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Abstract—Student performance prediction systems are 

crucial for improving educational outcomes in various 

institutions, including universities, schools, and training centers. 

These systems gather data from diverse sources such as 

examination centers, registration departments, virtual courses, 

and e-learning platforms. Analyzing educational data is 

challenging due to its vast and varied nature, and to address this, 

machine learning techniques are employed. Dimensionality 

reduction, enabled by machine learning algorithms, simplifies 

complex datasets, making them more manageable for analysis. In 

this study, the Support Vector Classification (SVC) model is used 

for student performance prediction. SVC is a powerful machine-

learning approach for classification tasks. To further enhance the 

model's efficiency and accuracy, two optimization algorithms, the 

Sea Horse Optimization (SHO) and the Adaptive Opposition 

Slime Mould Algorithm (AOSMA), are integrated. Machine 

learning (ML) reduces complexity through techniques like 

feature selection and dimensionality reduction, improving the 

effectiveness of student performance prediction systems and 

enabling data-informed decisions for educators and institutions. 

The combination of SVC with these innovative optimization 

strategies highlights the study's commitment to leveraging the 

latest advancements in 𝑴𝑳 and bio−inspired algorithms for more 

precise and robust student performance predictions, ultimately 

enhancing educational outcomes. Based on the obtained 

outcomes, it reveals that the SVSH model registered the best 

performance in predicting and categorizing the student 

performance with Accuracy=92.4%, Precision=93%, 

Recall=92%, and F1_Score=92%. Implementing SHO and 

AOSMA optimizers to the SVC model resulted in improvement 

of Accuracy evaluator outputs by 2.12% and 0.89%, respectively. 

Keywords—Student performance; Support Vector 

Classification; sea horse optimization; adaptive opposition slime 

mould algorithm 

I. INTRODUCTION 

Academic information systems, e-learning, and admissions 
systems are all contributing to the growth of educational data 
[1]. But since it's so large and intricate, a lot of this data gets 
wasted. Predicting student achievement requires careful 
examination of these data [2]. 𝐾𝐷𝐷, or knowledge discovery in 
databases, is another name for data mining (𝐷𝑀)  has been 
successfully applied in various domains, including education, 
leading to the field of Educational Data Mining (𝐸𝐷𝑀) [3], 
[4]. 

Predicting student performance is a crucial endeavor in 
education, primarily employing EDM [5] to forecast outcomes 
like passing, failing, and grades. Creating an early warning 

system to save expenses, save time, and maximize resources is 
a major emphasis in this field. By enabling educators to modify 
their teaching strategies and provide more assistance to 
students who need it, improved educational procedures may 
raise student achievement [6]. Students are better able to 
comprehend their probable course performance and make the 
necessary decisions thanks to these projections. Increasing 
student retention is one of the institution's long-term objectives 
as it improves graduates' reputations, rankings, and 
employment chances [7]. Educational institutions employ 𝐷𝑀, 
often referred to as 𝐸𝐷𝑀 , to analyze accessible data [8]. 
Machine learning (𝑀𝐿) algorithms provide essential tools for 
knowledge discovery [9]. Predicting performance accurately 
helps identify difficult pupils early on. By analyzing 
educational data, EDM supports institutions in making 
improvements and creating new teaching strategies. [10]. 
Predicting academic success, however, is difficult since there 
are many different elements that might influence it [11]. 
Technological developments have made it possible to create 
efficient ML techniques. New studies demonstrate how 
effective ML methods are in enhancing instruction [12]. 

II. RELATED WORKS 

Carlos et al. [13] used ML to create a student failure 
forecast model, achieving the highest accuracy (92.7%) with 
the ICRM classifier. However, they did not test the model on 
different educational levels due to varying student 
characteristics. Dorina et al. [14] created a classifier-based 
forecasting model for student performance. While other models 
fared better in identifying failure students, the MLP model had 
the best accuracy (73.59%) in identifying successful students. 
Class balance and high-dimensional data presented challenges 
for the model. Osmanbegovic and Suljic [15] created a model 
that accounts for data dimensionality and forecasts academic 
achievement in students. After testing many classifiers, Naïve 
Bayes achieved the maximum accuracy of 76.65% ; 
nevertheless, the model did not address the problem of class 
imbalance. In addressing course dropouts, an 𝐸𝐷𝑀 challenge 
[16] employed four data mining methods with various attribute 
combinations. With the use of certain predictors, the support 
vector machine model produced the best accurate 
categorization. However, because student knowledge may have 
grown throughout the course, it was limited to incorporating 
earned marks from required courses. Ajay et al. [17] researched 
predicting student performance, introducing the "CAT" social 
factor. This factor classifies Indians based on social status, 
which influences education. They employed four classifiers 
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(OneR, MLP, J48, and IB1) on the dataset, with the 𝐼𝐵1 model 
achieving the highest accuracy at 82%. 

Ramanathan et al. [18] aimed to enhance the 𝐼𝐷3 model for 
forecasting student academic performance. The ID3 model's 
weakness was inefficiently selecting attributes with numerous 
values as nodes, resulting in suboptimal trees. The proposed 
model addressed this issue and produced two output classes 
(Pass and Fail). Upon testing many classifiers, including J48, 
wID3, and Naïve Bayes, the wID3 classifier demonstrated an 
impressive 93% accuracy. Dech Thammasiri et al. [19] 
introduced a model to predict poor academic performance 
among freshmen. They utilized four classification methods and 
three balancing techniques to address class imbalance. The 
most accurate result, with 90.24% overall accuracy, was 
achieved by combining the support vector machine with 
SMOTE. 

The research proposed a prediction approach for online 
student learning performance utilizing learning portfolio data 
[20]. The findings showed that time-dependent variable-
incorporating approaches were more accurate than those that 
did not. It is important to remember, nonetheless, that the 
model was not evaluated in an offline mode, when the 
introduction of time-dependent characteristics would have led 
to a drop in performance. Contrary to previous assumptions, 
Natek and Zwilling [21] emphasized data mining's suitability 
for tiny datasets. It demonstrated a model for predicting student 
achievement using three decision tree techniques and a small 
dataset, with Reptree obtaining an accuracy rate of more than 
90%. 

However, the model did not handle issues with class 
balance or large data dimensionality. Marbouti et al. [22] 
introduced an ensemble model for identifying underperforming 
students, comprising classifiers like NB, SVM, and KNN. The 
dataset featured a crucial attribute: standard-based grading 
assessment alongside the usual score-based grading. When 
compared to six individual classifiers, the ensemble model 
achieved the highest accuracy at 85%. To address multiclass 
classification issues in student performance prediction, a multi-
level model was proposed in a study [23]. Enhancing both the 
overall model accuracy and the accuracy of each classifier 
separately was the aim. The model has two stages: J48 was 
chosen for the subsequent level after resampling and four 
classifiers were used in the first level. After removing outliers, 
resampling with J48 at the second level produced predictions 
for each class that were above 90% accurate overall. Costa et 
al. [24] introduced a model for early student failure diagnosis 
that evaluates preprocessing and data mining strategies. ANNs, 
decision trees, support vector machines, and naïve Bayes were 
among the models and approaches used. Support vector 
machines fared better than the others, according to the findings. 
Although information was gathered from two different sources, 
the model did not take the decrease in categorization mistakes 
into account. 

This research is paramount in its aim to develop a 
sophisticated ML model for predicting student performance, 
leveraging data from reliable sources. The cornerstone of this 
study is the implementation of the Support Vector 
Classification (SVC) technique, chosen for its effectiveness in 

handling the inherent complexities of high-dimensional 
datasets in the educational domain. The decision to focus on 
student performance prediction is underscored by the critical 
role it plays in shaping educational outcomes. What sets this 
study apart is the innovative integration of two optimization 
algorithms, namely the Sea Horse Optimization (SHO) and the 
Adaptive Opposition Slime Mould Algorithm (AOSMA), 
seamlessly woven into the fabric of the SVC model. This 
unique combination of techniques represents a novel approach, 
seeking not only to predict student performance but to elevate 
the precision and accuracy of the predictive model. The 
integration of SHO and AOSMA introduces a layer of 
sophistication, bringing forth the potential to enhance the 
model's predictive capabilities. These optimization algorithms 
are strategically applied, each contributing its unique strengths 
to the overall optimization process. The 𝑆𝐻𝑂  algorithm, 
inspired by the efficient and adaptive nature of sea-horses, aims 
to refine the predictive model by iteratively fine-tuning 
parameters. 

On the other hand, the AOSMA, drawing inspiration from 
the efficient behaviors of slime molds, further contributes by 
guiding the model toward optimal solutions. SVC emerges as a 
fitting choice for predicting student performance due to its 
ability to discern non-linear relationships within intricate 
datasets. It operates by identifying decision boundaries that 
maximize the separation between different performance 
classes, enabling the classification of students into distinct 
categories such as success or failure. The intricate nature of 
educational data demands a tool that can navigate through 
complexities, and SVC proves to be a valuable asset in this 
regard. The ultimate goal of this study is not only to predict 
student performance accurately but also to contribute to the 
broader landscape of educational decision-making. The 
integration of cutting-edge optimization algorithms with a 
powerful machine learning technique like SVC positions this 
research at the forefront of innovation in educational data 
analysis. By seamlessly blending theory and practice, this 
study offers a glimpse into the potential advancements that can 
be made in refining and improving predictive models for 
student performance in educational settings. Related works is 
given in Section II. Section III delves into research 
methodology. An elaborate explanation of the data and an 
assessment of the models based on metrics will be provided. In 
Section IV, the results derived from the training and testing 
phases will be scrutinized, and subsequently, the performance 
of the models based on classification will be reported. Finally, 
in Section V, conclusions regarding the study in question and 
the overall performance of the models will be presented. 

III. RESEARCH METHODOLOGY 

A. Data Processing 

Creating a reliable approach for precisely evaluating 
students' academic performance and the several contextual 
elements that affect it is the main goal of this project. This can 
only be accomplished by doing necessary preprocessing on the 
original dataset. First, textual input must be transformed into 
numerical values. This is a necessary precondition for doing 
machine learning tasks. This translation enables the use of 
sophisticated statistical methods and aids efficient data 
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processing. 649 datasets are included in the dataset, which 
includes a wide range of characteristics that may have an 
impact on students' academic performance. These variables 
include school, sex, age, residence in an urban or rural area 
(𝑎𝑑𝑑𝑟𝑒𝑠𝑠), parental cohabitation status (𝑃𝑠𝑡𝑎𝑡𝑢𝑠), family size 
(𝑓𝑎𝑚𝑠𝑖𝑧𝑒),  parental education and occupations 
(𝑀𝑒𝑑𝑢, 𝐹𝑒𝑑𝑢,𝑀𝑗𝑜𝑏, and 𝐹𝑗𝑜𝑏) , school choice motivation 
(reason), guardian, travel time from home to school, study time 
each week, past class failures (𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑠),  participation in 
supplemental education (𝑠𝑐ℎ𝑜𝑜𝑙𝑠𝑢𝑝),  family educational 
support (𝑓𝑎𝑚𝑠𝑢𝑝),  extracurricular activities, nursery school 
attendance, aspiration for higher education, internet access, 
romantic relationships, family relationship quality, free time, 
socializing frequency, weekday (𝐷𝑎𝑙𝑐) and weekend (𝑊𝑎𝑙𝑐) 
alcohol consumption, and student absences. This study's main 
objective is to forecast and categorize students' academic 
achievement based on the variable 𝐺3, which represents final 
grades from school reports that range from zero (lowest grade) 
to twenty (highest grade). Four separate levels are assigned to 
these grades: A more detailed evaluation of student success is 

made possible by the classifications of Poor (0– 12) , 

Acceptable (12– 14), Good (14– 16), and Excellent (16– 20). 
In the end, this method aims to improve educational practices 
and policy formation by offering a thorough framework for 
comprehending and measuring academic achievement within a 

variety of contextual elements. 

Fig. 1 presents a correlation matrix encompassing input and 
output variables in this study. Study time positively impacted 
academic performance, while previous failures had a negative 
effect. Internet access and aspirations for higher education had 
positive influences, contrasting alcohol consumption's negative 
impact. Parental education, particularly mothers', positively 
affected grades. Daily/weekly alcohol consumption, past 
failures, and student age influenced school grades. 

In conclusion, the matrix emphasizes how crucial study 
time and parental education are to scholastic achievement. The 
dataset was obtained from two secondary schools for 
Mathematics subject [25]. It comprised 32 input features, 
including demographic information, social features, and 
grades, along with a single output denoted as the final grade 
(G3). Datasets were amalgamated to facilitate a feature 
selection method in this study. The dataset underwent 
simplification through the normalization of input features 
within the range of [0,1]. 

In the data preprocessing phase, the inherent complexity of 
educational data was addressed through a robust pipeline. The 
process included identifying and handling missing or erroneous 
data points to ensure dataset integrity. Additionally, numerical 
features were standardized to a common scale to prevent bias 
arising from varying magnitudes. Categorical variables were 
encoded to facilitate machine learning algorithms in 
interpreting and learning from the data. 

 

Fig. 1.  Correlation matrix for the input and output variables. 
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B. Evaluation of Models' Applicability 

Accuracy is a widely used indicator to evaluate a model's 
overall performance in classification challenges. True Positives 
(𝑇𝑃), False Positives (𝐹𝑃), True Negatives (𝑇𝑁), and False 
Negatives (𝐹𝑁) are its four essential building blocks. Correct 
forecasts are represented by 𝑇𝑃, accurate negative predictions 
by 𝑇𝑁 , inaccurate positive predictions by 𝐹𝑃 , and incorrect 
negative predictions by 𝐹𝑁. 

Accuracy, however, has limits when dealing with uneven 
data since it favors the majority class and offers no new 
information. Three further assessment metrics Precision, 
Recall, and F1-Score are used to solve this. 

1) Recall: This metric evaluates a model's ability to 

identify all relevant instances within a specific class correctly. 

It is crucial for reducing 𝐹𝑁 , instances that should be 

identified but are missed. 

2) Precision: Precision assesses the accuracy of positive 

predictions made by the model, reducing False Positives, 

which are instances predicted as positive but do not belong to 

the class. 

3) F1-Score: A fair evaluation of the model's performance 

is provided by the F1-Score, which combines Precision and 

Recall. When considering both minority and majority classes 

in unbalanced data sets, it is invaluable. 

Together, these metrics which are described by 
mathematical formulas (Eq. (1) through Eq. (4)) offer a more 
thorough knowledge of the efficacy of a categorization model. 
They are especially helpful in addressing class disparities that 

may skew how accuracy is interpreted. Researchers and data 

analysts may enhance model performance by using these 
indicators to make better-informed judgments and 
modifications, especially in challenging imbalanced data 
situations. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
                         (1) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
                               (2) 

𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃𝑅 =
𝑇𝑃

𝑃
=

𝑇𝑃

𝑇𝑃+𝐹𝑁
                      (3) 

𝐹1_𝑠𝑐𝑜𝑟𝑒 =
2×𝑅𝑒𝑐𝑎𝑙𝑙 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

𝑅𝑒𝑐𝑎𝑙𝑙+𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
                    (4) 

C. Support Vector Classification (SVC) 

Support Vector Classification is an algorithm rooted in the 
structured principle of minimizing risk within the framework 
of support vector machines [26]. Non-linear transformations 
are applied to the independent variables, projecting them into a 
high-dimensional space. In this space, an optimal hyperplane is 
constructed to separate both classes. The primary goal of this 
hyperplane is to minimize classification errors while 
simultaneously maximizing the margins, which represent the 
total distance from the hyperplane to the closest training 
samples of each class [27]. 

The primary model is subsequently shown in Eq. (5) to Eq. 
(7) [28]. 

𝑚𝑖𝑛𝑤,𝑏,∈
‖𝑊‖2

2
+ 𝐶𝑠𝑣𝑐 ∑ ∈𝑖

𝑁
𝑖=1                        (5) 

𝑦𝑖(𝑤
𝑇 . ∅(𝑥𝑖) + 𝑏) ≥ 1 −∈𝑖        𝑖 = 1, . . . , 𝑁           (6) 

∈𝑖≥ 0           𝑖 = 1, . . . , 𝑁                           (7) 

The function ∅(𝑥𝑖) is a non-linear transformation that takes 
each observation, defined by its explanatory variables 𝑥𝑖, and 
projects it into a higher-dimensional space. 

𝐶𝑠𝑣𝑐  shows a regularization parameter 

𝑤 represents the weight vector related to the explanatory 
variables within the newly defined space, often referred to as 
the "feature space." 

𝑏 signifies a biased term. 

∈𝑖 represent slack variables that indicate the gap or distance 
between the individual observations (𝑖) and the boundary of the 
margin associated with their respective classes. 

Discovering the ideal hyperplane (see Eq. (8)), which 
maximizes the margin within the high-dimensional space, is 
essentially a process of minimizing the norm of the weight 
vector while also minimizing the count of misclassified 
instances. Ultimately, the labels or output variables denote the 
class to which each sample belongs. 

𝐷(𝑥𝑖) = 𝑊
𝑇𝜑(𝑥𝑖) + 𝑏                            (8) 

The scale of the primal model is contingent upon the 
dimensionality of the problem, whereas the dual form is 
contingent on the number of samples. Therefore, when the 
dimensionality is sufficiently high, it becomes more 
advantageous to address the dual model Eq. (9) to Eq. (11). 

𝑚𝑎𝑥𝑎 ∑ 𝑎𝑖
𝑁
𝑖=1 −

1

2
∑ 𝑎𝑖𝑎𝑗𝑦𝑖𝑦𝑗𝐾(𝑥𝑖 , 𝑥𝑗)
𝑁
𝑖=1               (9) 

∑ 𝑎𝑖𝑦𝑖
𝑁
𝑖=1 = 0                                (10) 

0 ≤ 𝑎𝑖 ≤ 𝐶𝑠𝑣𝑐         𝑖 = 1, . . . , 𝑁                    (11) 

A Kernel function, denoted as 𝐾(𝑥𝑖 , 𝑥𝑗), maps each pair of 

data points to a corresponding location in the feature space. 
There are various Kernel functions available, including linear, 
polynomial, radial basis, sigmoidal, and others. The key 
requirement for these functions is that they must be symmetric, 
positive, and semi-definite. Prior research in this field has 
demonstrated that the radial basis Kernel function, as defined 
in Eq. (12), is particularly well-suited for classification tasks 
[29]. Therefore, a radial basis Kernel function is employed 
with 'γ' serving as a hyperparameter that signifies the inverse of 
the range of influence of the data points identified as support 
vectors [30]. 

𝐾(𝑥𝑖 , 𝑥𝑗) = ∅(𝑥𝑖)
𝑅∅(𝑥𝑗) = 𝑒𝑥𝑝(−𝛾‖𝑥𝑗 − 𝑥𝑖‖)        (12) 

Once the model has been solved to estimate the weights 
and the bias term, predictions for new samples can be made 
using Eq. (13). 

𝑆𝑉𝐶     𝑦𝑖 = {
−1 𝑖𝑓 𝑤𝑇∅(𝑥𝑖) + 𝑏 ≤ 0

1 𝑖𝑓 𝑤𝑇∅(𝑥𝑖) + 𝑏 > 0
              (13) 
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D. Sea Horse Optimization (SHO) 

The Sea Horse Optimization (SHO) is a novel 
metaheuristic inspired by the distinctive behaviors of sea 
horses [31]. Sea horses display unique mobility patterns, such 
as periodically wrapping their tails around algal stems in 
response to oceanic currents and exhibiting Brownian motion-
like movements when suspended upside-down. Their 
specialized head shape enables stealthy predatory approaches 
with an impressive 90% success rate. Sea horses reproduce 
through random pairings, allowing their offspring to inherit 
advantageous traits. These behaviors, encompassing mobility, 
predatory tactics, and breeding, form the core principles of the 
SHO algorithm. SHO harnesses the power of swarm 
intelligence to adapt and optimize solutions, emulating the sea 
horse's ability to thrive in its environment. This innovative 
metaheuristic leverages insights from nature to address 
complex problems efficiently. 

The SHO algorithm consists of four key stages, namely, (1) 
initialization, (2) emulating mobility behavior, (3) simulating 
predation behavior, and (4) replicating breeding behavior 
observed in sea horses. Detailed descriptions of each of these 
stages are provided in the subsequent subsections. 

1) Initialization stage: Similar to numerous other 

metaheuristic algorithms, the SHO commences by initializing 

the population. In this context, the population of sea horses 

represents potential problem solutions within the search space, 

which can be mathematically expressed using Eq. (14): 

𝑆 = [
𝑥1
1 … 𝑥1

𝐷

… … …
𝑥𝑃
1 … 𝑥𝑃

𝐷
]                                 (14) 

In Eq. (14), D stands for the variable's dimensionality, P 
indicates the population's size, and s denotes the sea horses 
present within the population. 

In creating each solution, the problem's upper bound (UB) 
and lower bound (LB) are employed as initial reference points 
for random generation. Eq. (15) and Eq. (16) delineate the 
procedure for generating the 𝑖 − 𝑡ℎ individual, denoted as 𝑋𝑖 , 
within the search space [LB, UB]. 

𝑋𝑖 = [𝑥𝑖
1, … , 𝑥𝑖

𝐷]                                  (15) 

𝑥𝑖
𝑗
= 𝑟𝑎𝑛𝑑 ∗ (𝑈𝐵𝑗 − 𝐿𝐵𝑗) + 𝐿𝐵𝑗                   (16) 

The term 𝑟𝑎𝑛𝑑  represents a random number within the 
range [0, 1]. The variable 𝑗 is an integer ranging from 1 to D, 
where D signifies the dimensionality of the problem. The 
variable 𝑖  is a positive integer ranging from 1 to P, with P 

representing the population size. The notation 𝑥𝑖
𝑗
 refers to the 

𝑗 − 𝑡ℎ dimension of the i-th individual within the population. 
The upper and lower bounds for the 𝑗 − 𝑡ℎ  variable in the 

optimized problem is denoted as 𝑈𝐵𝑗  and 𝐿𝐵𝑗 , respectively. 

In the context of a minimum optimization problem, the 
individual with the lowest fitness level is designated as 𝑋𝑏𝑒𝑠𝑡 , 
representing the optimal solution. Conversely, in a maximum 
optimization problem, 𝑋𝑏𝑒𝑠𝑡  corresponds to the individual with 
the highest fitness level. The value of 𝑋𝑏𝑒𝑠𝑡  can be determined 
using Eq. (17): 

𝑋𝑏𝑒𝑠𝑡 = argmin𝑜𝑟max  (𝑓(𝑋𝑖))                   (17) 

In the above formula, 𝑓(𝑋𝑖)  represents the value of the 
objective function for a specific task. 

2) Movement behavior stage: Sea horses exhibit 

movement patterns that are akin to a normally distributed 

random distribution (0,1), resulting in a variety of motion 

behaviors. To strike a balance between exploiting known 

information and exploring new possibilities, the algorithm sets 

a cut-off point at 𝑟1 = 0. This means that half of the sea horses 

are directed towards local search, while the remaining half 

focus on global exploration. The algorithm's subsequent stages 

are then employed to manage and further define the motion 

behavior of these sea horses. 

a) First step: The SHO algorithm's exploration strategy 

is shaped by sea horses' spiral motion, which is affected by 

oceanic vortexes. When the random value 𝑟1 exceeds the SHO 

cut-off point, the algorithm prioritizes local exploitation, 

directing sea horses toward the optimal solution 𝑋𝑏𝑒𝑠𝑡 . Sea 

horses move using Lévy flights, promoting exploration in 

initial iterations and avoiding excessive focus on one area. 

Their spiral motion includes a continuous adjustment of the 

rotation angle, widening the search area around local 

solutions. Eq. (18) is used to generate new positions for sea 

horses, improving the algorithm's search efficiency. 

𝑋𝑛𝑒𝑤
1 (𝑡 + 1) = 𝑋𝑖(𝑡) + 𝐿𝑒𝑣𝑦 (𝜆)((𝑋𝑏𝑒𝑠𝑡(𝑡) − 𝑋𝑖(𝑡) ∗ 𝑥 ∗ 𝑦

∗ 𝑧 + 𝑋𝑏𝑒𝑠𝑡(𝑡)) 

𝑠. 𝑡

{
 

 
𝑥 = 𝑝 ∗ cos (𝜃)

𝑦 = 𝑝 ∗ sin (𝜃)
𝑧 = 𝑝 ∗ 𝜃

𝑝 = 𝑢 ∗ 𝑒𝜃𝑣 }
 

 
                                (18) 

u and v are employed to denote the parameters of the 
logarithmic spiral, which govern the stem length (p). In each 
case of u and v, a constant of 0.05 is established. The variables 
x, y, and z represent the three-dimensional coordinates during 
the spiral motion. θ is chosen randomly from the interval [0, 
2π]. 

Eq. (19) is employed for the computation of the Lévy flight 
distribution function (Levy(z)): 

𝐿𝑒𝑣𝑦(𝑧) = 𝑠 ∗  
𝜔∗𝜎

|𝑘|
1
𝜆

                               (19) 

𝑤 and 𝑘 are randomly generated positive values within the 
range of 0 to 1. The variable 𝑠 remains constant with a fixed 
value of 0.01. 𝜆 is chosen randomly from the range of 0 to 2, 
and in this context, it is specifically set to 1.5. The calculation 
of 𝜎 is determined using Eq. (20). 

𝜎 = (
Γ(1+𝜆)∗sin (

𝜋𝜆

2

Γ(
1+𝜆

2
)∗𝜆∗2

(
𝜆−1
2 )
)                                (20) 

b) Second step: This algorithm phase portrays sea 

horses' Brownian motion as a response to oceanic waves. 

When r1 falls to the left of the cut-off point, the SHO 

algorithm transitions into a drifting mode for its search. This 

shift is vital to avoid trapping the algorithm in local optima. 
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Brownian motion is employed to mimic sea horses' extended 

movement, enabling more efficient exploration of the search 

space. Eq. (21) defines the mathematical representation of this 

behavior. 

𝛽𝑖  denotes the random walk coefficient for the Brownian 
motion, and 𝑙 is a constant parameter set at a value of 0.05. The 
new location of the sea horse at iteration 𝑡 can be computed by 
combining the two described situations using Eq. (22). 

𝑋𝑛𝑒𝑤
1 (𝑡 + 1) = 𝑋𝑖(𝑡) + 𝑟𝑎𝑛𝑑 ∗ 𝑙 ∗ 𝛽𝑡 ∗ (𝑋𝑖(𝑡) − 𝛽𝑖 ∗ 𝑋𝑏𝑒𝑠𝑡) 𝑠. 𝑡 {𝛽𝑡 =

1

√2𝜋
exp (−

𝑥2

2
)}                        (21) 

𝑋𝑛𝑒𝑤
1 (𝑡 + 1) = {

𝑋𝑖(𝑡) + 𝐿𝑒𝑣𝑦(𝜆) ((𝑋𝑏𝑒𝑠𝑡(𝑡) − 𝑋𝑖(𝑡)) ∗ 𝑥 ∗ 𝑦 ∗ 𝑧 + 𝑋𝑏𝑒𝑠𝑡(𝑡)),    𝑟1 > 0

𝑋𝑖(𝑡) + 𝑟𝑎𝑛𝑑 ∗ 𝑙 ∗ 𝛽𝑡 ∗ (𝑋𝑖(𝑡) − 𝛽𝑖 ∗ 𝑋𝑏𝑒𝑠𝑡),   𝑟1 ≤ 0 
                               (22) 

𝑋𝑛𝑒𝑤
2 (𝑡 + 1) = {

𝛼 ∗ (𝑋𝑏𝑒𝑠𝑡 − 𝑟𝑎𝑛𝑑 ∗ 𝑋𝑛𝑒𝑤
1 (𝑡) + (1 − 𝛼) ∗ 𝑋𝑏𝑒𝑠𝑡 ,                 𝑖𝑓   𝑟2 > 0.1

(1 − 𝛼) ∗ (𝑋𝑛𝑒𝑤
1 (𝑡) − 𝑟𝑎𝑛𝑑 ∗ 𝑋𝑏𝑒𝑠𝑡) + 𝛼 ∗ 𝑋𝑛𝑒𝑤

1 (𝑡),          𝑖𝑓  𝑟2 ≤ 0.1 
                               (23) 

Predation Behavior Phase: While sea horses forage for 
zooplankton and small crustaceans, their predation attempts can 
result in success or failure. To address this, the SHO algorithm 
introduces a random variable, 𝑟2 , to differentiate these 
outcomes. With sea horses having a high likelihood of 
successful hunting (over 90%), the critical threshold for 𝑟2  is 
set at 0.1. Successful predation in SHO showcases its capability 
to exploit resources, guided by cues from the best solution's 
proximity to the prey. A successful predation happens when 
𝑟2 exceeds 0.1, leading the sea horse to approach, overtake, and 
capture the prey (best solution). In the case of unsuccessful 
predation, both predator and prey reverse their movements, 
indicating a continuation of exploration. Eq. (23) 
mathematically depicts this predation behavior. 

𝑟2 denotes a randomly generated integer between 0 and 1, 
while 𝑋𝑛𝑒𝑤

1 (𝑡) shows the novel location of the sea horse after 
moving at iteration t. The sea horse's movement step size is 
modified during the pursuit of prey, gradually decreasing with 
each iteration. This adjustment is computed using Eq. (24). 

𝛼 = (1 −
𝑡

𝑇
)

2𝑡

𝑇
                                   (24) 

T represents the maximum number of iterations in the 
algorithm. 

3) Breeding behavior phase: In order to accommodate the 

reproductive patterns of male sea horses, the population is 

divided into two distinct groups, males and females, 

categorized according to their fitness levels. Within the 

framework of the SHO algorithm, the individuals with the 

most favorable fitness scores constitute the group of chosen 

fathers, while the rest of the individuals form the group of 

selected mothers. Eq. (25) illustrates that this partitioning of 

the population into male and female groups serves the purpose 

of preventing an over-concentration of novel strategies and 

encourages the transmission of beneficial traits to both 

mothers and fathers, ultimately benefiting the subsequent 

generations. 

{
𝑓𝑎𝑡ℎ𝑒𝑟𝑠 = 𝑋𝑠𝑜𝑟𝑡

2 (1:
𝑃

2
)

𝑚𝑜𝑡ℎ𝑒𝑟𝑠 = 𝑋𝑠𝑜𝑟𝑡
2 (

𝑃

2
+ 1: 𝑝)

                  (25) 

𝑋𝑠𝑜𝑟𝑡
2  refers to the collection of all 𝑋𝑛𝑒𝑤

2  solutions organized 
in ascending order based on their fitness values. In the context 
of the SHO algorithm, the mothers and fathers correspond to 
the female and male populations, respectively. 

The SHO algorithm operates under the assumption that new 
offspring are created through the random mating of females 
and males within the population. In order to maintain the 
efficiency of the algorithm, it is presumed that each pair of sea 
horses yields only a single offspring, as evidenced in Eq. (26). 

𝑋𝑖
𝑜𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔

= 𝑟3𝑋𝑖
𝑓𝑎𝑡ℎ𝑒𝑟

+ (1 − 𝑟3)𝑋𝑖
𝑚𝑜𝑡ℎ𝑒𝑟         (26) 

𝑋𝑖
𝑓𝑎𝑡ℎ𝑒𝑟

 and 𝑋𝑖
𝑚𝑜𝑡ℎ𝑒𝑟  denote the male and female members 

selected at random, respectively. 𝑖  takes on a positive value 
within the interval [1, 𝑝/2] , where p represents another 
parameter or value within the [0,1], and 𝑟3  is an integer 
generated at random, which can take values within the range of 
[0, 1]. Fig. 2 shows the flowchart of SHO. 

E. Adaptive Opposition Slime Mould Algorithm (AOSMA) 

The Slime Mould Algorithm is based on the oscillatory 
behavior observed in plasmodial slime mould. This organism 
utilizes a feedback mechanism that alternates between positive 
and negative phases along with an oscillatory pattern to 
determine the best path to obtain nutrients [32]. The Adaptive 
Opposition Slime Mould Algorithm (AOSMA) is an innovative 
computational method created to improve the approach 
behavior of slime mould. It achieves this by incorporating an 
adaptive decision-making mechanism that is based on 
opposition-based learning [33]. 

To construct a mathematical model for the AOSMA, it is 
assumed that there are a total of "N" individuals belonging to 
the slime mould species in question residing within the 
specified search space. This search space is defined by a lower 
boundary (LB) and an upper boundary (UB). 

𝑋𝑖 = (𝑥𝑖
1, 𝑥𝑖

2, ⋯ , 𝑥𝑖
𝑑), ∀𝑖 ∈  [1, 𝑁]  shows the location of 

𝑖 − 𝑡ℎ  slime mould in 𝑑-dimension and 𝐹(𝑋𝑖), ∀𝑖 =  [1, 𝑁] 
denotes the fitness of the 𝑖 − 𝑡ℎ slime. 

The following represents the fitness and positions of 𝑁 
slime mould individuals at iteration 𝑡: 

𝑋(𝑥) =

[
 
 
 
𝑥1
1  𝑥1

2   ⋯  𝑥1
𝑑

𝑥2
1  𝑥2

2   ⋯  𝑥2
𝑑

⋮     ⋮      ⋮      ⋮
𝑥𝑁
1   𝑥𝑁

2   ⋯  𝑥𝑁
𝑑]
 
 
 

= [

𝑋1
𝑋2
⋮
𝑋𝑁

]                     (27) 

𝐹(𝑋) = [𝐹(𝑋1), 𝐹(𝑋2),⋯ , 𝐹(𝑋𝑁) ]                 (28) 
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Fig. 2.  Flowchart of SHO. 

In the iteration at 𝑡 + 1 , the slime mould's position has 
progressed, and its spatial arrangement has been enhanced as 
determined by Eq. (29): 

𝑋𝑖(𝑡 + 1) =

{

𝑋𝐿𝐵(𝑡) + 𝑉𝑑(𝑊. 𝑋𝐴(𝑡) − 𝑋𝐵(𝑡))    𝑝1 ≥ 𝛿 𝑎𝑛𝑑 𝑝2 < 𝑚𝑖

                              𝑉𝑒 . 𝑋𝑖(𝑡)     𝑝1 ≥ 𝛿 𝑎𝑛𝑑 𝑝2 ≥ 𝑚𝑖 , ∀𝑖 ∈ [1, 𝑁] 

𝑟𝑎𝑛𝑑. (𝑈𝐵 − 𝐿𝐵) + 𝐿𝐵                               𝑝1 < 𝑧 
 (29) 

𝑋𝐿𝐵 represents the top-performing local slime mould while 
𝑋𝐴 and 𝑋𝐵 denote individuals selected at random. The equation 
incorporates a weight factor (W), along with random velocities 
(𝑉𝑑 and 𝑉𝑒), as well as two randomly chosen values, 𝑝1 and 𝑝2, 
within the range [0, 1]. The fixed value of 𝛿 = 0.03 signifies 
the slime mould's initial chance to explore a random search 
location. Additionally, 𝑚𝑖 represents the threshold value for the 

i-th member in the population, which aids in determining the 
position of the slime mould, and this is computed according to 
Eq. (30) to Eq. (32) 

𝑚𝑖 =  𝑡𝑎𝑛ℎ|𝐹(𝑋𝑖) − 𝐹𝐺|, ∀𝑖 ∈ [1, 𝑁]                 (30) 

𝐹𝐺 = 𝐹(𝑋𝐺)                          (31) 

𝑊(𝑆𝑜𝑟𝑡𝐼𝑛𝑑𝐹(𝑖)) =

{
1 + 𝑟𝑎𝑛𝑑. log (

𝐹𝐿𝐵−𝐹(𝑋𝑖)

𝐹𝐿𝐵−𝐹𝐿𝑤
+ 1)    1 ≤ 𝑖 ≤

𝑁

2

1 − 𝑟𝑎𝑛𝑑. log (
𝐹𝐿𝐵−𝐹(𝑋𝑖)

𝐹𝐿𝐵−𝐹𝐿𝑤
+ 1)   

𝑁

2
< 𝑖 ≤ 𝑁

  (32) 

𝑟𝑎𝑛𝑑  signifies a randomly generated number within the 
range of 0 to 1. 𝐹𝐿𝐵  and 𝐹𝐿𝑤  represent the fitness values 
corresponding to the local best and worst outcomes, while 𝐹𝐺 
and 𝑋𝐺 stand for the global best fitness value and the associated 
global best position, respectively. 
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Sorting fitness values in ascending order can be used when 
dealing with a minimization problem. 

[𝑆𝑜𝑟𝑡𝐹 , 𝑆𝑜𝑟𝑡𝐼𝑛𝑑𝐹  ] = 𝑠𝑜𝑟𝑡(𝐹)                  (33) 

The local best fitness values, as well as the local best slime 
mould 𝑋𝐿𝐵, are calculated using Eq. (34-36). 

𝐹𝐿𝐵 = 𝐹(𝑆𝑜𝑟𝑡𝐹(1))                          (34) 

𝐹𝐿𝑊 = 𝐹(𝑆𝑜𝑟𝑡𝐹(𝑁))                         (35) 

𝑋𝐿𝐵 = 𝑋(𝑆𝑜𝑟𝑡𝐼𝑛𝑑𝐹(1))                     (36) 

The random velocities are denoted as 𝑉𝑑 and 𝑉𝑒, are defined 
as follows: 

𝑉𝑑 ∈ [−𝑑, 𝑑]                                    (37) 

𝑉𝑒 ∈ [−𝑒, 𝑒]                                     (38) 

𝑑 = arctanh (− (
𝑡

𝑇
) + 1)                         (39) 

𝑒 = 1 −
𝑡

𝑇
                                     (40) 

In the context of engineering design problem-solving and 
optimization, the Slime Mould Algorithm (SMA) demonstrates 
significant potential for both exploration and exploitation. The 
enhancement of slime mould rules within the SMA framework 
is contingent on several key scenarios. 

Case 1: When 𝑝1 ≥ 𝑧 and 𝑝2 < 𝑚𝑖, the search guided by the 
local best slime mould 𝑋𝐿𝐵 and two random individuals 𝑋𝐴 and 
𝑋𝐵 with velocity 𝑉𝑑. This step facilitates the achievement of a 
balance between the activities of exploitation and exploration. 

Case 2: When 𝑝1 ≥ 𝑧 and 𝑝2 ≥ 𝑚𝑖, the search is guided by 
the position of slime mould with a velocity 𝑉𝑒. This case assists 
in exploitation. 

Case 3: When 𝑝1  <  𝑧, the individual reinitializes in a 
defined search space. This step helps in exploration. 

Case 1 illustrates that as 𝑋𝐴 and 𝑋𝐵 are two random slime 
moulds, the chances of obtained solutions are not managed 
properly in exploration and exploitation. To overcome this 
shortcoming, local best individual 𝑋𝐿𝐵  can be replaced by 𝑋𝐴. 
Therefore, the 𝑖 − 𝑡ℎ member's position is remodeled as Eq. 
(41): 

𝑋𝑛𝑖(𝑡) =

{

𝑋𝐿𝐵(𝑡) + 𝑉𝑑(𝑊. 𝑋𝐿𝐵(𝑡) − 𝑋𝐵(𝑡))    𝑝1 ≥ 𝛿 𝑎𝑛𝑑 𝑝2 < 𝑚𝑖

                              𝑉𝑒 . 𝑋𝑖(𝑡)                    𝑝1 ≥ 𝛿 𝑎𝑛𝑑 𝑝2 ≥ 𝑚𝑖  

𝑟𝑎𝑛𝑑. (𝑈𝐵 − 𝐿𝐵) + 𝐿𝐵                               𝑝1 < 𝛿 

 

(41) 

Case 2 elucidates that slime mould strategically capitalizes 
on a locale in its vicinity, thereby resorting to a trajectory 
characterized by a diminished level of fitness. To address this 
issue, implementing an adaptive decision mechanism presents 
a superior solution. 

Case 3 highlights that while the Slime Mould Algorithm 
(SMA) supports exploration, a low δ value of 0.03 limits this 
aspect. To address this, introducing an auxiliary exploration 
component is crucial. An effective strategy involves using 

opposition-based learning (OBL) to determine when additional 
exploration is needed [34]. OBL utilizes a specific 𝑋𝑜𝑝𝑖  in the 
search space opposite to 𝑋𝑛𝑖 for each member, improving 
convergence and preventing local minima traps. 𝑋𝑜𝑝𝑖  for the 
𝑖 − 𝑡ℎ  individual in the 𝑗 − 𝑡ℎ  dimension (𝑗 = 1,2,⋯ , 𝑠 ) is 
defined accordingly. This adaptation resolves the limitations of 
Cases 2 and 3 in SMA. 

𝑋𝑜𝑝𝑖
𝑗
= min(𝑋𝑛𝑖(𝑡)) + 𝑚𝑎𝑥(𝑋𝑛𝑖(𝑡)) − 𝑋𝑛𝑖

𝑗(𝑡)       (42) 

The position of the 𝑖 − 𝑡ℎ  member in the minimization 
problem is denoted as 𝑋𝑟𝑖, is defined as follows: 

𝑋𝑟𝑖 = {
𝑋𝑜𝑝𝑖(𝑡)     𝐹(𝑋𝑜𝑝𝑖(𝑡)) < 𝐹(𝑋𝑛𝑖(𝑡))

𝑋𝑛𝑖(𝑡)     𝐹(𝑋𝑜𝑝𝑖(𝑡)) ≥ 𝐹(𝑋𝑛𝑖(𝑡))
         (43) 

An adaptive decision hinges on both the previous fitness 
value, 𝑓(𝑋𝑖(𝑡)),  and the current fitness value, 𝑓(𝑋𝑛𝑖(𝑡)) , 
when a nutrient pathway is exhausted. This scholarly writing 
style supports the need for further research and, as a result, 
improves the position for the next iteration in the following 
manner: 

𝑋𝑖(𝑡 + 1) = {
𝑋𝑛𝑖(𝑡)     𝐹(𝑋𝑛𝑖(𝑡)) ≤ 𝐹(𝑋𝑖(𝑡))

𝑋𝑟𝑖(𝑡)     𝐹(𝑋𝑛𝑖(𝑡)) > 𝐹(𝑋𝑖(𝑡))
 ,    ∀𝑖 ∈ [1, 𝑁] 

(44) 

The AOSMA algorithm described above is presented in 
pseudocode, as depicted in Algorithm 1. 

Algorithm 1: AOSMA Algorithm 

Begin 

Inputs: N, s, T, 𝛿 and select an objective function 𝑓 with search 

boundary range [𝐿𝐵, 𝑈𝐵]. 

Outputs: 𝑋𝐺  and 𝐹𝐺  

Initialization: Randomly initialize the slime mould 𝑋𝑖 =

 (𝑥𝑖
1, 𝑥𝑖

2, ⋯ , 𝑥𝑖
𝑑), ∀𝑖 ∈  [1,𝑁] within the search boundary 𝑈𝐵 and 𝐿𝐵 

for initial iteration 𝑡 =  1. 

while (𝑡 ≤  𝑇) 
Calculate the fitness values 𝐹(𝑋) of 𝑁 slime mould. 

Sort the fitness value. 

Update the local best fitness 𝐹𝐿𝐵 corresponding local best individual 

𝑋𝐿𝐵. 
Update the local worst fitness 𝐹𝐿𝑊. 
Update the global best fitness 𝐹𝐺  and corresponding global best 

individual 𝑋𝐺 . 

Update the weight 𝑊. 

Update the 𝑑  

for (each slime mould 𝑖 =  1: 𝑁) 

Generate random numbers 𝑝1 and 𝑝2. 

Generate the threshold value 𝑚𝑖. 

Evaluate new slime mould position 𝑋𝑛𝑖  
Evaluate the fitness value of the new slime mould F(𝑋𝑛𝑖). 
if (𝐹(𝑋𝑛𝑖) > 𝐹(𝑋𝑖) // Adaptive decision strategy 

Estimate 𝑋𝑜𝑝𝑖. //Opposition-based learning 

Select 𝑋𝑟𝑖  
End 

Update the next iteration slime mould 𝑋𝑖 
end 

Next iteration 𝑡 =  𝑡 +  1 

end 

Return: Global best solution space 𝑋𝐺 . 
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IV. RESULTS AND DISCUSSION 

A. Convergence Results 

The SHO and AOSMA, two potent metaheuristic 
optimization algorithms, were used in this work to optimize 
and fine-tune the SVC model's hyperparameters, especially the 
hybrid models SVSH and SVAO. Improving these algorithms' 
prediction accuracy was the main goal. A convergence curve, 
measuring accuracy over 200 iterations, was used to assess the 
convergence of different optimization techniques, as shown in 
Fig. 3. This curve allowed for the evaluation of convergence 
progress and rate by providing a visual representation of the 
accuracy progression with each repetition. Although the 
convergence rates of the SVSH and SVAO models were 
originally comparable, the SVSH model eventually attained a 
better degree of accuracy. Interestingly, the trend line's linear 
shape at the 150-iteration mark revealed the ideal computing 
efficiency threshold for both models. SVSH showed better 
prediction accuracy throughout the optimization phase. This 
study used SHO and AOSMA to improve SVC models. 

B. Comparing Results of Predictive Models 

Three prediction models were created in this study using a 
categorization technique to forecast students' test performance 
and gradually improve their future grades. The models 
included two others and a single Support Vector Classification 
(SVC) that were improved with the help of the Adaptive 
Opposition Slime Mould Algorithm (AOSMA) and the Sea 
Horse Optimization (SHO). Thirty percent of the dataset was 
used for test, while the remain seventy percent was used for 
train. For every model, Accuracy, Recall, Precision, and F1-
score are shown in Table I for the training and testing stages, 
and Fig. 4 illustrates these values. Higher metric values during 
train than during test indicated that SVSH outperformed the 

other models in terms of train performance. The 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 

metric values achieved by SVSH were 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
0.924, 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 0.930, 𝑅𝑒𝑐𝑎𝑙𝑙 = 0.920, 𝑎𝑛𝑑 𝐹1 −
𝑠𝑐𝑜𝑟𝑒 = 0.920 . In contrast, the SVC model obtained the 
lowest values, with 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 0.887, 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
0.89, 𝑅𝑒𝑐𝑎𝑙𝑙 = 0.89, 𝑎𝑛𝑑 𝐹1 − 𝑆𝑐𝑜𝑟𝑒 = 0.89. 

Based on test results (G3 values), an in-depth analysis of 
649 students was carried out after data processing and a 
thorough assessment of the models' categorization skills 
throughout both the training and testing stages. These pupils 
were divided into four groups: Poor (which included pupils 
with G3 scores between 0 and 12), Acceptable (which included 
pupils with G3 scores between 12 and 14), Good (which 
included pupils with G3 scores between 14 and 20), and 
Excellent (which included pupils with G3 scores between 16 
and 20). 82 pupils were placed in the Excellent category, 112 
in the Good category, 154 in the Acceptable category, and 301 
in the Poor category as a consequence of this classification. 
The findings of this research indicate that 46.38% of students 
had low academic achievement, with the remaining pupils 
displaying acceptable, good, and exceptional educational 
performance, at 23.73%, 17.26%, and 12.63%, respectively. 
The recall, precision, and F1-score Index values are shown in 

Table II and are used as assessment metrics to gauge how well 
the constructed models perform in terms of categorization 
across different student groups. A comparison study that 
considers each of these three Index values is presented in the 
next section. 

1) Precision: A thorough evaluation of two refined 

models showed that the SVSH model had the greatest values 

in the Good and Poor groups when it came to student 

classification, with accuracy scores of 0.88  and 0.97, 
respectively. On the other hand, for the Acceptable group, the 

SVAO model produced a maximum precision value of 0.88. 

With an accuracy score of 0.97, the SVC model fared better 

than the others for the Excellent category. 

2) Recall: The SVSH model showed the greatest recall 

values in the Acceptable and Excellent categories, with scores 

of 0.9 and 0.88, respectively. In contrast, the Good group's 

SVAO model achieved a maximum accuracy value of 0.89. 

The SVC model performed the best for the Poor group, with a 

recall score of 0.98. 

3) F1-score: An improved F1-score indicates that the 

model can balance accurately detecting positive instances 

(precision) with including all true positive cases (recall). 

When all student categories are taken into account, the SVSH 

model performs very well, as seen by F1-scores of 0.92, 0.88, 

0.88, and 0.97 for students who are categorized as Excellent, 

Good, Acceptable, and Poor. 

In summary, when analyzing the complete dataset, the 
SVSH model unequivocally emerges as the top-performing 
predictor among all the models. 

 

Fig. 3.  Convergence curve of hybrid models. 
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TABLE I. RESULT OF PRESENTED MODELS 

Model Phase 
Index values 

𝑨𝒄𝒄𝒖𝒓𝒂𝒄𝒚 𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 𝑹𝒆𝒄𝒂𝒍𝒍 𝑭𝟏 − 𝑺𝒄𝒐𝒓𝒆 

SVC 

𝑇𝑟𝑎𝑖𝑛 0.904 0.900 0.900 0.900 

𝑇𝑒𝑠𝑡 0.887 0.890 0.890 0.880 

𝐴𝑙𝑙 0.904 0.900 0.900 0.900 

SVSH 

𝑇𝑟𝑎𝑖𝑛 0.924 0.930 0.920 0.920 

𝑇𝑒𝑠𝑡 0.877 0.880 0.880 0.880 

𝐴𝑙𝑙 0.924 0.930 0.920 0.920 

SVAO 

𝑇𝑟𝑎𝑖𝑛 0.912 0.910 0.910 0.910 

𝑇𝑒𝑠𝑡 0.892 0.890 0.890 0.890 

𝐴𝑙𝑙 0.912 0.910 0.910 0.910 

 

 

Fig. 4.  Models' prediction performance. 

TABLE II. EVALUATION INDEXES OF THE DEVELOPED MODELS' PERFORMANCE BASED ON GRADES 

Model Grade 
Index values 

𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 𝑹𝒆𝒄𝒂𝒍𝒍 𝑭𝟏 − 𝒔𝒄𝒐𝒓𝒆 

SVC 

𝐸𝑥𝑐𝑒𝑙𝑙𝑒𝑛𝑡 0.970 0.830 0.890 

𝐺𝑜𝑜𝑑 0.830 0.810 0.820 

𝐴𝑐𝑐𝑒𝑝𝑡𝑎𝑏𝑙𝑒 0.860 0.860 0.860 

𝑃𝑜𝑜𝑟 0.930 0.980 0.960 

SVSH 

𝐸𝑥𝑐𝑒𝑙𝑙𝑒𝑛𝑡 0.960 0.880 0.920 

𝐺𝑜𝑜𝑑 0.880 0.880 0.880 

𝐴𝑐𝑐𝑒𝑝𝑡𝑎𝑏𝑙𝑒 0.860 0.900 0.880 

𝑃𝑜𝑜𝑟 0.970 0.970 0.970 

SVAO 

𝐸𝑥𝑐𝑒𝑙𝑙𝑒𝑛𝑡 0.960 0.840 0.900 

𝐺𝑜𝑜𝑑 0.810 0.890 0.850 

𝐴𝑐𝑐𝑒𝑝𝑡𝑎𝑏𝑙𝑒 0.880 0.860 0.870 

𝑃𝑜𝑜𝑟 0.960 0.960 0.960 
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There were, in fact, 301, 154, 112, and 82 kids in the Poor, 
Acceptable, Good, and Excellent categories. To facilitate a 
visual comparison, Fig. 5 presents the student distribution 
across these categories in a visual manner based on the results 
of the measurement and classification models. It is noteworthy 
that the SVSH model successfully classified 139 and 72 

students into the Acceptable and Excellent categories, 
respectively, with the maximum accuracy. Classifying 296 
students properly, the SVC model outperformed the other 
models in the Poor group. Finally, the SVAO model worked 
best for the Good group, correctly classifying 100 pupils. 
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Fig. 5.  Symbol-line drop plot based on measured and classification models' outcomes. 

 

 

Fig. 6.  Confusion matrix for each model's accuracy. 
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The Fig. 6 confusion matrix offers valuable information on 
both the proper placement of pupils in their corresponding 
grades and their incorrect classification into unrelated groups. 
In particular, just 49 students were misclassified when using 
the SVSH model, which properly placed 72, 98, 139, and 291 
students in the Excellent, Good, Acceptable, and Poor courses, 
respectively. However, 57 and 62 pupils, respectively, were 
incorrectly categorized by the SVAO and SVC models. 
Notably, the two optimized models mostly misclassified 
students between surrounding categories. For example, 
students 9 and 13 for SVSH and SVAO were incorrectly put in 
the good group rather than the Excellent category. Three pupils 
were mistakenly assigned to the good category in the single 
SVC model, rather than the poor group. In summary, SVSH 
demonstrated higher predictive accuracy than the other two 
models in predicting students' future academic achievement. 

V. DISCUSSION 

A. Comparison 

Table III compares the accuracy of different models across 
studies. Pallathadka et al. [35] achieved 89% accuracy with 
SVM and 78% with NB. Shreem et al. [36] obtained 87% 
accuracy with NB. In the present study, the SVSH model 
achieved the highest accuracy at 92.4%, surpassing the results 
from previous studies. This highlights the effectiveness of the 
SVSH model in student performance prediction, showcasing its 
potential for improved accuracy compared to SVM and NB 
models in the referenced research. 

TABLE III. COMPARISON WITH PUBLISHED PAPERS 

Article Model Accuracy 

Pallathadka et al. [35] 
SVM 89% 

NB 78% 

Shreem et al. [36] NB 87% 

Present study SVSH 92.4% 

VI. CONCLUSION 

This research emphasizes the critical role that data-driven 
prediction models play in the field of education, stressing the 
value of combining quantitative and qualitative elements in the 
process of predicting and evaluating the academic achievement 
of students. It offers insightful information that will help 
students, academic institutions, and legislators drive future 
advancements in education. The study demonstrates how well 
data mining methods like regression, clustering, and 
classification work to understand and proactively handle the 
variety of problems college students experience. Furthermore, 
by combining the Support Vector Classification (SVC) model 
with optimization methods like Sea Horse Optimization (SHO) 
and the Adaptive Opposition Slime Mold Algorithm 
(AOSMA), the work presents a novel methodology. This 
innovative approach shows how optimization algorithms and 
sophisticated machine learning methods may improve the 
accuracy and efficacy of prediction models, providing a potent 
toolset for tackling the changing obstacles faced by students 
across their academic careers. It is clear from a thorough 
assessment approach that involves splitting the models into 
train and test sets that these hybrid models have the ability to 

greatly improve the SVC model's classification skills. The 
accuracy and precision are significantly improved by this 
addition. 

Notably, the SVSH fared better than the SVAH, scoring 
around 2% higher in accuracy and precision.Furthermore, the 
SHO's success in improving classification accuracy was 
notable when 649 students were classified based on their final 
grades. With an astounding accuracy rate of 92.45%, the SVSH 
model in particular showed remarkable capacity to correctly 
categorize the majority of pupils. By comparison, 8.78% and 
9.55% of all pupils were incorrectly categorized by SVAO and 
SVC, respectively. This demonstrates the SVSH model's 
higher prediction ability in correctly classifying pupils 
according to their final grades. 
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