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Abstract—In the current field of deep learning and music 

information retrieval, automated music generation has become a 

hot research topic. This study addresses the issues of low clarity 

and musicality in current multi-track music generation by 

combining the Actor-Critic algorithm and the Global Value 

Return Network to create a novel multi-track music generation 

model. The study first utilizes the Actor-Critic algorithm to 

generate single-track music rhythm and melody models. Building 

upon this foundation, the study further optimizes the single-track 

models using the Global Value Return Network and proposes the 

multi-track music model. The results demonstrate that the 

harmonization accuracy of the final multi-track music generation 

model ranges from 0.90 to 0.98, with a maximum value of 0.98. 

Additionally, the audience satisfaction and expert satisfaction of 

the model are 0.96 and 0.97, respectively, indicating that the 

model has a high musical appreciation value. Overall, the 

multi-track music generation model designed in this study 

addresses the limitations of single-track music generation and 

produces more rhythmically diverse multi-track music. 

Keywords—AC; global value; return network; track; music 

model; rhythm; melody 

I. INTRODUCTION 

With the advancement of artificial intelligence technology, 
particularly in the field of reinforcement learning, researchers 
are exploring the use of advanced algorithms to simulate and 
reproduce complex music composition processes [1-2]. 
Multi-track music generation involves simultaneously creating 
melodies and harmonies for multiple instruments, making it a 
particularly challenging research direction. It requires not only 
considering the melody generation for individual tracks but 
also coordinating and synchronizing across tracks. Although 
existing researches have achieved certain results in the field of 
single-track music generation, the field of multi-track music 
generation remains an urgent problem to be solved in terms of 
how to effectively coordinate the generation process of each 
track, and how to comprehensively consider the global music 
structure and the long-term value return in the composition 
[3-4]. Among the many attempts, nature-inspired algorithms 
have received particular attention due to their effectiveness in 
optimisation and search problems. For example, Genetic 
Algorithms and Particle Swarm Optimisation algorithms have 
been used as new ways of exploring music composition by 
simulating natural selection or the flight behaviour of flocks of 
birds to generate harmonious melodies. These algorithms 
show potential for generating melodies by iteratively 
searching the solution space, especially in terms of following 
the rules of a particular music theory and composing simple 
melodies. However, despite the progress made by 

nature-inspired algorithms in music generation, they face a 
number of challenges when dealing with complex music 
composition tasks [5-6]. Firstly, these algorithms often rely on 
predefined rules or objective functions which limit their 
application in creative music composition, which not only has 
to follow theoretical rules but also has to be artistic and 
emotionally expressive. Secondly, nature-inspired algorithms 
do not perform well in terms of global structure and long-term 
value maximisation which is particularly important in 
multi-track music generation, as it requires both harmony 
between different tracks and overall expression of a unified 
musical style and emotion. Facing these challenges, this study 
utilizes the Actor-Critic (AC) algorithm from reinforcement 
learning and establishes a global value return network to 
capture the long-term value of music and ensure that the 
generated music has high quality and artistry in terms of 
global structure.  This research is divided into six sections, 
Section I is a brief introduction to the full text, Section II is a 
review of the related literature, Section III is the construction 
of the mono-track multi-track model, and Section IV is the 
testing of the model performance. Discussion and conclusion 
is given in Section V and Section VI respectively.  

II. RELATED WORKS 

AC is a reinforcement learning technique that combines 
value functions with policy gradients. The advantage of this 
algorithm is that it combines the strengths of value functions 
and policy gradients, allowing for effective handling of 
continuous action spaces and complex policy problems. Many 
researchers have conducted studies on the application of AC 
algorithms. Zare et al. employed asynchronous advantage AC 
to address the service placement problem in fog computing 
environments. The paper proposed placing services in the 
local fog domain and leveraging neighboring fog domains 
when necessary to improve resource utilization. Additionally, 
a time-distributed resource allocation technique was 
considered to handle future requests more effectively. 
Simulation results demonstrated that this mechanism 
significantly improved cost efficiency and response speed 
compared to other methods [7]. Scorsoglio et al. proposed a 
feedback-guided algorithm for near-ground lunar operations 
based on AC reinforcement learning. The algorithm had the 
advantages of being lightweight, closed-loop, and capable of 
considering path constraints. Test results showed excellent 
performance of the designed algorithm in path constraint 
problems across various restrictive scenarios [8]. To address 
the limited data storage capacity of Earth observation satellites 
in dense observation scenarios, Wen et al. proposed a 
time-continuous model that jointly considered data 
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transmission and observation tasks. To handle this problem 
more efficiently, a hybrid AC reinforcement learning approach 
was employed in the paper. Experimental results showed that 
this hybrid approach exhibited high efficiency and good 
performance in solving large-scale problems, which was of 
practical significance for the data management and scheduling 
of Earth observation satellites [9]. 

To create works that are both musically sound and 
emotionally impactful, and further explore the possibilities of 
artificial intelligence in artistic creation, many experts have 
built a series of multi-track music generation models using 
various deep learning techniques. Liu researched and 
developed an improved multi-track music generative 
adversarial network model, which was validated by generating 
five different instrument tracks. The research results showed 
that the music snippets generated by the proposed model had 
better artistic aesthetics. In the end, 62.8% of the listeners had 
difficulty distinguishing between the generated melodies and 
real melodies, demonstrating the high authenticity and 
effectiveness of the model in music generation [10]. Wang et 
al. proposed a Transformer-based multi-track music 
generative adversarial network, aimed at adhering to music 
rules to generate works with higher musicality. The model 
utilized the Transformer decoding component and a 
cross-track Transformer improved based on Transformer to 
separately learn information between single tracks and 
multiple tracks. The training of the generative network was 
guided by combining music rules and cross-entropy loss, and a 
well-designed target loss function was optimized when 
training the discriminative network. Experimental results 
demonstrated that the constructed model, on piano, guitar, and 
bass tracks, exhibited higher track prediction accuracy 
compared to other multi-instrument music generation models, 
effectively enhancing the overall quality of music [11]. In the 
face of the challenge of integrating independent melodies in 
polyphonic music composition, Huang et al. proposed an 
innovative multi-voice music composition model. That model 
integrated the concepts of Markov decision processes and 
Monte Carlo tree search and improved upon Wasserstein 
generative adversarial network theory. Through the zero-sum 
game and conditional constraints between the generator and 
discriminator, the model achieved music creation closer to 
unconstrained conditions, and the growth of music sequences 
did not affect their coherence. Experimental results indicated 
that the algorithm proposed in the study outperformed the 
latest methods in multi-voice music generation, demonstrating 
significant advantages [12]. 

Nature-inspired algorithms such as Genetic Algorithms 
(GA), Particle Swarm Optimization (PSO), Ant Colony 
Optimization (ACO), etc., are a class of optimisation 
algorithms that draw on phenomena of nature, such as 
biological evolution, flight of birds, ant colony ant colony 
foraging, etc [13-14]. These algorithms usually mimic certain 
processes in nature to solve optimisation problems, and are 
particularly good at dealing with large-scale and complex 
search space problems. Some scholars have also conducted a 
series of music-related studies using nature-inspired 
algorithms. Majidi M and Toroghi R M propose a method for 
generating polyphonic music works based on multi-objective 

genetic algorithms. This method takes into account both the 
accuracy of music theory and the satisfaction of both expert 
and general listeners. The results show that the method is able 
to produce pleasing pieces that meet the desired style and 
length, and follow grammatical rules to produce harmonies 
[15]. Tian R et al. proposed a music emotion classification 
model combining convolutional neural networks and random 
forests. The model first converts audio data into Mel spectrum 
for feature extraction, then uses random forest algorithm for 
initial emotion classification, and finally achieves 97% 
accuracy in emotion classification, which is 1.2% and 1.6% 
higher than that of traditional particle swarm optimization and 
genetic algorithm [16]. Cao H proposed a system architecture 
based on the combination of edge computing and cloud 
computing to optimize the scheduling strategy of music 
education resources. Compared with the traditional genetic 
algorithm and ant colony algorithm, this method can improve 
the system efficiency by 23% [17]. 

In summary, despite the progress of AC algorithms in 
various fields, their application in multi-track music 
generation is still in its early stages. Existing music generation 
models need improvement in creativity and track harmony. 
Against this background, this study proposes a multi-track 
music generation model that combines AC algorithms with a 
global value return network. The aim is to address this 
challenge and experimentally verify its effectiveness in 
improving the quality of music generation. 

III. MULTI-TRACK MUSIC GENERATION COMBINING AC 

ALGORITHM AND GLOBAL VALUE-BASED NETWORK 

In order to address the rhythm generation, melody 
generation, and multi-track generation issues in the current 
music generation problem, this research first utilizes the AC 
algorithm to construct separate models for melody generation 
and rhythm generation. Based on this, a global value-based 
network is designed to integrate multiple agents, resulting in 
the development of a multi-track music generation model. 

A. Construction of Music Rhythm and Melody Generation 

Models based on AC Algorithm 

In the field of reinforcement learning, let's assume that the 
note sequence and rhythm sequence in the music generation 

problem are represented as  1 2, ,n LS n n n  and 

 1 2, ,r LS r r r , respectively. L L represents the sequence 

length.  1 2, , Ln n n  and  1 2, , Lr r r  represent various 

types of notes and rhythm in the note sequence and rhythm 
sequence, respectively. The specific representation of note 
types is shown in Eq. (1) [18]. 

 1 2, , , 1, 2, i Nn s s s i L     (1) 

In Eq. (1), 
in  represents a specific note type, and N  

represents the number of notes included in that note type. 
When N = 1, it indicates a monophonic output, and when N > 
1, it indicates a polyphonic output. By encoding the note 
sequence and rhythm sequence, the encoded input data 
sequences in Eq. (2) are obtained. 
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In Eq. (2), E

nS  and E

rS  represent the note sequence and 

rhythm sequence after MultiHot  encoding and OneHot  

encoding, respectively. L  represents the length of the 

sequence.  1 2, ,mh mh mh

Ln n n  and  1 2, ,oh oh oh

Lr r r  represent 

the encoded note type and rhythm type, respectively. By 
inputting the encoded note sequence and rhythm sequence into 
the model, we can obtain the output note sequence and rhythm 
sequence, as shown in Eq. (3). 

 

 

1 2

1 2

, ,

, ,

 




g g g g

n L

g g g g

r L

S n n n

S r r r
    (3) 

In Eq. (3), g

nS  and g

rS  represent the output note 

sequence and rhythm sequence, respectively.  1 2, ,g g g

Ln n n  

and  1 2, ,g g g

Lr r r  represent the output note type and rhythm 

type, respectively. Based on Eq. (1) to (3), a complete music 
melody can be obtained, as shown in Eq. (4). 

      1 1 2 2, , , , , ,g g g g g g g

m L LS r n r n r n   (4) 

In Eq. (4), g

mS  represents the complete music melody. 

Based on the definitions of music concepts in Eq. (1) to (4), 
this research combines the AC algorithm to construct the 
music rhythm and melody generation model, referred to as the 
Actor-Critic Melodic Rhythm Generation Model (ACMRGM). 
The specific framework structure of ACMRGM is shown in 
Fig. 1. 
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Fig. 1. ACMRGM model structure diagram. 

In Fig. 1, the constructed music rhythm and melody 
generation model consists of four main parts: data processing, 
network construction, data generation, and sheet music output. 
The data processing part converts the initial music score data 
into a format suitable for inputting into the model and can also 
convert the model output back to a music score file. In the 
rhythm network, assuming that the (Long and Short-Term 
Memory) LSTM network's hidden state and cell state are 
represented as h  and c , respectively, and the output is 

lstmO , the calculation formula for obtaining the output is 

shown in Eq. (5). 

2lstm tO h       (5) 

In Eq. (5), 2

th  represents the second-layer output of the 

rhythm network. The loss function calculation formula for the 
rhythm network is shown in Eq. (6). 

 1 max linearloss soft cross entropy O   (6) 

In Eq. (6), 
linearO  represents the linear transformation 

tensor of 
lstmO  after passing through the Linear layer. 

maxsoft  represents the activation function. cross entropy  

represents cross-entropy. 
1loss  represents the loss value of 

the rhythm network. The operational flowchart of the rhythm 
network model is shown in Fig. 2. 

In Fig. 2, the trained model parameters are first read to 
initialize the rhythm network model. Then, an initial rhythm 
sequence is given as the initial duration data, and the length of 
the generated rhythm sequence is initialized. Next, the initial 
notes pass through the LSTM rhythm network to compute the 
network's output, 

lstmO . The next step involves applying a 

linear transformation to 
lstmO  to obtain 

linearO . 
linearO  then 

goes through an activation function and cross-entropy 
calculation to obtain the probability distribution values. 
Finally, the corresponding rhythm duration is randomly 
selected based on the calculated probability distribution values. 
The formula for rhythm generation is shown in Eq. (7) [19]. 
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Fig. 2. Operation flow chart of the rhythm network model. 

  T

linear lstmO O w b     (7) 

Tw  in Eq. (7) represents the weight matrix of the output 

gate in the LSTM network, while b  represents the bias 

vector. 

In the melody network, it is recognized that there is no 
direct mechanism for generating reward values in the music 
generation environment. Therefore, training an LSTM 
network is proposed to form a reward network and obtain the 
corresponding reward values. Compared to the rhythm 
network, the reward network adds an attention mechanism 
module, which further enhances the ACMRGM model's 
ability to learn important notes. Additionally, the activation 
function maxsoft  is replaced with sigmoid  in the reward 

network to support the generation of polyphonic melodies. 
The formula for the loss function of the reward network is 
shown in Eq. (8). 

 2  linearloss sigmoid cross entropy O   (8) 

In Eq. (8), 
2loss  represents the loss value of the reward 

network. Once the reward network is designed, an melody 
network model is built by combining the LSTM network with 
the Actor and Ctiric networks from the AC algorithm. Both 
the Actor and reward networks consist of LSTM, attention 
mechanism module, Linear layer, and Sigmoid module, while 
the Ctiric network consists of LSTM, attention mechanism 
module, and two Linear layers. Assuming the reward value 
based on music theory rules is 

mr  and the reward value 

obtained by the reward network is 
nr , the formula for 

calculating the reward value of the ACMRGM model is 
shown in Eq. (9). 

   mix m m n nr k r k r    (9) 

In Eq. (9), 
mixr  represents the final reward value of the 

ACMRGM model. 
mk  and 

nk  represent the proportions of 

mr  and 
nr , respectively. The workflow diagram of the 

melody network model is shown in Fig. 3. 

In Fig. 3, the note parameters and melody length are 
initialized first. The initialized note parameters are input into 
the Actor network to obtain the probability distribution values 
of the next action. Then, an action is randomly selected based 
on the probability distribution values. The selected action is 
then transformed into the next state, which is also input into 
the Actor network to obtain the next action. The action 
transformation is repeated an equal number of times as the 
melody length, ultimately generating the corresponding note 
sequence. This note sequence is then combined with the 
rhythm sequence to obtain the complete musical composition. 
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Fig. 3. Operation flow chart of the melody network model. 
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B. Construction of a Multi-AC Melodic Rhythm Generation 

Model by Integrating AC Algorithm and Global 

Value-Return Networks 

To generate polyphonic music with coordinated 
consistency, this study extends the single Actor and Critic 
modules from Section II by increasing their quantity to handle 
multiple musical tracks. Additionally, to ensure coordination 

among different tracks, a centralized Global Reward Network 
is constructed. This network imposes constraints on the note 
relationships between different tracks, ensuring overall 
harmony and consistency [15]. The resulting multi-track 
music generation model is referred to as the 
Multi-Actor-Critic Melodic Rhythm Generation Model 
(MACMRGM), as illustrated in Fig. 4. 
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Fig. 4. MACMRGM model structure diagram. 

In Fig. 4, the MACMRGM model is primarily divided into 
four parts: Data Processing, Network Model, Music 
Generation, and Score Output. ActorM, CriticM, and their 
corresponding target networks are responsible for generating 
the main melody track, while ActorA, CriticA, and their target 
networks handle the accompaniment track. RewardNetM and 
RewardNetA train on the main melody and accompaniment 
tracks, respectively, while RewardNetG, as the global reward 
network, focuses on training the processed track data from the 
data processing module, aiming to ensure coordination 
between tracks. Additionally, the music theory reward module 
and rhythm generation model further enhance the theoretical 
accuracy and rhythmic sense of the music. The combination of 
the output rhythms and melodies from the network model 
section yields the final output score. When processing 
multi-track music data, the workflow is slightly more complex 
compared to single-track music. The processing flow for 
multi-track music data is depicted in Fig. 5. 

In Fig. 5, the processing flow for multi-track music 
includes steps such as inputting audio data sets, dividing audio 
data sets, cutting scores, quantizing, transposing, extracting 
notes, encoding, and outputting audio. Firstly, multiple tracks 
from the score are extracted and divided into audio training 
and testing sets. Next, the divided dataset is segmented into 
smaller sections. If there are changes in tempo within a score, 
the score is cut at those points. The segmented music sections 
are stored as TFRecord-format files, and the music segments 
in these files undergo quantization. After quantization, the 
transposition module is applied. Following the key conversion, 
the main melody, accompaniment track, and synthesized track 
of the score are extracted. These track data are then encoded 
into a multi-hot format and stored as TFRecord-format data 
for training purposes. The synthesized track combines 
synchronized notes from the main melody and accompaniment 

tracks to form harmony. All tracks are combined with the 
rhythm sequence to generate a complete score, which is then 
converted into a MIDI file format. 

During the training of the MACMRGM model, the first 
step involves pre-training three reward networks in the model 
[20-21]. RewardNetM and RewardNetA are trained using the 
main melody track and accompaniment track, respectively, 
while RewardNetG is trained using a synthetic track. The 
one-dimensional array calculation formulas for RewardNetM, 
RewardNetA, and RewardNetG are given by Eq. (10). 

 

 

 

   



  

   


T
m m m m

linear lstm

T
a a a a

linear lstm

T
g g g g

linear lstm

O O w b

O O w b

O O w b

   (10) 

In Eq. (10), m

linearO , a

linearO , and g

linearO  represent the 

one-dimensional arrays of RewardNetM, RewardNetA, and 
RewardNetG, respectively. m

lstmO , a

lstmO , g

lstmO  denote the 

output values of the LSTM networks in the three reward 

networks.  
T

mw ,  
T

aw ,  
T

gw  represent three weight 

matrices, and mb , ab , gb  represent three bias vectors. In 

each of the three reward networks, the calculation process for 
extracting action values from the reward value array is shown 
in Eq. (11) [22-23]. 

    


   


   

m m m

n linear

a a a

n linear

g g g

n linear

R O a

R O a

R O a

    (11) 
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Fig. 5. Multi-track music processing flow chart. 

In Eq. (11), ma , aa , ga  represent the predicted actions 

of RewardNetM, RewardNetA, and RewardNetG, respectively. 
m

nR , a

nR , g

nR  represent the reward value arrays of 

RewardNetM, RewardNetA, and RewardNetG. The final 
calculation formula for the MACMRGM model's overall 
reward value is presented in Eq. (12). 

1 2 3
      m a g

mixr k r k r k r    (12) 

In Eq. (12), 
mixr  represents the model's ultimate reward 

value. mr , ar , gr  represent the reward values of 

RewardNetM, RewardNetA, and RewardNetG, respectively. 

1k , 
2k , 

3k  denote the proportions of the reward values for 

the three networks. After training the reward networks, the 
process involves combining other modules [24-25]. In the 
MACMRGM model, the network structures of ActorM and 
ActorA are consistent with the reward networks, composed of 
LSTM, attention mechanism module, Linear layer, and 
Sigmoid module. The structures of CriticM and CriticA 
continue to consist of LSTM, attention mechanism module, 
and two Linear layers. The training of Actor and Critic 
networks is carried out in an alternating manner, where the 
networks are trained every certain number of steps until the 
specified step limit is reached. The final multi-track music 
generation process is illustrated in Fig. 6. 
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Fig. 6. Multi-track music generation flow chart 

In Fig. 6, the initialization of note 1 and note 2 in the 
model, along with the configuration of the melody length, is 
the initial step. These notes are set as the initial states 1 and 2. 

Initial states 1 and 2 are input into ActorM and ActorA to 
obtain probability distribution values for the next actions. 
Actions 1 and 2 are then randomly selected based on the 
probability distribution values, converted into states 1 and 2, 
and input into ActorM and ActorA to obtain the next actions. 
This process continues until the model performs actions 
updates equal to the length of the melody, resulting in the 
generated note sequences 1 and 2. Finally, the two obtained 
note sequences are combined with the rhythm sequence to 
output a complete multi-track score. 

IV. PERFORMANCE TESTING AND APPLICATION ANALYSIS 

OF DIFFERENT TRACK MUSIC GENERATION MODELS BASED ON 

AC ALGORITHM 

To demonstrate the performance of the single-track music 
rhythm and melody generation model ACMRGM and the 
multi-track music generation model MACMRGM, a 
comparative experiment was conducted using the publicly 
available dataset MAESTRO. The final research results 
indicate that ACMRGM has better music melody and rhythm 
compared to traditional LSTM, Transformer, and Generative 
Adversarial Network (GAN). MACMRGM can generate 
multi-track music with better listening experience compared to 
Bi-Long Short-Term Memory (Bi-LSTM), Bidirectional 
Encoder Representations from Transformers (BERT), and 
Deep Convolutional Generative Adversarial Network 
(DCGAN). 

A. Performance Testing and Application Analysis of 

Single-Track Music Generation Model 

The MAESTRO dataset is a high-quality music 
performance dataset provided by Google's Magenta project. 
The dataset consists of approximately 2000 different types of 
music performances, with all performances stored in MIDI 
format scores and corresponding audio forms. The selected 
2000 music performances were divided into training and 
testing sets in an 8:2 ratio. Since the music types in this 
dataset cover a wide range of styles from classical to modern 
and include both single-track and multi-track performances, it 
is suitable for various music-related machine learning research 
projects. To ensure the consistency of note durations, the 
tempo of the scores was set to 120 BPM. In order to ensure the 
uniqueness of the research results, all experiments were 
conducted on the same computer device. The experimental 
setup and initial network parameters are shown in Table I. 

TABLE I. EXPERIMENTAL ENVIRONMENT AND NETWORK PARAMETER 

CONFIGURATION TABLE 

Experimental equipment Value 

CPU Intel Core i9-10900K 

GPU NVIDIA GeForce RTX 3080 

Memory 11GB 

Operating system Ubuntu 20.04 LTS 

Python version Python 3.8 

Deep learning framework TensorFlow 2.4 and PyTorch 1.7 

Network training optimizer Adam 

Batch size 32 

Epochs 5000 

learning rate 0.001 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 15, No. 3, 2024 

462 | P a g e  

www.ijacsa.thesai.org 

Table I provides the environmental settings and initial 
network parameter values for this experiment. In order to 
evaluate the performance of the single-track music generation 
model, this study selected two metrics, Melodic Harmony 
(MH) and Music Clarity (MC), for testing. Fig. 7 compares 
the MH values of the LSTM, Transformer, GAN, and 
ACMRGM models on the training and testing sets. 

In Fig. 7, the MH values of four models, namely LSTM, 
Transformer, GAN, and ACMRGM, are presented in both the 
training and testing sets. As indicated in Fig. 7(a), when 
testing with any randomly selected five monophonic sources 
from the training set, the maximum MH values for LSTM, 
Transformer, GAN, and ACMRGM models were 0.85, 0.85, 
0.93, and 0.98, respectively. Fig. 7(b) shows that when testing 
with any randomly selected five monophonic sources from the 
testing set, the maximum MH values for LSTM, Transformer, 
GAN, and ACMRGM were 0.83, 0.87, 0.93, and 0.99, 

respectively. Overall, based on Fig. 7, it can be observed that 
ACMRGM model exhibits better stability, while the MH 
values for the other three models fluctuate across different 
monophonic sources, indicating the higher stability of 
ACMRGM model. 

In Fig. 8(a), 8(b), 8(c), and 8(d), the MC values for 
different monophonic music generation models are displayed. 
Utilizing 25 monophonic sources from the dataset as a 
baseline reference for standard pitch, it is evident from Fig. 
8(a), 8(b), 8(c), and 8(d) that, except for the MC values 
generated by the ACMRGM model, which align with the 
baseline, the MC values generated by LSTM, Transformer, 
and GAN models exhibit significant deviations from the 
baseline. The clarity performance of the four models is ranked 
with ACMRGM model being the best, followed by 
Transformer model, and LSTM and GAN models showing 
comparatively poorer performance. 
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Fig. 7. MH values of different single-track music generation models. 
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Fig. 8. MC values of different single-track music generation models. 
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Fig. 9 compares the performance of ACMRGM model and 
Transformer model in practical monophonic music generation 
problems. Choosing a segment of the original monophonic 
musical score as the reference source, as shown in Fig. 9(a), 
the monophonic generated musical scores by ACMRGM 
model and Transformer model are depicted in Fig. 9(b) and 
9(c), respectively. Combining the information from Fig. 9 
reveals that the musical score generated by ACMRGM model 
closely aligns with the original score, while the musical score 
generated by the Transformer model exhibits some differences 
from the original score. 

(b) The case of ACMRGM's 

single-track score generation

(c) The case of Transformer's 

single-track score generation

(a) Original single track sheet music

 

Fig. 9. Single-track music score generation using different single-track 

music generation models. 

B. Performance Testing and Application Effect Analysis 

of Polyphonic Music Generation Models 

In addition to testing the performance of single-track 
music generation models, this study also conducted an 
analysis of the performance and application effects of 
polyphonic music generation models. Chorus Accuracy (CA) 
and Subjective Listening Satisfaction (SLS) were chosen as 
evaluation metrics. The CA values of four polyphonic music 
generation models—Bi-LSTM, DCGAN, BERT, and 
MACMRGM—were obtained as shown in Fig. 10. 

Fig. 10(a) and Fig. 10(b) represent the CA values of 
different polyphonic music generation models in the training 
set and the test set, respectively. From Fig. 10(a), it is 
observed that as the training set size increases from 50 to 250, 
the CA values of the four models vary within the ranges of 
0.72 to 0.83 (Bi-LSTM), 0.78 to 0.88 (DCGAN), 0.81 to 0.90 
(BERT), and 0.90 to 0.98 (MACMRGM). Fig. 10(b) shows 
that with changes in the test set size, the CA values for 
Bi-LSTM, DCGAN, BERT, and MACMRGM range from 
0.73 to 0.82, 0.79 to 0.86, 0.82 to 0.89, and 0.92 to 0.98, 
respectively. 
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Fig. 10. CA values of different multi-track music generation models. 
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Fig. 11. SLS of different multi-track music generation models. 

Fig. 11 illustrates the satisfaction values of both listeners 
and experts for the four polyphonic music generation models, 
represented by the SLS metric. Assuming scores from 0 to 1 
indicate dissatisfaction to satisfaction, it can be inferred from 
Fig. 11 that listeners gave SLS scores of 0.82, 0.86, 0.91, and 
0.96 for Bi-LSTM, DCGAN, BERT, and MACMRGM, 

respectively. Experts' SLS scores were 0.81, 0.84, 0.90, and 
0.97 for Bi-LSTM, DCGAN, BERT, and MACMRGM, 
respectively. In conclusion, the MACMRGM model achieved 
higher satisfaction from both listeners and experts, indicating 
that the music it generated is more enjoyable. 
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Fig. 12. Multi-track music score generation using different multi-track music 

generation models. 
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Fig. 12(a), 12(b), and 12(c) respectively depict an original 
polyphonic music score, a polyphonic music score generated 
by the MACMRGM model, and a polyphonic music score 
generated by the BERT model. By comparing these figures, it 
can be observed that the MACMRGM model is capable of 
faithfully reproducing the multi-track music template, whereas 
the BERT model may exhibit variations in rhythm and melody, 
deviating from the original music. 

V. DISCUSSION 

The multi-track music generation model combining the 
Actor-Critic algorithm and the Global Value Return Network 
proposed in this research aims to solve the problems of 
insufficient track coordination and global music structure 
optimisation in multi-track music generation. By introducing 
the Actor-Critic algorithm, this study first builds a separate 
music rhythm generation model and a melody generation 
model, which is notated as ACMRGM. based on this, the 
single Actor and Critic modules are extended to increase the 
number of the two modules to deal with multiple tracks, and 
then the constraints are imposed on the note relationships 
among different tracks by combining with the global 
value-returns network, which ensures the In MACMRGM, the 
Actor-Critic algorithm enables the constructed multi-track 
generation model MACMRGM to effectively balance the 
contradiction between exploration and exploitation, while the 
global value return network helps MACMRGM to capture the 
long term value and global structure of the music to achieve 
the best results in terms of harmony, accuracy and listener 
satisfaction. Accuracy and listener satisfaction is important to 
achieve significant improvements. The MH and MC values 
were selected as performance test metrics and performance 
comparisons were made with other models. The results show 
that ACMRGM has better performance. Compared with the 
existing literature, the models in this study not only achieved 
significant improvements in technical performance, but also 
demonstrated advantages in musical artistry and listener 
acceptance. For example, although the model based on 
generative adversarial networks proposed by Liu et al. has 
made progress in terms of diversity and novelty of music 
generation, it is still deficient in terms of harmonic accuracy 
and coherence of music structure. The model in this study 
effectively overcomes these limitations by integrating global 
musical structure and long-term value returns, providing a 
new approach to generating multi-track music that is both 
richly diverse and harmonically coherent. 

VI. CONCLUSION 

To ensure that the melodies and rhythms in polyphonic 
music generation models harmonize effectively, thereby 
creating music compositions of greater aesthetic value, this 
research integrated the AC algorithm with a Global Value 
Return Network to develop a novel polyphonic music 
generation model, MACMRGM. Initially, the performance of 
single-track music generation models was assessed. The 
findings indicated that the highest MH value achieved by the 
single-track music generation model, ACMRGM, was 0.99. 
Furthermore, the music generated by this model closely 
aligned with the pitch accuracy of the baseline audio source, 
thereby confirming its capability to produce commendable 

musical rhythms and melodies. In the evaluation of 
polyphonic music generation models, the maximum CA 
values for the four models—Bi-LSTM, DCGAN, BERT, and 
MACMRGM—were 0.83, 0.88, 0.90, and 0.98, respectively. 
The satisfaction ratings from listeners were 0.82, 0.86, 0.91, 
and 0.96 for the aforementioned models, while expert 
satisfaction ratings stood at 0.81, 0.84, 0.90, and 0.97, 
respectively. When provided with a musical score from an 
actual audio source, it was observed that MACMRGM 
generated a more compliant score compared to BERT. In 
summary, both polyphonic models designed in this study 
demonstrated commendable performance and exhibited 
practical applicability. However, given that polyphonic music 
involves various combinations of instruments, future research 
could delve deeper into assessing the performance of the 
proposed models across more intricate combinations of tracks. 
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