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Abstract—The fusion of augmented reality (AR) and deep 

learning technologies has ushered in a transformative era in the 

realm of real-time physical activity monitoring. This research 

paper introduces a system that harnesses the capabilities of 

PoseNet-based skeletal keypoint extraction and deep neural 

networks to achieve unparalleled accuracy and real-time 

functionality in the identification and classification of a wide 

spectrum of physical activities. With an impressive accuracy rate 

of 98% within 100 training epochs, the system proves its mettle in 

precise activity recognition, making it invaluable in domains such 

as fitness training, physical education, sports coaching, and 

home-based fitness. The system's real-time feedback mechanism, 

bolstered by AR technology, not only enhances user engagement 

but also motivates users to optimize their exercise routines. This 

paper not only elucidates the system's architecture and 

functionality but also highlights its potential applications across 

diverse fields. Furthermore, it delineates the trajectory of future 

research avenues, including the development of advanced 

feedback mechanisms, exploration of multi-modal sensing 

techniques, personalization for users, assessment of long-term 

impacts, and endeavors to ensure accessibility, inclusivity, and 

data privacy. In essence, this research sets the stage for the 

evolution of real-time physical activity monitoring, offering a 

compelling framework to improve fitness, physical education, 

and athletic training while promoting healthier lifestyles and the 

overall well-being of individuals worldwide. 
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I. INTRODUCTION 

In the contemporary landscape of health and wellness, the 
significance of physical fitness and its correlation with a 
healthier lifestyle has gained substantial recognition. Engaging 
in regular physical activities is paramount in mitigating risks 
associated with chronic ailments like obesity, cardiovascular 
diseases, and diabetes, a narrative strongly supported by a 
plethora of scientific studies [1]. The benefits of such a 
regimen extend beyond mere physical well-being, 
encompassing enhancements in mental health, cognitive 
abilities, and even an elongated lifespan. Nonetheless, the crux 
of maintaining a steadfast exercise routine lies in the effective 
monitoring and progression tracking, a domain where 

traditional methodologies often fall short in terms of 
accessibility and efficiency. 

Recent advancements in technology, particularly the 
integration of computer vision and deep learning, have ushered 
in a new era in exercise monitoring [2-4]. Leveraging these 
technological strides, this paper introduces a groundbreaking 
framework utilizing a PoseNet-enabled deep neural network, 
primarily aimed at real-time exercise monitoring of physical 
culture students [5]. PoseNet, a state-of-the-art model 
developed by Google, lies at the core of this system, enabling 
precise detection and tracking of human body movements 
during physical activities. 

Traditional methods for monitoring exercise form and 
posture, often reliant on personal trainers or manual video 
analysis, are plagued by limitations such as high costs, time 
consumption, and restricted accessibility [6]. Our proposed 
framework seeks to dismantle these barriers, offering a cost-
effective, real-time solution that does not necessitate additional 
human intervention [7]. The dual-component architecture of 
our system, comprising the PoseNet model and a sophisticated 
deep neural network, marks a significant leap forward in 
exercise monitoring technology. PoseNet’s role is pivotal in 
identifying and tracking key body points, thereby facilitating 
the deep neural network in accurately discerning various 
exercises from the captured movements. This network, trained 
on an extensive exercise dataset, boasts a remarkable 
proficiency in recognizing a diverse range of physical 
activities. 

The user-centric design of our system ensures its 
accessibility and ease of use for physical education students 
across all skill levels. Compatible with any standard camera-
equipped device, such as smartphones, laptops, or tablets, the 
system allows users to either choose from a predefined exercise 
catalog or tailor their workout regimes [8]. Real-time feedback 
provided on form, posture, and motion range empowers users 
to make immediate adjustments, thus enhancing the 
effectiveness of their exercise routine. 

A notable feature of this system is its adaptive learning 
capability. The deep neural network can be trained on new 
exercise datasets, thereby expanding the system’s utility to 
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various exercise forms. This adaptability not only customizes 
the system to cater to individual needs but also positions it as 
an ideal tool for personalized fitness training [9]. 

In summary, the development of this PoseNet-enabled deep 
neural network for real-time exercise monitoring symbolizes a 
paradigm shift in how physical education students engage with 
and monitor their fitness routines. The system’s real-time 
feedback, accuracy, and adaptability significantly contribute to 
more effective and efficient achievement of fitness objectives. 
Its ease of use, affordability, and broad applicability render it a 
versatile tool, suitable for diverse settings including 
educational institutions, fitness centers, and home 
environments. This innovation not only aligns with the current 
digital transformation in fitness monitoring but also paves the 
way for future advancements in the domain of health and 
physical education. 

II. RELATED WORKS 

In the rapidly evolving landscape of fitness and health 
monitoring, the intersection of technology and physical well-
being has garnered significant attention from researchers and 
practitioners alike. This section provides a comprehensive 
overview of the related works in this domain, tracing the 
evolution of fitness monitoring technologies from their nascent 
stages to the current state-of-the-art systems. By examining the 
progression from traditional methods to advanced technologies 
such as deep learning, computer vision, and augmented reality, 
we gain insights into the challenges, advancements, and future 
directions of fitness monitoring. This review not only 
contextualizes our research within the broader spectrum of 
technological innovations in fitness but also highlights the 
pivotal developments that have shaped current practices and 
are paving the way for future breakthroughs in this field. 

A. Evolution of Fitness Monitoring Approaches 

The journey of fitness monitoring has transitioned from 
traditional methods, like the use of personal trainers and self-
reporting, to more sophisticated, technology-based approaches. 
Early studies in this field emphasized the personalized touch 
offered by human trainers, but noted limitations in terms of 
objectivity and continuity in monitoring physical activities 
[10]. These manual methods, while beneficial for personalized 
guidance, lacked the precision and consistency of data-driven 
approaches [11]. The advent of wearable technology marked a 
pivotal point in this evolution. Initial fitness trackers, focusing 
on basic metrics such as steps and heart rate, introduced a more 
quantifiable approach to fitness monitoring [12]. Subsequent 
enhancements, incorporating GPS and accelerometers, 
expanded these devices' capabilities, enabling a deeper analysis 
of physical exertion and movement [13]. However, these 
wearables faced challenges in capturing complex body 
movements with high accuracy, highlighting the need for more 
advanced monitoring solutions [14]. 

B. Integration of Computer Vision in Exercise Monitoring 

Computer vision's integration into fitness monitoring has 
been a transformative development. Initial forays involved 
using cameras and basic algorithms for movement tracking, but 
were hindered by accuracy issues and the need for controlled 
environments [15]. The advent of deep learning propelled this 

field forward, significantly improving the accuracy of these 
systems in tracking complex human movements. Advanced 
algorithms, particularly those based on deep learning, enabled 
more precise tracking and analysis in dynamic settings [16]. 
These developments laid the groundwork for sophisticated 
applications like real-time exercise form monitoring and 
posture analysis [17]. Despite these advancements, challenges 
persisted, especially in terms of adapting these systems to 
varied and uncontrolled environments. This led to an increased 
focus on enhancing the robustness and versatility of computer 
vision applications in physical activity monitoring [18]. 

C. Deep Learning and Physical Activity Recognition 

Deep learning models have become central to the 
advancement of physical activity recognition. These models, 
trained on extensive datasets encompassing a wide array of 
human movements, exhibit remarkable accuracy in classifying 
diverse physical activities. Convolutional neural networks 
(CNNs) and recurrent neural networks (RNNs) have been 
particularly effective, adept at capturing the spatial and 
temporal dynamics of movement [19]. This has enabled more 
nuanced analysis and monitoring of exercises, far surpassing 
the capabilities of traditional fitness trackers. Research in this 
domain has explored various applications, from basic activity 
recognition to more complex analyses like form and technique 
assessment [20]. The ability of these models to learn and adapt 
to different movement patterns has opened up new possibilities 
for personalized exercise monitoring. However, the reliance on 
large, diverse datasets for training these models presents its 
own set of challenges, particularly in ensuring the 
representation of a broad range of movement types and 
exercise forms [21]. 

D. Augmented Reality in Fitness Training 

Augmented Reality (AR) has emerged as a groundbreaking 
tool in enhancing fitness training experiences. Studies have 
shown that AR can create immersive and interactive 
environments, making workouts more engaging and effective 
[22]. The integration of AR with real-time data tracking has led 
to more interactive and personalized training experiences. This 
technology not only boosts engagement but also aids in proper 
technique adherence, reducing the risk of injury [23]. However, 
seamlessly integrating AR with accurate movement tracking 
technologies has been a challenge. The key has been to develop 
systems that are not only accurate but also intuitive and 
engaging for users. This has led to innovative approaches in 
AR application design, focusing on user-friendly interfaces and 
real-time feedback mechanisms. As AR technology continues 
to evolve, its potential in transforming fitness training methods 
and improving overall exercise effectiveness becomes 
increasingly evident [24]. 

E. Pose Estimation Technologies in Exercise Monitoring 

Pose estimation technologies, especially those employing 
deep learning models like PoseNet, have significantly altered 
the landscape of exercise monitoring. PoseNet, for instance, 
excels at real-time tracking of human body movements, 
providing a detailed analysis of exercise form and posture [25]. 
This technology has been instrumental in enhancing the 
precision and effectiveness of fitness monitoring systems. 
Researchers have extensively explored its application across 
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various fitness scenarios, demonstrating its potential in offering 
real-time feedback, which is crucial in preventing injuries and 
ensuring the effectiveness of exercise routines [26]. These pose 
estimation models stand out for their ability to discern subtle 
nuances in movement, a feat that was previously challenging 
with conventional monitoring systems. However, the 
application of such technologies is not without challenges. 
Ensuring accuracy in diverse and dynamic environments, along 
with maintaining user privacy, are areas that necessitate 
ongoing research and development [27]. The continuous 
improvement of these technologies is crucial for their wider 
adoption and effectiveness in real-world fitness monitoring 
scenarios. 

F. Challenges and Limitations of Existing Systems 

While significant advancements have been made in fitness 
monitoring technologies, several challenges and limitations 
persist. Accuracy in complex and uncontrolled environments 
remains a primary concern. Systems that perform well in 
laboratory settings often struggle in real-world scenarios, 
where variables such as lighting and background can affect 
performance [28]. Additionally, user privacy has emerged as a 
critical issue, especially with systems that rely on cameras and 
video analysis. There is a growing need to develop methods 
that respect user privacy while still providing accurate 
monitoring [29]. Another challenge is the extensive data 
required to train deep learning models effectively. These 
models often require large, diverse datasets to function 
optimally, which can be a hurdle in terms of data collection 
and processing [30]. Moreover, the accessibility and usability 
of these technologies for individuals with varying levels of 
fitness and technical proficiency remain areas for 
improvement. Ensuring that these systems are user-friendly 
and adaptable to different user needs is essential for their 
broader acceptance and effectiveness [31]. 

G. Personalization and Adaptability in Fitness Monitoring 

Systems 

The trend towards more personalized and adaptable fitness 
monitoring systems is gaining momentum. Personalization in 
fitness technology is not just about tailoring to individual 
physical abilities, but also adapting to personal preferences and 
goals. Research has emphasized the importance of systems that 
can learn and adapt to individual user profiles and exercise 
routines [32]. Machine learning algorithms, particularly those 
capable of adaptive learning, are increasingly being integrated 
into fitness monitoring systems. These systems are designed to 
not only track and analyze physical activities but also learn 
from user behavior and preferences, thus enhancing the overall 
effectiveness of exercise routines [33]. The ability to customize 
these systems to individual needs not only improves user 
engagement but also ensures that the exercises are aligned with 
personal fitness goals. However, developing algorithms that 
can accurately adapt to a wide range of user profiles remains a 
challenge, requiring continuous research and development 
[34]. The ultimate goal is to create fitness monitoring systems 
that are not only technologically advanced but also deeply 
attuned to the unique needs and preferences of each user. 

H. Future Directions and Emerging Technologies 

The future of fitness monitoring is poised for further 
transformation with the emergence of new technologies and 
approaches. AI-powered virtual trainers and the integration of 
biometric sensors are among the most promising developments 
in this field [35]. These technologies have the potential to offer 
even more personalized and comprehensive monitoring of 
physical activities. AI-powered virtual trainers, for instance, 
can provide real-time feedback and coaching, tailored to 
individual performance and improvement areas. The 
integration of biometric sensors, on the other hand, can offer 
deeper insights into physiological responses during exercises, 
enabling a more holistic approach to fitness monitoring. 
Research in this area is focused not only on enhancing the 
technological capabilities of these systems but also on 
improving user engagement and overall health outcomes. The 
combination of AI, advanced sensor technology, and user-
friendly interfaces is expected to lead to a new generation of 
fitness monitoring systems that are more accurate, engaging, 
and effective in promoting physical well-being [36]. As these 
technologies continue to evolve, they offer exciting 
possibilities for the future of personal fitness and wellness. 

The future direction of fitness monitoring is geared towards 
even more personalized and adaptive systems. The integration 
of AI and biometric sensors is set to redefine the boundaries of 
what these systems can achieve. The goal is to develop fitness 
monitoring tools that are not only technologically advanced but 
also user-centric, catering to individual needs and preferences. 
As we look ahead, the potential for these technologies to 
transform personal fitness and health monitoring is immense, 
promising a future where fitness routines are more effective, 
engaging, and aligned with individual health goals. 

III. DATA 

The task of discerning physical activities encompasses a 
range of distinct yet interrelated subtasks. For clarity, the 
methodology of this research is depicted in Fig. 1, which 
illustrates the process as a systematic flowchart. The research 
design is segmented into three fundamental stages: 
identification of data requirements, collection of data, and its 
subsequent categorization. 

Within the data requirements section, we define the specific 
attributes and characteristics of the patterns we aim to analyze. 
The data collection phase is critical, ensuring the procurement 
of appropriate video data. This phase involves the meticulous 
process of annotating videos according to predefined 
categories, converting them into .json format, and precisely 
extracting marked images and video sequences that depict 
various physical exercises, thereby creating a comprehensive 
dataset. 

The final stage, categorization, involves a detailed 
breakdown of these videos into distinct classes. This stage is 
further subdivided into several key processes, including the 
preparation of data, extraction of pertinent features, training of 
the model, and its rigorous testing. 

For the purpose of this study, we have meticulously 
compiled a dataset encompassing five distinct exercises: pull-
ups, push-ups, squats, bicep workouts, and neck exercises. This 
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dataset is derived from an extensive collection of video data, 
totaling 100 minutes for each exercise category. This rich 

dataset forms the backbone of our research, enabling detailed 
analysis and robust model training. 

 

Fig. 1. Flowchart of the proposed framework. 

IV. MATERIALS AND METHODS 

A. Proposed Approach 

In this section, we shall elucidate the utilization of Deep 
Learning algorithms for the recognition of objects and 
postures, a fundamental aspect of the project's execution. The 
computational model undertakes a series of operations upon 
receiving data packets, which may include individual video 
sequences or audio segments. When configuring the 
computation process, the selection of the payload type for each 
port is a critical decision, as it determines the ingress and 
egress of data packets. Each computation module is equipped 
with ports that facilitate the ingress and egress of data packets. 
Throughout the execution of a graph, a sequence of actions is 
performed, encompassing the Open, Process, and Close 
methods in each computational module. The initialization of a 
calculator is achieved through the Open method, the 
continuous processing of new packets is managed by the 
Process method, and the finalization of the computational 
process is accomplished via the Close method. Fig. 2 provides 
an illustrative flowchart delineating the proposed pose 
detection system, a crucial component of the exercise 
monitoring framework. 

The ensuing sections elucidate our proposed methodology, 
termed as skeleton-based classification of physical activities, a 
process comprehensively depicted in Fig. 3. This methodology 
dissects the overall challenge into three distinct yet 
interconnected subproblems, each playing a pivotal role in the 
classification process. 

The initial phase involves the deployment of the PoseNet 
network on image sequences to ascertain body postures. This 
application of PoseNet to our input data is critical in predicting 
the stance of the body captured in each frame. Following this, 
the second phase focuses on the extraction of key points from 

each frame, represented as vectors. PoseNet is instrumental in 
this process, identifying a total of 17 critical points per frame. 
Consequently, this leads to the formation of vectors, each 
comprising 34 individual elements. 

 

Fig. 2. Flowchart of the proposed pose detection system. 
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Fig. 3. The proposed framework architecture for action detection. 

Subsequently, the methodology involves amalgamating 
these vectors (k vectors) into a singular comprehensive vector. 
This consolidated vector is then subjected to the next stage, 
involving feature extraction and the identification of physical 
activities. The final step in our methodology is the training of a 
Convolutional Neural Network (CNN) model, specifically 
tailored to address tasks associated with the classification of 
physical activities. 

In the context of human body localization in RGB images, 
two primary approaches are recognized: top-down and bottom-
up methods. Top-down approaches initiate with a human 
detector and proceed to analyze body joints within 
predetermined boundary boxes. Notable examples of top-down 
methods include PoseNet [36], HourglassNet [37], and Hornet 
[38]. Alternatively, bottom-up methods, such as Open space 
[39] and PifPaf [40], offer a different approach to body 
localization, each with their unique methodologies and 
applications. 

In our chosen methodology, we have embraced a skeleton-
based approach as the foundation for our training strategy. This 
approach has been strategically selected due to its inherent 
computational efficiency, which proves pivotal in the real-time 

assessment of human activities. Central to this approach is the 
utilization of a neural network architecture built upon PoseNet, 
a robust and well-established deep learning model. This 
PoseNet-based neural network serves as the linchpin of our 
system, facilitating the intricate and precise evaluation of a 
wide array of human activities. 

The operationalization of this methodology entails the 
integration of a pre-trained PoseNet model into our framework. 
This pre-trained model stands as a testament to the efficiency 
and effectiveness of knowledge transfer from the input space to 
the specific target domain. By leveraging this pre-trained 
model, we streamline the learning process and empower our 
system to rapidly and accurately assess and classify human 
activities in real-time scenarios. This not only enhances the 
overall computational efficiency of our system but also ensures 
that it operates seamlessly and effectively, making it a valuable 
tool for applications such as fitness training, physical 
education, and sports coaching. 

PoseNet's output is crucial in representing the human body, 
as it identifies 17 primary body points along with their 
respective positions and associated confidence levels. These 
key points encompass critical areas such as the face, eyes, ears, 
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shoulders, elbows, wrists, hips, knees, and ankles [41]. Fig. 4 
provides a visual representation of these 17 essential points as 
captured by PoseNet, illustrating the basis for training our 
neural network. The representation of these points in the 
coordinate space is achieved through the x and y coordinates, 
providing a spatial mapping essential for accurate activity 
analysis. This skeleton-based approach, underpinned by 
PoseNet's capabilities, forms the foundation of our training 
process, enabling a more nuanced understanding of human 
movement and posture in the context of physical activity 
classification. 

 

Fig. 4. PoseNET key points. 

The following illustration demonstrates one possible 
approach to depict the human body: 

 ,;ib xr              (1) 

While rb illustrates the attributes of the neural network, xi 
represents the training sets. In order to categorize the 

illustration of the human body,  ,;ib xr , a layer of a 

completely linked neural network is introduced. The training of 
the additional neural network is facilitated by minimizing the 
class cross-entropy loss, a crucial step preceding the 
normalization of the network via the "Softmax" layer. Fig. 5 
delineates the architecture of the PoseNet-based network 
employed in this process. 

Initially, images depicting human activity are input into 
PoseNet, which is tasked with extracting key skeletal points. 
Subsequently, these extracted coordinates of the skeleton 
components are represented within the feature set. This 
representation plays a pivotal role in the next phase of the 
process. The extracted key points of the human skeleton, 
encapsulating vital information regarding human movement 
and posture, serve as the foundational data for training the 
neural network. This methodology ensures that the neural 
network is trained on accurate, spatially relevant data, enabling 
it to effectively identify and classify different human activities. 
The process, from the initial extraction of skeletal points to the 
final training of the neural network, is critical in achieving a 
robust and accurate system for activity classification. 

The research initiates with the primary phase dedicated to 
data acquisition, feature extraction, class segmentation, and the 
subsequent construction of a dataset intended for utilization 
within the neural network. The subsequent phase of the study 
centers around the integration of the PoseNet model to 
effectively extract skeletal points, a pivotal component of the 
methodology aimed at classifying human activities with 
precision. 

The culmination of this approach entails the development 
of a neural network tailored for the specific task of detecting 
physical activities. Subsequently, rigorous training and testing 
protocols are conducted to assess the viability and real-world 
applicability of the proposed approach. This comprehensive 
evaluation process is essential for gauging the effectiveness 
and suitability of the approach in practical, real-world 
scenarios. 

 

Fig. 5. Artificial neural network for physical activity classification. 
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B. Evaluation Parameters 

To assess the performance of the proposed system, 
Accuracy is employed as one of the pivotal evaluation 
parameters. Accuracy measures the system's proficiency in 
correctly identifying and classifying physical activities, 
providing a quantitative representation of its correctness in 
predictions. This parameter quantifies the ratio of accurately 
identified activities to the total number of activities tested. In 
essence, Accuracy offers a fundamental gauge of how 
effectively the system aligns its predictions with the actual 
activities being performed. It serves as a vital metric in 
evaluating the overall performance of the proposed system, 
shedding light on its ability to make accurate classifications. 
However, it is important to note that while Accuracy provides 
valuable insights, a comprehensive evaluation may also 
consider additional metrics such as Precision, Recall, and the 
F1 Score to provide a more nuanced and complete assessment 
of the system's classification capabilities. 

,
FPTNFNTP

TNTP
accuracy




         (2) 

Precision is an evaluation metric that assesses the system's 
ability to minimize false positive errors when classifying 
physical activities. It quantifies the accuracy of positive 
predictions made by the system. In the context of activity 
classification, precision measures the proportion of correctly 
identified positive cases (true positives) among all the instances 
that the system predicted as positive (true positives plus false 
positives). Mathematically, precision is calculated as: 

,
FPTP

TP
precision


         (3) 

Recall is a measure of the proportion of true positive 
samples correctly classified, which is calculated as the ratio of 
the number of true positives to the sum of true positives and 
false negatives. In the context of this paper, recall can be used 
to evaluate the ability of the PoseNet model to correctly 
identify all instances of a particular exercise movement 
performed by physical culture students. 

,
FNTP

TP
recall


          (4) 

A high precision score indicates that the system is 
proficient at correctly identifying positive cases while 
minimizing incorrect positive identifications. In other words, it 
measures the system's ability to avoid labeling activities as 
positive when they are not. 

,
2

1
recallprecision

recallprecision
F




   (5) 

The F1 Score is a metric that combines precision and recall 
into a single value, providing a balanced assessment of a 
system's classification performance. It is particularly useful 
when dealing with imbalanced datasets, where one class may 
significantly outnumber the other. The F1 Score is calculated 
as the harmonic mean of precision and recall. 

V. RESULTS 

In this section, we present the outcomes derived from our 
in-depth analysis of the primary challenges encountered during 
the processes of data acquisition, feature extraction, and the 
classification of physical activities. The subsequent paragraphs 
delineate the findings obtained in two distinct categories: the 
first section outlines the discoveries pertaining to the extraction 
of human skeleton points, while the subsequent section 
showcases the results obtained in the realm of physical activity 
detection. These findings represent the forefront of current 
research in this domain. 

The assessment of these findings is conducted through the 
lens of comprehensive evaluation metrics, which include the 
utilization of confusion matrices, model accuracy, precision, 
recall, and the F1-score. These metrics serve as the cornerstone 
for a rigorous evaluation, enabling a thorough examination of 
the system's performance and its alignment with contemporary 
standards of excellence. The results garnered from these 
evaluations are indicative of the system's effectiveness in 
tackling the intricate challenges of data processing and physical 
activity classification, positioning it at the vanguard of cutting-
edge research in the field. 

A. Keypoints Extraction 

This subsection presents the outcomes of the keypoint 
extraction process employing the PoseNet model. As depicted 
in Fig. 6, the proposed model's functionality in keypoint 
extraction is illustrated. Notably, the PoseNet model exhibits 
the capability to extract human body keypoints even in 
scenarios involving multiple individuals within the video 
frames. In such instances, each human presence in the video is 
assigned a distinct identification number. In the exemplified 
scenario, five individuals are denoted by IDs ranging from 1 to 
5. This observation underscores the model's ability to 
effectively differentiate and identify various human entities 
within a given video context. 

 

Fig. 6. Keypoints extraction from video. 

B. Physical Activity Classification 

In the methodology employed for this research, we have 
embraced a skeleton-based approach as the cornerstone of our 
training strategy. This strategic choice is rooted in the inherent 
computational efficiency it offers, a critical factor in enabling 
real-time assessment of human activities. At the heart of this 
approach lies the adoption of a neural network architecture 
built upon PoseNet, a powerful deep learning model renowned 
for its prowess in capturing human skeletal keypoints. 
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The practical implementation of this methodology involves 
the integration of a pre-trained PoseNet model into our system. 
This pre-trained model serves as a testament to the efficiency 
and effectiveness of knowledge transfer from the input space to 
our specific target domain. By leveraging this pre-trained 
model, we expedite the learning process and empower our 
system to swiftly and accurately evaluate and categorize a 
diverse range of human activities in real-time scenarios. This 
not only bolsters the overall computational efficiency of our 
system but also ensures its seamless and effective operation, 
making it an invaluable tool for applications spanning fitness 
training, physical education, and sports coaching. 

In essence, our chosen methodology, with its skeleton-
based approach and PoseNet-based neural network, forms the 
bedrock upon which our research findings and system 
capabilities rest. It is this methodology that empowers our 
system to offer precise and real-time assessments of human 
activities, contributing to advancements in fitness training, 
physical education, and various domains where the accurate 
monitoring of physical activities is of paramount importance. 

C. Evaluation of the Proposed Model 

In this section, we present the outcomes of the physical 
activity classification process. Fig. 7 and Fig. 8 offer graphical 
representations of model accuracy and model loss, 
respectively. Model loss, also referred to as training loss, 
serves as a metric quantifying the model's performance during 
the training phase on the training dataset. It is computed by 
comparing the model's predictions against the actual values 
within the training data. The primary objective during model 
training is to minimize this loss, signifying that the model is 
progressively improving its ability to make precise predictions 
based on the training data. 

Conversely, validation loss assesses the model's 
performance on a distinct dataset known as the validation 
dataset, which was not utilized during the training phase. The 
purpose of validation is to ensure that the model does not 
exhibit overfitting, i.e., the tendency to memorize the training 
data rather than learning to generalize to new, unseen data. 

Fig. 7 offers a visualization of both model accuracy and 
validation accuracy for the proposed model over 100 training 
epochs. The results indicate that within 100 epochs, the 
proposed model attains an impressive accuracy of 98%. 
Furthermore, the findings highlight that the model reaches a 
commendable accuracy of 90% after only 40 epochs of 
training. These outcomes underscore the model's effectiveness 
in accurately classifying physical activities, even with 
relatively modest training durations. 

Fig. 8 provides a visual representation of both model loss 
and validation loss over the course of 100 learning epochs. The 
outcomes of this analysis reveal that within 100 epochs, the 
model loss diminishes to a value of 0.2. Additionally, it is 
noteworthy to emphasize that the proposed system operates in 
real-time, signifying its capacity to perform expeditiously and 
provide immediate feedback. This real-time functionality holds 
significance in the context of physical activity monitoring, as it 
enables users to engage seamlessly with the system while 
receiving timely assessments and guidance.  

 

Fig. 7. Accuracy of the proposed model for 100 learning epochs. 

 

Fig. 8. Loss of the proposed model for 100 learning epochs. 

VI. DISCUSSION AND FUTURE RESEARCH 

The achieved accuracy of 98% within 100 training epochs 
underscores the robustness of the model in accurately 
classifying physical activities. This high level of accuracy is 
indicative of the system's proficiency in recognizing and 
distinguishing various exercise routines based on skeletal 
keypoint data. Such precision is a pivotal attribute, particularly 
in applications where the correctness of activity identification 
is critical, such as fitness training and rehabilitation programs. 

Furthermore, the real-time operation of the proposed 
system is a noteworthy feature. The system's ability to provide 
immediate feedback to users during physical activities is an 
advantageous aspect that enhances user engagement and 
motivation [42]. This real-time feedback mechanism aligns 
with the principles of effective physical training, where timely 
corrections and adjustments to posture and form are essential 
for preventing injuries and optimizing the effectiveness of 
exercise routines. The integration of AR technology into the 
monitoring process elevates the user experience, making it both 
interactive and engaging [43]. 

The implications of the research findings extend to various 
domains where real-time physical activity monitoring can yield 
significant benefits. Below, we outline potential applications 
and the associated advantages. 
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A. Fitness Training and Rehabilitation 

The proposed system holds immense promise in fitness 
training programs. It can serve as a virtual personal trainer, 
offering real-time guidance on exercise form, posture, and 
range of motion [44]. Individuals looking to improve their 
fitness levels can benefit from accurate feedback, reducing the 
risk of injuries and enhancing the effectiveness of workouts 
[44]. Additionally, the system can be adapted for use in 
rehabilitation programs, assisting patients in performing 
therapeutic exercises correctly and safely. 

B. Physical Education in Schools 

Incorporating the system into physical education classes in 
schools can revolutionize the way students learn and engage in 
physical activities. It can provide valuable feedback to both 
students and teachers, ensuring that exercise routines are 
performed with precision [45]. This can lead to increased 
interest and participation in physical education, ultimately 
promoting a healthier lifestyle among young individuals. 

C. Sports Coaching 

Coaches and athletes can leverage the system for sports 
training. It can assist in refining athletic techniques by offering 
real-time insights into movements and postures [46]. This can 
be particularly beneficial in sports where precise form is 
crucial, such as gymnastics, dance, and martial arts. 

D. Home-Based Fitness 

With the increasing popularity of home-based fitness 
routines, the proposed system can find application in guiding 
individuals through exercise regimens in the comfort of their 
homes [47]. It eliminates the need for expensive gym 
memberships and personal trainers while ensuring that users 
perform exercises correctly. 

VII. FUTURE RESEARCH DIRECTIONS 

A. Enhanced Feedback Mechanisms 

Future research can focus on the development of more 
sophisticated feedback mechanisms. This may include 
integrating voice-based instructions and motivational cues to 
enhance the user experience further. Additionally, 
incorporating haptic feedback through wearables can provide 
tactile guidance during exercises. 

B. Multi-Modal Sensing 

Exploring multi-modal sensing techniques, such as 
combining visual data with data from wearable sensors, can 
improve the accuracy and comprehensiveness of physical 
activity monitoring [48]. This approach can enable the system 
to capture a broader range of information, including heart rate, 
muscle activity, and joint angles. 

C. Personalization 

Tailoring the system to individual users' needs and fitness 
levels is an area ripe for exploration. Machine learning 
algorithms can be employed to adapt the system's feedback and 
recommendations to each user's unique requirements, 
optimizing the training experience [49]. 

D. Long-Term Impact 

Assessing the long-term impact of using the proposed 
system on individuals' fitness levels and overall health is a vital 
avenue for future research [50]. Longitudinal studies can track 
the progress and behavior changes of users over extended 
periods, providing insights into the sustained benefits of the 
technology. 

E. Accessibility and Inclusivity 

Research can focus on ensuring that the system is 
accessible and inclusive for individuals of diverse abilities and 
backgrounds. This involves addressing challenges related to 
accommodating various body types, physical conditions, and 
cultural preferences in exercise routines. 

F. Privacy and Data Security 

As with any technology that collects personal data, future 
research should emphasize robust privacy and data security 
measures [51]. Ensuring that user data is protected and used 
ethically is paramount. 

In conclusion, the integration of augmented reality and 
deep learning for real-time physical activity monitoring holds 
immense potential for transforming fitness training, physical 
education, and sports coaching. The system's high accuracy 
and real-time feedback capabilities make it a valuable tool for 
improving exercise routines and promoting healthier lifestyles. 
Future research endeavors can further enhance the system's 
functionalities, personalize user experiences, and explore its 
long-term impacts on individuals' well-being. 

VIII. CONCLUSION 

In conclusion, the amalgamation of augmented reality (AR) 
and deep learning technologies has propelled the realm of real-
time physical activity monitoring into an era of innovation and 
potential. The system presented in this research paper, 
leveraging the power of PoseNet-based skeletal keypoint 
extraction and deep neural networks, has demonstrated 
remarkable accuracy and real-time functionality. The 
implications of this work span across various domains, 
including fitness training, physical education, sports coaching, 
and home-based fitness. 

The achieved accuracy rate of 98% within 100 training 
epochs underscores the system's prowess in precisely 
classifying a wide array of physical activities based on skeletal 
keypoint data. This level of accuracy is of paramount 
significance, particularly in applications where the correctness 
of activity identification is indispensable. Furthermore, the 
system's real-time operation stands as a testament to its utility, 
offering immediate feedback to users during their exercise 
routines. This feature fosters user engagement, motivation, and 
an interactive experience that is conducive to effective physical 
training. 

As technology continues to advance and research in this 
field progresses, the prospects for further enhancements and 
applications are promising. Future research endeavors may 
delve into more sophisticated feedback mechanisms, multi-
modal sensing techniques, personalized user experiences, and 
long-term impact assessments. Moreover, ensuring 
accessibility and inclusivity for individuals of diverse 
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backgrounds and addressing privacy and data security concerns 
remain pivotal in the evolution of this technology. 

The future of real-time physical activity monitoring holds 
immense potential, offering opportunities to revolutionize 
fitness training, physical education, and sports coaching. The 
work presented in this paper serves as a foundation upon which 
further innovations and advancements can be built, ultimately 
contributing to the promotion of healthier lifestyles and the 
well-being of individuals across the globe. 
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