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Abstract—Image processing and computer vision applications 

often use the Sobel edge detection technique in order to discover 

corners in input photographs. This is done in order to improve 

accuracy and efficiency. For the great majority of today's image 

processing applications, real-time implementation of image 

processing techniques like Sobel edge detection in hardware 

devices like field-programmable gate arrays (FPGAs) is required. 

Sobel edge detection is only one example. The use of FPGAs 

makes it feasible to have a quicker algorithmic throughput, 

which is required in order to match real-time speeds or in 

circumstances when it is critical to have faster data rates. The 

results of this study allowed for the Sobel edge detection 

approach to be applied in a manner that was not only speedy but 

also space-efficient. For the purpose of actually putting the 

recommended implementation into action, a one-of-a-kind high-

level synthesis (HLS) design approach for intermediate data 

nodes that is based on application-specific bit widths was used. 

The high-level simulation code known as register transfer level 

(RTL) was generated by using the MATLAB HDL coder for 

HLS. The code written in hardware description language (HDL) 

that was produced was implemented on a Xilinx ZedBoard with 

the aid of the Vivado software, and it was tested in real time with 

the assistance of an input video stream.  

Keywords—Image processing; sobel edge detection; high level 

synthesis; model based design; Zynq7000 MATLAB HDL coder 

I. INTRODUCTION 

The evolving requirements and technological 
advancements have led to a growing demand for real-time 
image processing systems, widely utilized across several 
industries. Real-time embedded system designs prioritize 
completing tasks within a certain timeframe overachieving 
high speed. These systems are commonly utilized in driving 
support systems, driverless vehicles, flight control, security, 
and military systems. Predictability characteristics and time 
stability are essential requirements for real-time systems. [1]. 

The majority of contemporary image processing and 
computer vision systems still struggle with the basic challenge 

of identifying the area of interest in a picture. This is necessary 
for a wide range of applications, including advanced driving 
assistance systems (ADAS), which identify things like 
pedestrians, traffic signals, and blind spots; lane departure 
warning systems; video surveillance applications; and 
simultaneous localization and mapping (SLAM) [1]. One 
example of this kind of feature in a picture is a corner, which is 
the place at where two distinct edges meet. Image corner 
detection often involves the employment of many algorithms. 
The Moravec method [2], the Susan algorithm, and the Sobel 
edge detector are just a few examples of the kinds of corner 
extraction techniques that see regular application. The Sobel 
edge detector is one of the corner detecting algorithms that has 
the highest level of accuracy. The method is quite 
computationally demanding, despite the fact that its operation 
is remarkably simple. It is frequently utilized in systems that 
demand data processing in real time; as a result, traditional 
CPUs are unable to fulfill the requirements of these systems. 
CPUs are only useful when there are big amounts of data 
involved or when we need to execute calculations using 
floating point numbers. As a result, field-programmable gate 
arrays, often known as FPGAs, are great candidates for 
implementing such algorithms in real time as a result of their 
rapid processing rates and parallel implementations. It's 
possible that corner detection will need to be developed on the 
FPGA in addition to the other algorithms if you're going to be 
using it for sophisticated computations. Some examples are 
non-maxima suppression, matrix computation, and 
triangulation [3]. Other examples include matching by utilizing 
the sum of absolute differences. As a result of this prerequisite, 
it is essential to enhance the effectiveness as well as the space 
needs of the FPGA implementations for these algorithms [4]. 

A large number of academics have recently released 
original work on innovative implementations of the Efficient 
implementation of Sobel edge detection on FPGAs in terms of 
both space and time. Liu and colleagues proposed a method 
capable of processing RGB565 video at 640x480 resolution 
with a frame rate of 154 frames per second. Liu and colleagues 
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implemented the idea using a Xilinx ZedBoard. Xu et al. [5] 
introduced a modified approach that incorporates a pre-filter 
and use a simplified matrix instead of the original Gaussian 
kernel matrix. The researchers devised this novel algorithm. As 
a result, the design complexity was reduced, allowing robotics 
applications utilizing a Spartan 3 FPGA to efficiently utilize 
their hardware resources. In the experiments, a 256 x 256 pixel 
input picture was processed in 2.3 milliseconds. Chao et al. [6] 
utilized the Sobel edge detector to simplify the maximum 
suppression technique. They achieved a data rate of 144 frames 
per second in their simulations with a design specifically 
tailored for ZedBoard. Research by Lee and colleagues [7], 
who created a modified Sobel edge detector, focused on breast 
cancer identification utilizing MRI and x-ray images. An 
automated method was employed for adaptive radius 
suppression to mitigate corner clustering. They were thus able 
to prevent the loss of important corners that oversuppression 
would have brought about. John and his colleagues devised a 
universal picture feature extractor technique and implemented 
it on a Cyclone 4 FPGA for real-time processing. They 
succeeded in obtaining a frame rate of 70 frames per second as 
a consequence. Hisham and colleagues developed a self-
adaptive system on a chip for the Sobel edge detection 
technique using dynamic partial reconfiguration. Their solution 
consumed less electricity and had a little discernible effect on 
performance [8, 9, 10]. 

This article presents a real time implementation of the 
Sobel edge detector on a Xilinx ZedBoard and demonstrates 
that the implementation is better to earlier implementations in 
terms of performance and area utilization on the FPGA. The 
study also offers a real time implementation of the Sobel edge 
detector on a Xilinx ZedBoard. The design was created with 
the use of an innovative high-level design process that 
synthesizes the design using intermediate signal widths that are 
restricted based on the application (the input stimuli). The 
remaining portions of this document are structured as follows: 
In the next section, "Section II," you will be introduced to 
high-level synthesis. The Sobel edge detector's internal 
workings are broken out in detail in Section III. The technique 
that was employed in the suggested design is broken forth in 
Section IV. The results of the simulations and synthesis are 
reported in Section V, along with a comparison to the findings 
that were uncovered by other researchers. The final 
observations may be found in Section VI. 

II. HIGH-LEVEL SYNTHESIS BASED ON MODEL-BASED 

DESIGN 

A technique that's gaining popularity is called high-level 
synthesis, or HLS, and it allows designers to continuously 
validate their designs at every stage of the design process while 
describing behaviors at high abstraction levels. Examples of 
HLS utilities include Vivado HLS, MATLAB HDL Coder, and 

various more open-source tools. These are frequently 
employed by researchers and digital designers to develop and 
run algorithms for a wide range of applications including fields 
like deep learning, neural networks, image processing, 
communications, and aerospace [11]. The code written on the 
skin can be simplified by a factor of eight using HLS 
technology. It enables the reuse of behavioral intellectual 
property in various projects and allows validation teams to 
employ abstraction-level modeling methods like transaction-
level modeling [12]. 

Most modern chip systems utilize integrated CPUs. The 
microprocessors digital signal processors (DSPs), custom 
logic, and memory must all coexist on a single chip. In order 
for this to happen, the design process must include the creation 
of additional software or firmware. An automated HLS method 
enables designers and architects to explore different 
algorithmic and implementation options based on a single 
functional specification, thereby investigating space, power, 
and performance tradeoffs [13]. 

Because of recent developments in register transfer level 
(RTL) synthesis methods, the industrial deployment of high-
level synthesis (HLS) tools is becoming an increasingly viable 
option. Companies that are considered to be industry leaders in 
semiconductor design, such as IBM [13], Motorola [14], 
Philips [15], and Siemens [16], have created their own 
proprietary tools. Major EDA (Electronic Design Automation) 
suppliers have also begun to commercialize various HLS 
products. For instance, Synopsys developed a tool known as 
the "Behavioral Compiler" [17] in 1995. This tool generates 
RTL implementations from behavioral HDL code and links to 
tools farther down the production line. Tools such as "Catapult 
HLS" by Mentor Graphics [18] and "Stratus High Level 
Synthesis" by Cadence [19] are examples of similar programs. 
A proposed methodology of a typical flow for HLS in VLSI 
designs based on MATLAB Simulink HDL Coder is shown in 
Fig. 1. 

The industrial deployment of high-level synthesis (HLS) 
technology has become more realistic as a result of 
advancements in record transfer level (RTL) synthesis 
methods. Specialized tools have been developed by major 
semiconductor design firms such as IBM [12], Motorola [14], 
Philips [15], and Siemens [13]. Electronic Design Automation 
(EDA) industry leaders have also started selling High-Level 
Synthesis (HLS) solutions. For example, in 1995 Synopsys 
created the "Behavioral Compiler" tool [15], which generates 
RTL programs from behavioral HDL code and links to 
secondary tools. This was accomplished via the use of 
behavioral HDL. The "Catapult HLS" [18] and "Stratus High 
Level Synthesis" [19] tools produced by Mentor Graphics and 
Cadence respectively are similarly comparable. The HLS flow 
that is often used in VLSI is shown in Fig. 1. 
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Fig. 1. High level synthesis flow based on MBD. 

III. SOBEL EDGE DETECTOR 

The Sobel operator is utilized in the processing of images 
and computer vision, namely in edge recognition algorithms to 
emphasize edges in a picture. It is named after Irwin Sobel and 
Gary Feldman. Sobel and Feldman proposed a proposal of a 
"Isotropic 3x3 Image Gradient Operator." It is a discrete 
operator used to produce gradient estimations of the intensity 
function of an image. Every point within the image represents a 
gradient vector produced by the Sobel operator. The Sobel 
operator is computationally efficient since it convolves the 
image in both vertical and horizontal axes using a small, 
separable, integer-valued filter. The color gradient estimate it 
produces lacks precision, particularly for high-frequency 
variations in the image. 

 
Sobel is a primary edge detection operator that relies on 

gradients. On an image, it applies a spatial gradient analysis in 
two dimensions. When trying to estimate derivatives, the 
operator convolves the original image with two 3x3 kernels. 
One kernel is used for horizontal alterations, while the other is 
used for vertical alterations. Each point includes estimations of 
the both vertical and horizontal derivatives. Here are the 
kernels:Rotating a kernel through 90 degrees yields a different 
kernel, as seen in Fig. 1. Gx is used to detect horizontal edges, 
while Gy is used to detect vertical edges. The two gradients Gx 
and Gy are utilized to calculate the orientation and magnitude 
of the edge at a certain location in the image. By combining 
gradient approximations, an absolute gradient magnitude may 

be determined at every location in the image. Just square the 
total value of the squares of the horizontal and vertical 
components to get the gradient's magnitude: G= 

√(𝐺𝑥2 + 𝐺𝑦2) 

IV. DESIGN METHODOLOGY 

The Full Sobel edge detector (see Fig. 2) for a streaming 
video was created in MATLAB/Simulink using HDL coder 
and the required toolbox for modeling. For this experiment 
using 240 × 320 x 3 input video frames representing each 
color. Since the HDL implementation is pixel-based rather than 
frame-based, the input frames need to be transformed to pixels 
before each pixel can be entered into the project on a clock 
cycle. Both the Sobel method edge finder and the Simulink 
library block were simultaneously utilized to process identical 
input images from their respective hardware implementations. 
The results of the two were subsequently evaluated against 
each other. 

The length of the video stream, as well as the absolute 
minimums and maximums for the project's inputs, outputs, and 
intermediate nodes, were all recorded throughout the period 
that the simulation ran for, which was one hundred seconds. 
Later simulation tests were expanded to incorporate this basic 
and maximum database in order to take into account any and 
all possible visual signal inputs. After that, the amplitude of 
each and every signal was determined by taking the range of 
values for each input, output, and intermediate node into 
account. 

The RTL was then built by the HLS tool with the 
limitations for all of the data nodes as well as the important 
inputs and outputs being changed accordingly. Following that 
step, the optimized RTL was programmed into the FPGA. 
Because the FPGA output is expressed in pixels, MATLAB 
was used to convert it to a picture. The finished product 
consisted of a picture with an acute angle superimposed over 
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the original. The total approach, which may be seen shown in 
Fig. 3, consists of HDL code, behavioral implementation, and a 
common picture source. As shown in Fig. 3, latency 
components have been added to the input and behavior display 
channels in order to compensate for the delay caused by the 
actual hardware implementation of the loop that is executing 
on the FPGA. 

The input picture, the image produced by the MATLAB 
model, and the output produced by the HDL FPGA program 
are all shown in Figure 4. As can be seen in the picture, the 
input image source, the MATLAB behavior model, and the 
HDL FPGA model all functioned autonomously to process 
various images taken from the input video stream. 

Fig. 2. Sobel edge system: full system. 

 

Fig. 3. HDL coder model for Sobel edge detector system. 

V. DESIGN SYNTHESIS AND RESULTS 

Simulations of designs on Simulink After completion, each 
filter system is separately converted to HDL code. This process 
is Matlab/Simulink HDL Coder and HDL workflow advisor 
with add-on realized through. HDL workflow consultant, 
Convert systems on Matlab and Simulink to HDL code make 
the necessary settings during the conversion process. It 
provides an interface. After this stage, a standard system 
converted to IP block is in Vivado Suite Camera reference with 
IP integrating system attached to the design. Thus, filter 
systems were implemented sequentially on the Zedboard. More 
In later studies, the system will be less on-chip for space 
coverage and simplification of the software. The designed IP 
blocks are combined on Simulink was redesigned. 

Accordingly, the grayscale conversion and edge detection 
systems are combined into a single IP block. The median and 
sharpening filters formed the second IP block. Necessary 
interconnections were made again and the system was 
synthesized again. The block design of the final implemented 
system on Vivado Suite is given in Fig. 4. IP blocks designed 
in the study are marked on the diagram. 

A. Simulation Results 

In order to simulate the resulting VHDL RTL code with a 
testbed that could not be synthesized, the Vivado xSim 
software was utilized. Figure 5 illustrates the results of the 
functional simulation of the Vivado xSim simulator. As can be 
seen in the picture, the reference pixel values are very 
comparable to the pixel output generated by the technique that 
was advised. In addition to this, they were the same as the 
findings of the high-level MATLAB simulation that was 
carried out using the model with the ideal bit-width. 

When the output photographs from both channels were 
compared to the same input image, this was confirmed. In this 
investigation, the quantization error that was brought about by 
choosing narrower "optimum" signal widths was evaluated and 
compared to the MATLAB-based double-precision model. 
This was accomplished by using the "FPGA in the loop" co-
simulation feature that is available on the MathWorks HDL 
verifier. According to the results of the root mean square test 
(RMS), the error in the quantization was less than 1%. 
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Fig. 4. RTL design for full edge detector. 

 
Fig. 5. HDL simulation results (Sobel edge detector). 

B. Synthesis Results 

Each filter system was converted to HDL code 
independently when it was determined that the simulations of 
the designs on simulink were successful. This method 
improves the functionality of the Matlab/Simulink plugins 
known as HDL Coder and HDL business articles. A statement 
that indicates that HDL work instructions have been fulfilled is 
called a fulfillment of HDL work instructions statement. This 
statement enables the necessary settings to be made during the 
process of converting systems designed in Matlab and 
Simulink to HDL code. After this step, the system was changed 
to a normal IP gateway, and the IP integrating system in 
Vivado Suite was used to make the connection between the 
gateway and the camera reference design. On the Zedboard, the 
filtering processes were thus carried out in a sequential fashion. 
The following areas have been modified by combining IP 
blocks on Simulink, which were created to take up less room 
on the system chip and to simplify the software. This was done 
in order to improve performance. 

As a consequence of this, the greyscale conversion system 
and the edge detection system have been merged into a single 
IP block. The second IP block was made up of the median filter 
and the sharpening filter. Necessary interconnections were 
made again and the system was synthesized again. The IP 
blocks that were created throughout the course of the research 
can be seen noted on the figure representing the block design 
of the final implemented system on Vivado 2017.4 Suite. Table 
I present the resources results for the proposed design. 

TABLE I. PROPOSED SOBEL EDGE DETECTOR RESOURCES RESULTS 

Resources Utilization Available % Utilization 

LUT 5300 53200 10% 

LUT RAM 180 17400 1% 

Flip-Flops 7500 106400 7% 

BRAM 8 140 6% 

DSP 11 220 5% 

IOS 100 200 50% 

BUFG 1 32 3.1% 

The Vivado synthesis tool reported a total power of 0.330 
W, which was comprised of 0.210 W of dynamic power and 
0.120 W of static power. In addition to that, it incorporates a 
whole host of other optimization strategies, such as high-level 
synthesis toolkits, resource sharing, and pipeline design. These 
can be used to improve the results that were mentioned above; 
however, the scope of this study does not allow for such 
optimization to be performed. 

VI. CONCLUSION 

In the process of development is a high-speed, optimal 
(weak surface), implementation of the Sobel edge-detection 
algorithm that will be suitable for real-time deployment on the 
FPGA. The conception was made possible with the use of a 
ground-breaking conception process known as HLS. This 
approach restricts intermediate noeuds and the major points of 
conception to absolute minimums and maximums for each 
noeud. The RTL for the method was developed on a Xilinx 
ZedBoard by using an input time video stream with a 
resolution of 240 by 320 pixels and 8 bit color inputs. 

In order to do a functional evaluation of the RTL idea, the 
Xilinx Vivado xSim simulator was used. We found that our 
HLS technique results in quantification mistakes that are less 
than 1% of the total. The findings of the synthesis indicate that 
our implementation is superior to comparable existing ideas in 
terms of performance. As a consequence of this, the approach 
is especially well-suited for FPGA-based applications that call 
for real-time image processing. Although the method was 
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tested using the MATLAB HDL codeur procedure with 
connections to Xilinx Zedboard, it can also be used with other 
devices and (technology-neutral) FPGA cables. 

In spite of the absence of evidence, we are of the opinion 
that the design process used in this methodology would result 
in improved results when applied to ASIC synthesis. Future 
research will involve, in addition to the manner of 
implementation that was recommended, the optimization of 
speed, area, and power consumption utilizing optimization 
approaches given by high-level synthesis tool vendors such as 
MathWorks, Xilinx, Mentor, and Cadence. In the not too 
distant future, one of our goals is to broaden the scope of this 
study to encompass ASIC design. 
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