For this experiment
using 240 × 320 x 3 input video frames representing each
color. Since the HDL implementation is pixel-based rather than
frame-based, the input frames need to be transformed to pixels
before each pixel can be entered into the project on a clock
cycle. Both the Sobel method edge finder and the Simulink
library block were simultaneously utilized to process identical
input images from their respective hardware implementations.
The results of the two were subsequently evaluated against
each other.

The length of the video stream, as well as the absolute
minimums and maximums for the project's inputs, outputs, and
intermediate nodes, were all recorded throughout the period
that the simulation ran for, which was one hundred seconds.
Later simulation tests were expanded to incorporate this basic
and maximum database in order to take into account any and
all possible visual signal inputs. After that, the amplitude of
each and every signal was determined by taking the range of
values for each input, output, and intermediate node into
account.

The RTL was then built by the HLS tool with the
limitations for all of the data nodes as well as the important
inputs and outputs being changed accordingly. Following that
step, the optimized RTL was programmed into the FPGA.
Because the FPGA output is expressed in pixels, MATLAB
was used to convert it to a picture. The finished product
consisted of a picture with an acute angle superimposed over

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 3, 2024

276 | P a g e

www.ijacsa.thesai.org

the original. The total approach, which may be seen shown in
Fig. 3, consists of HDL code, behavioral implementation, and a
common picture source. As shown in Fig. 3, latency
components have been added to the input and behavior display
channels in order to compensate for the delay caused by the
actual hardware implementation of the loop that is executing
on the FPGA.

The input picture, the image produced by the MATLAB
model, and the output produced by the HDL FPGA program
are all shown in Figure 4. As can be seen in the picture, the
input image source, the MATLAB behavior model, and the
HDL FPGA model all functioned autonomously to process
various images taken from the input video stream.

Fig. 2. Sobel edge system: full system.

Fig. 3. HDL coder model for Sobel edge detector system.

V. DESIGN SYNTHESIS AND RESULTS

Simulations of designs on Simulink After completion, each
filter system is separately converted to HDL code. This process
is Matlab/Simulink HDL Coder and HDL workflow advisor
with add-on realized through. HDL workflow consultant,
Convert systems on Matlab and Simulink to HDL code make
the necessary settings during the conversion process. It
provides an interface. After this stage, a standard system
converted to IP block is in Vivado Suite Camera reference with
IP integrating system attached to the design. Thus, filter
systems were implemented sequentially on the Zedboard. More
In later studies, the system will be less on-chip for space
coverage and simplification of the software. The designed IP
blocks are combined on Simulink was redesigned.

Accordingly, the grayscale conversion and edge detection
systems are combined into a single IP block. The median and
sharpening filters formed the second IP block. Necessary
interconnections were made again and the system was
synthesized again. The block design of the final implemented
system on Vivado Suite is given in Fig. 4. IP blocks designed
in the study are marked on the diagram.

A. Simulation Results

In order to simulate the resulting VHDL RTL code with a
testbed that could not be synthesized, the Vivado xSim
software was utilized. Figure 5 illustrates the results of the
functional simulation of the Vivado xSim simulator. As can be
seen in the picture, the reference pixel values are very
comparable to the pixel output generated by the technique that
was advised. In addition to this, they were the same as the
findings of the high-level MATLAB simulation that was
carried out using the model with the ideal bit-width.

When the output photographs from both channels were
compared to the same input image, this was confirmed. In this
investigation, the quantization error that was brought about by
choosing narrower "optimum" signal widths was evaluated and
compared to the MATLAB-based double-precision model.
This was accomplished by using the "FPGA in the loop" co-
simulation feature that is available on the MathWorks HDL
verifier. According to the results of the root mean square test
(RMS), the error in the quantization was less than 1%.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 3, 2024

277 | P a g e

www.ijacsa.thesai.org

Fig. 4. RTL design for full edge detector.

Fig. 5. HDL simulation results (Sobel edge detector).

B. Synthesis Results

Each filter system was converted to HDL code
independently when it was determined that the simulations of
the designs on simulink were successful. This method
improves the functionality of the Matlab/Simulink plugins
known as HDL Coder and HDL business articles. A statement
that indicates that HDL work instructions have been fulfilled is
called a fulfillment of HDL work instructions statement. This
statement enables the necessary settings to be made during the
process of converting systems designed in Matlab and
Simulink to HDL code. After this step, the system was changed
to a normal IP gateway, and the IP integrating system in
Vivado Suite was used to make the connection between the
gateway and the camera reference design. On the Zedboard, the
filtering processes were thus carried out in a sequential fashion.
The following areas have been modified by combining IP
blocks on Simulink, which were created to take up less room
on the system chip and to simplify the software. This was done
in order to improve performance.

As a consequence of this, the greyscale conversion system
and the edge detection system have been merged into a single
IP block. The second IP block was made up of the median filter
and the sharpening filter. Necessary interconnections were
made again and the system was synthesized again. The IP
blocks that were created throughout the course of the research
can be seen noted on the figure representing the block design
of the final implemented system on Vivado 2017.4 Suite. Table
I present the resources results for the proposed design.

TABLE I. PROPOSED SOBEL EDGE DETECTOR RESOURCES RESULTS

Resources Utilization Available % Utilization

LUT 5300 53200 10%

LUT RAM 180 17400 1%

Flip-Flops 7500 106400 7%

BRAM 8 140 6%

DSP 11 220 5%

IOS 100 200 50%

BUFG 1 32 3.1%

The Vivado synthesis tool reported a total power of 0.330
W, which was comprised of 0.210 W of dynamic power and
0.120 W of static power. In addition to that, it incorporates a
whole host of other optimization strategies, such as high-level
synthesis toolkits, resource sharing, and pipeline design. These
can be used to improve the results that were mentioned above;
however, the scope of this study does not allow for such
optimization to be performed.

VI. CONCLUSION

In the process of development is a high-speed, optimal
(weak surface), implementation of the Sobel edge-detection
algorithm that will be suitable for real-time deployment on the
FPGA. The conception was made possible with the use of a
ground-breaking conception process known as HLS. This
approach restricts intermediate noeuds and the major points of
conception to absolute minimums and maximums for each
noeud. The RTL for the method was developed on a Xilinx
ZedBoard by using an input time video stream with a
resolution of 240 by 320 pixels and 8 bit color inputs.

In order to do a functional evaluation of the RTL idea, the
Xilinx Vivado xSim simulator was used. We found that our
HLS technique results in quantification mistakes that are less
than 1% of the total. The findings of the synthesis indicate that
our implementation is superior to comparable existing ideas in
terms of performance. As a consequence of this, the approach
is especially well-suited for FPGA-based applications that call
for real-time image processing. Although the method was

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 3, 2024

278 | P a g e

www.ijacsa.thesai.org

tested using the MATLAB HDL codeur procedure with
connections to Xilinx Zedboard, it can also be used with other
devices and (technology-neutral) FPGA cables.

In spite of the absence of evidence, we are of the opinion
that the design process used in this methodology would result
in improved results when applied to ASIC synthesis. Future
research will involve, in addition to the manner of
implementation that was recommended, the optimization of
speed, area, and power consumption utilizing optimization
approaches given by high-level synthesis tool vendors such as
MathWorks, Xilinx, Mentor, and Cadence. In the not too
distant future, one of our goals is to broaden the scope of this
study to encompass ASIC design.

ACKNOWLEDGMENT

The authors extend their appreciation to the Deanship of
Scientific Research at Northern Border University, Arar, KSA
for funding this research work through the project number
“NBU-FFR-2024-2225-02”.

REFERENCES

[1] V.H. Schulz, F.G. Bombardelli, E. Todt, A Sobel edge detector
implementation in SoC-FPGA for visual SLAM, in: F. Santos Osorio, ´
R. Sales Gonçalves (Eds.), Robotics. SBR 2016, LARS 2016.
Communications in Computer and Information Science 619, Springer,
Cham., 2016.

[2] C. Cabani, Implementation of an Affine-Invariant Feature Detector in
FieldProgrammable Gate Arrays, University of Toronto, 2006, pp. 5–13.

[3] M. Komorkiewicz, T. Kryjak, K. Chuchacz-Kowalczyk, P. Skruch, M.
Gorgon, ´ FPGA based system for real time structure from motion
computation, in: 2015 Conference on Design and Architectures for
Signal and Image Processing (DASIP), Krakow, 2015, pp. 1–7,
https://doi.org/10.1109/DASIP.2015.7367241.

[4] S. Liu, Real time implementation of Sobel edge detection system based
on FPGA, in: 2017 IEEE International Conference on Real time
Computing and Robotics (RCAR), Okinawa, 2017, pp. 339–343,
https://doi.org/10.1109/ RCAR.2017.8311884.

[5] C. Xu, B. Yunshan, Implementation of Sobel edge matching based on
FPGA, in: 2017 6th International Conference on Energy and
Environmental Protection (ICEEP 2017)., Atlantis Press, 2017. [6] T.L.
Chao, H.W. Kin, An efficient FPGA implementation of the Sobel edge
feature detector, in: 2015 14th IAPR International Conference on
Machine Vision Applications (MVA)., IEEE, 2015.

[6] C.Y. Lee, H.J. Wang, C.M. Chen, C.C. Chuang, Y.C. Chang, N.S. Chou,
A modified Sobel edge detection for breast IR image, Math. Probl. Eng.
2014 (2014).

[7] J. Vourvoulakis, J. Kalomiros, J. Lygouras, Fully pipelined FPGA-based
architecture for real-time SIFT extraction, Microprocess. Microsyst. 40
(2016) 53–73.

[8] H. Ahmed, O. Sidek, An energy-aware self-adaptive System-on-Chip
architecture for real-time Sobel edge detection with multi-resolution
support, Microprocess. Microsyst. 49 (2017) 164–178.

[9] Xilinx, (2020) Vivado design suite: high-level synthesis.
https://www.xilinx.com/
support/documentation/sw_manuals/xilinx2020_3/ug902-vivado-high-
levelsynthesis.pdf (accessed 12 Sep, 2020).

[10] MathWorks HDL coder. (2021)
https://www.mathworks.com/products/hdl-coder. html, (accessed 14
Aug, 2021).

[11] J. Cong, B. Liu, S. Neuendorffer, J. Noguera, K. Vissers, Z. Zhang,
High-level synthesis for FPGAs: from prototyping to deployment, IEEE
T. Comput. Aid. D 30 (2011) 473–491.
https://doi.org/10.1109/TCAD.2011.211059.

[12] R.A. Bergamaschi, R.A. O’Connor, L. Stok, M.Z. Moricz, S. Prakash,
A. Kuehlmann, D.S. Rao, High-level synthesis in an industrial
environment, IBM J. Res. Develop. 39 (1995) 131–148.
https://doi.org/10.1147/rd.391.0131.

[13] Badawi A, Bilal M. High-Level Synthesis of Online K-Means Clustering
Hardware for a Real-Time Image Processing Pipeline. Journal of
Imaging. 2019; 5(3):38. https://doi.org/10.3390/jimaging5030038

[14] Ahmed Alhomoud, “Real Time FPGA Implementation of a High Speed
for Video Encryption and Decryption System with High Level Synthesis
Tools” International Journal of Advanced Computer Science and
Applications(IJACSA),15(1),2024. http://dx.doi.org/10.14569/IJACSA.
2024.0150172

[15] J. Biesenack, M. Koster, A. Langmaier, S. Ledeux, S. Marz, M. Payer,
M. Pilsl, S. Rumler, H. Soukup, N. Wehn, P. Duzy, The Siemens high-
level synthesis system CALLAS, IEEE Trans. Very Large Scale Integr.
Syst. 1 (1993) 244–253. https://doi. org/10.1109/92.238438.

[16] Ghada Elsayed; Somaya Ismail Kayed. "A Comparative Study between
MATLAB HDL Coder and VHDL for FPGAs Design and
implementation". Journal of International Society for Science and
Engineering, 4, 4, 2022, 92-98. doi: 10.21608/jisse.2022.136645.1056.

[17] Catapult H.L.S., (2019) https://www.mentor.com/hls-lp/catapult-high-
level-synth esis/.

[18] Stratus H.L.S., (2019) https://www.cadence.com/content/cadence-
www/global /en_US/home/tools/digital-design-and-
signoff/synthesis/stratus-high-level -synthesis.html.

[19] MathWorks HDL Verifier, (2019)
https://in.mathworks.com/products/hdl-verifier. html.

https://doi.org/10.1109/DASIP.2015.7367241
https://doi.org/10.1109/TCAD.2011.211059
https://doi.org/10.1147/rd.391.0131
https://dx.doi.org/10.14569/IJACSA.2024.0150172
https://dx.doi.org/10.14569/IJACSA.2024.0150172

