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Abstract—In recent years, surface electromyography (sEMG) 

signals have been recognized as a type of signal with significant 

practical implications not only in medicine but also in the field of 

science and engineering for functional rehabilitation. This study 

focuses on understanding the application of surface 

electromyography signals in controlling a robotic arm for 

assisting disabled individuals in Vietnam. The raw sEMG signals, 

collected using appropriate sensors, have been processed using 

an effective method that includes several steps such as A/D 

converting and the use of band-pass and low-pass filters 

combined with an envelope detector. To demonstrate the 

meaningful effectiveness of the processed sEMG signals, the 

study has designed a robotic arm model with complex finger 

movements similar to those of a human. The experimental results 

show that the robotic arm operates effectively, with fast response 

times, meeting the support needs of disabled individuals. 
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I. INTRODUCTION 

Vietnam has a historical association with significant 
national defense wars, resulting in a substantial population of 
veterans and disabled individuals. Additionally, Vietnam is 
presently a developing nation with a considerable demand for 
unskilled labor, alongside an underdeveloped transportation 
infrastructure. This reality has led to a relatively high incidence 
of disability due to labor and/or traffic accidents. According to 
statistics, Vietnam is a country with a high number of disabled 
people, accounting for 7.8% of the population (equivalent to 
7.2 million disabled people aged five years and older), of 
which the rate of disabled children is about 28.3% (equivalent 
to nearly 1.3 million children with disabilities). The two most 
common types of disabilities are mobility disabilities and 
neurological and/or intellectual disabilities, followed by visual 
disabilities. The other types account for less than 10% of the 
total number of people with disabilities [1]. The large number 
of people with disabilities presents a significant challenge for 
society and the Vietnamese government in providing support 
and ensuring their rights. This Fig. 1 highlights the extension of 
the disability problem to the country. Therefore, designing and 
manufacturing prosthetic devices to assist disabled individuals 
in restoring mobility function is one of the urgent issues in 
Vietnam today. 

EMG signals are biological signals obtained by measuring 
voltage related to the current generated in a muscle during 
contraction, providing a measure of muscle nerve activity [2]. 
Methods for collecting EMG signals include invasive and non-
invasive techniques. Invasive electromyography (iEMG) is a 
method of measurement that involves inserting a needle into 
the skin. Non-invasive methods, also known as surface 
electromyography (sEMG), collect data through electrodes 
attached to the skin [3]. This method is more widely used than 
the invasive counterpart due to its safety and ease of use. 
Surface electrodes are divided into two types: wet and dry 
ones. Wet electrodes, mainly containing Ag/AgCl ions, have 
better quality and lower electrode-skin impedance. However, 
these wet electrodes can irritate the skin and their quality may 
decrease over time due to the gel drying out. On the other 
hand, dry electrodes, although they have higher electrode-skin 
impedance, have the ability to capture stronger sEMG signals 
and are easier to use, without requiring surface preparation 
procedures like wet electrodes. For these reasons, the majority 
of sEMG sensor studies have used dry electrodes [4]. 

The placement of sEMG electrodes is crucial for 
successfully distinguishing different finger movements. 
Therefore, it is necessary to understand the muscle structure 
involved in controlling the fingers in order to determine the 
placement of the sEMG electrodes. 

In the forearm, the main muscles involved in finger control 
are the flexor and the extensor muscles. These muscles are 
located on both sides of the wrist and forearm. The flexor 
muscles are primarily located on the front side of the forearm 
and are responsible for flexing the joints in the wrist and 
fingers. These muscles help to curl the fingers and the wrist. 
Examples of major flexor muscles include the flexor digitorum 
profundus and the flexor digitorum superficialis. Meanwhile, 
the extensor muscles are located on the back side of the 
forearm and play a role in extending the joints in the wrist and 
fingers. The extensor digitorum and the extensor digiti minimi 
are important muscles in the extensor group. Both of these 
muscle groups often work together to produce complex 
movements of the wrist and fingers. When the flexor muscles 
contract, they cause the extensor muscles to relax, and vice 
versa. Therefore, in order to obtain the sEMG signals of finger 
activities, the electrodes should be placed on the flexor and 
extensor muscle groups. Additionally, the electrodes should be 
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located in the middle of these muscle groups to capture the 
strongest signals. 

 
Fig. 1. The structure of muscles in the human arm. 

II. RELATED WORK 

Recently, with the development of semiconductor 
technology, there have been many successful studies in 
developing EMG sensors that are increasingly compact, 
consume less power, and are more accurate [5-13]. For 
example, in study [7], the authors implemented a high-
frequency and low-power sEMG signal acquisition system. 
The results showed that the EMG signal samples from the 
proposed system had a correlation coefficient of up to 99.5% 
compared to commercial systems, while the power 
consumption could be reduced by up to 92.72% and the battery 
life extended up to 9,057 times. The study in [8] proposed an 
integrated sEMG sensor with a signal reading circuit, MCU, 
and BLE for human-machine interface (HMI) applications, 
achieving an accuracy and stability of over 95%. This sensor is 
flexible, durable, and lightweight, making it suitable for 
different individuals or for use with different muscle groups, as 
it is constructed on a multi-layer polyimide-coated copper 
sheet. In study [10], the authors developed a high-stability 
capacitive EMG sensor. The sensor is particularly suitable for 
the Otto Bock standard prosthetic limb in real-world 
applications, providing comfort when worn and avoiding skin 
irritation. 

There have been numerous studies using various algorithms 
to classify hand gestures through sEMG signals, with the most 
common ones being Artificial Neural Networks (ANN), Linear 
Discriminant Analysis (LDA), Support Vector Machine 
(SVM), etc. In the past decades, ANN tools have garnered 
significant attention from researchers in the field of EMG 
signal classification. ANN has several advantages in EMG 
signal classification, such as the ability to learn from examples, 
high noise tolerance, and generalization capabilities in high-
dimensional input spaces [14-20]. In one experiment [14], 
researchers meticulously examined a surface electromyography 
(sEMG) signal classification system based on Deep Neural 
Networks (DNN). The results, focusing on eight gestures, 
demonstrated that the DNN-based system outperformed other 
classifiers (with an average accuracy of 98.88%), including 
SVM, kNN, Random Forest, and Decision Tree. In study [15], 
machine learning (ML) algorithm is employed to process 
shoulder and upper limb muscle signals, enabling the 
recognition of motion patterns and real-time control of an 

upper arm exoskeleton. The results demonstrate high accuracy, 
particularly with the SVM algorithm achieving 96 ± 3.8% 
accuracy offline and 90 ± 9.1% accuracy online, showcasing 
the reliability of ML in pattern recognition and exoskeleton 
motion control. Another study introduced a real-time hand 
gesture recognition model employing sEMG with a 
feedforward Artificial Neural Network (ANN), achieving an 
average recognition rate of 98.7% and an average response 
time of 227.76 milliseconds across twelve subjects, each 
performing five gestures [16]. Furthermore, in study [17], the 
authors applied a Fuzzy Inference System and Long Short-
Term Memory network to analyze EMG signals for classifying 
the four main gestures of the hand. The classification results 
achieved an accuracy of 91.3% for the four - dimensional 
actions (Forward/ Reverse/ GripUp/ RelDown), 95.1% for the 
two-dimensional actions (Forward/Reverse), and 96.7% for the 
two-dimensional actions (GripUp/RelDown). In study [18], the 
authors employed Neural Network and Fuzzy Logic to classify 
hand movements using two channels of sEMG. The data were 
collected from ten subjects, and the procedure involved 
preprocessing, feature extraction, dimensionality reduction, 
and pattern recognition. The average classification accuracies 
were 96.08 (±0.9)% and 90.56 (±3)% for Neural Network and 
Fuzzy Logic, respectively. The study [19] introduces a novel 
interval type-2 fuzzy classifier based on an explainable neural 
network for surface electromyogram (sEMG) gesture 
recognition. Achieving a categorization accuracy of 95.04% for 
52 gestures and demonstrating high performance in real 
scenarios, the proposed method holds promise for applications 
such as human intent detection and manipulator control. In 
[20], fuzzy neural networks were employed to represent the 
different elements affecting the primary muscles when the 
shoulder-elbow joint of the upper arm was positioned 
differently. This model utilizes multiple-channel sEMG signals 
as its input and translates them into the torque exerted on the 
human upper limb joints. 

This paper focuses on developing a robotic arm model with 
complex movements controlled by surface electromyography 
(sEMG) signals to assist individuals with disabilities in 
Vietnam. To address this issue, the current research 
concentrates on utilizing sEMG signals to control the 
movements of the robotic arm. This work deals with simulating 
and analyzing the sEMG signals collected from the arm 
muscles, and then applies them to accurately control the robot's 
movements. The remaining sections of the article are organized 
as follows. After Section II presenting related studies, 
particularly on robotics and EMG sensors, a detailed overview 
of the system, from EMG sensors to control units and EMG 
signal processing, will be presented in Section III. Sections IV 
and V will present the experimental results, system 
performance evaluation and relevant discussion. Finally, the 
main points and future research directions are summarized in 
Section VI. 

III. MATERIALS AND METHODS 

A. System Overview 

A detailed description of the components of the proposed 
system is presented in Fig. 2. The relevant explanation for this 
diagram is as follows: 
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1) The surface EMG sensors: The Gravity Analog EMG 

Sensors have been introduced through a collaboration between 

DFRobot and OYMotion. The sensor consists of two 

components, a module containing electrodes and a module 

integrating filtering and amplification circuits. The EMG 

sensor, similar to Gravity sensor (see Fig. 3), amplifies surface 

EMG signals 1000 times and reduces noise through a 

differential input and a similar filtering circuit. The amplified 

EMG signals are sampled using a 10-bit analog-to-digital 

converter (ADC) through the MCU's analog input. 

 
Fig. 2. General system diagram 

 

Fig. 3. Gravity Analog EMG sensor 

2) ATMEGA2560 Microcontroller: Processes EMG 

signals from the sensor, sends processed signals to the 

computer, and simultaneously receives control signals from 

the computer to control finger gestures, corresponding to 5 

Servo motors. 

3) Computer: Battery 1, Battery 2: Power supply for the 

sensors, microcontroller (5 VDC - battery 1), and 5 servo 

motors (12 VDC - battery 2). 

B. EMG Signal Processing 

The EMG sensor, similar to Gravity, amplifies surface 
EMG signals 1000 times and reduces noise through a 
differential input and a similar filtering circuit. The sensor's 
output is an analog voltage signal ranging from 0 to 3.0V 
(corresponding to muscle contraction intensity). This analog 

signal is converted to a digital signal by the 10-bit ADC of the 
microcontroller, with a sampling frequency of 1kHz. The 
digital signal then passes through a second-order Butterworth 
high-pass filter. Finally, the signal goes through an envelope 
detection algorithm, resulting in the final processed signal (see 
Fig. 4). 

 
Fig. 4. Surface EMG signal processing. 

In signal processing, the function of a digital filter is to 
remove unwanted components of the input signal or extract 
useful parts of the signal. A digital filter uses digital processing 
to perform mathematical operations on the input signal in order 
to reduce or enhance specific aspects of the signal. There are 
two types of digital filters: infinite impulse response (IIR) 
filters and finite impulse response (FIR) filters. For a FIR filter, 
the output depends only on the current and previous inputs, and 
the general form of a FIR filter is: 

𝑦(𝑛) = 𝑏0𝑥[𝑛] + 𝑏1𝑥[𝑛 − 1]  + 𝑏2𝑥[𝑛 − 2] + ⋯ + 𝑏𝑁𝑥[𝑁]    
(1) 

On the other hand, IIR filters are recursive, meaning that 
the output depends not only on the current and previous inputs 
but also on the previous output. Therefore, the general form of 
an IIR filter is: 

∑ 𝑎𝑚𝑦[𝑛 − 𝑚] = ∑ 𝑏𝑘[𝑛 − 𝑘]𝑁
𝑘=0

𝑀
𝑚=0  (2) 

A digital filter can be designed as an IIR filter or an FIR 
filter. The advantage of IIR filters over FIR filters is that they 
often meet specific technical specifications with a much lower 
filter order compared to the corresponding FIR filter. For these 
reasons, the authors of this study used IIR filters to process 
EMG signals. A common method for designing IIR filters is to 
design a similar analog filter and then convert it into an 
equivalent digital filter. There are various types of similar low-
pass filters, such as Butterworth, Chebyshev, and Elliptic 
filters. These filters differ in their nature of intensity and phase 
response. Designing similar filters other than low-pass filters is 
based on frequency transformation techniques, creating high-
pass filters, band-pass filters, or band-stop filters equivalent to 
the prototype low-pass filter of the same type. The similar IIR 
filter is then converted into an equivalent digital filter using the 
same transformation method. There are three main conversion 
methods: impulse invariant method, backward difference 
method, and bilinear z-transform. In the article, a second-order 
IIR Butterworth digital filter is used to filter EMG signals. The 
low-cut frequency is set at fcl = 50Hz (to remove low-frequency 
noise) and the high-cut frequency is set at fch =150Hz (to 
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remove high-frequency noise). The sampling frequency of the 
filter is 1kHz, based on references [11-13] which suggested 
that a sampling frequency between 400Hz and 500Hz is 
sufficient for measuring EMG signals. The transfer function of 
the filter is shown in the equation below: 

𝐻(𝑧) =
𝑌(𝑧)

𝑋(𝑧)
=

0,106𝑠−0,212𝑧−1+0,106𝑧−2

1−0,754𝑧−1−0,392𝑧−2+0,754𝑧−3+1,006𝑧−4   (3) 

The final low-pass filter in the EMG signal processing is 
used to smooth the output signal of the envelope detector 
algorithm. This work has designed a first-order IIR digital low-
pass filter with a cut-off frequency of fc = 10 Hz and a 
sampling frequency of fs = 1kHz. The transfer function of the 
filter is presented in (4). 

𝐺𝐿𝑃[𝑧] =
𝑌[𝑧]

𝑈[𝑧]
=

𝑏[0]

𝑎[0]+𝑎[1]𝑧−1
              (4) 

where, Uz is the input and Y[z] is the output. It is assumed 
to set a = [1, -c] and b =[c] to represent the storage elements. 
The parameters of the first-order delay elements are adjusted 
according to the time constant T and the cut-off frequency fc as 
follows: 

𝑇 =
𝑐𝛥𝑡

1−𝑐
=

1

2𝜋𝑓𝑐
   (5) 

Therefore, the factor c can be calculated in (6). 

𝑐 =
1

1+
𝛥𝑡

𝑇

=
1

1+2𝜋𝑓𝑐𝛥𝑡
   (6) 

Applying the signal processing for the sEMG as proposed 
above, the results can be successfully obtained. Fig. 5 
represents three types of the sEMG signal: raw signal, high-
pass filter output and envelope signal. The last one can be 
obviously used for the control of a robotic arm which will be 
presented in the next section. 

 

Fig. 5. Results of the sEMG signal processing. 

IV. RESULTS 

The placement of the actual electrodes is shown in Fig. 6. 
In this figure, electrode 1 is responsible for measuring the 
maneuverability activity of the index finger, electrode 2 
measures the motion activity of the middle finger and index 
finger, and electrode 3 measures the mobility activity of the 
thumb. 

This work utilizes the open-source design of the InMoov 
robot hand, created by Gael Langevin. With its 3D-printed 
structure as shown in Fig. 7, this hand is not only aesthetically 
pleasing but also capable of mimicking natural hand 
movements. InMoov is not just limited to being a sophisticated 
robot product but also an open-source project, encouraging 
community involvement in its development and customization. 
The sEMG signal-controlled system makes it an excellent tool 
for learning and research in the field of assistive robotics. 

When the muscles of the fingers are relaxed, the raw sEMG 
signals obtained from the three sensors maintain a small 
oscillation at the reference voltage threshold (1.5V). This 
oscillation frequency is lower than the high-cut frequency of 
the digital high-pass filter, so these signals are attenuated. As a 
result, both the output signals from the bandpass filter and the 
envelope signals have values of zeros. 

When the fingers contract, the raw signals from the sEMG 
sensors will fluctuate with a higher amplitude at a higher 
frequency. The bandpass filter is used to allow these signals to 
pass through. By applying an edge detection algorithm, we can 
obtain an envelope signal that represents the level of muscle 
contraction, with the magnitude depending on the degree of 
contraction of the corresponding muscle. Fig. 8 with various 
movements of the wrist and fingers illustrates the states of the 
EMG signal channels when performing basic motor tasks. 
Experiment results are totally acceptable in control of a robotic 
arm. 

 
Fig. 6. Actual placements of the electrodes. 

 

Fig. 7. The design of a 3D – robotic arm (InMoov). 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 8. The experimental results on the robotic arm model applied sEMG 

signals. (a) Thumb control, (b) Control of the index and middle fingers, (c) 

Control of the pinky and ring fingers, (d) Hand grasp control. 

The results of the study above have demonstrated the 
effectiveness of the sEMG signal processing system and robot 
arm model in supporting individuals with disabilities. The 
sEMG signal processing system has verifed the ability to 
accurately and stably collect and convert sEMG signals into 
control signals for the robot arm. Filters and signal processing 
algorithms help eliminate noise and create precise control 
signals that respond quickly and flexibly to muscle movements. 

The robot arm model has been able to perform complex 
movements of the fingers accurately and flexibly. The response 
time of the robot arm is fast, responding promptly to control 
signals from sEMG signals. Test results have demonstrated that 
the robot arm model operates effectively and stably under real 
conditions. 

V. DISCUSSION 

The results of this study contribute to the field of 
developing sEMG signal-controlled robotic arms to assist 
individuals with disabilities. Using an effective method of 
collecting and processing sEMG signals, this work has 
successfully designed a robot arm model that can perform 
complex movements similar to those of humans. One of the 
notable points is that the application of filters and signal 
processing algorithms has allowed us to accurately and 
efficiently collect and convert sEMG signals into control 
signals for the robot arm. Experimental results have 
demonstrated that the robot arm is capable of stable operation 
and quick response, properly meeting the support needs of 
disabled individuals. 

However, although this study has achieved positive results, 
there are still a number of further research directions that can 
be explored. Specifically, a significant integration of wrist 
rotations, as well as arm bending and extension, will complete 
the complex movements of the robot arm model. This will 
increase the flexibility and applicability of the robot arm in 
real-life tasks. In addition, the research can also be expanded to 
apply machine learning and artificial intelligence methods to 
improve the precise recognition and control of robot arms 
based on sEMG signals [14-20]. Developments in this area will 
bring significant advances in supporting and enhancing the 
quality of life of individuals with disabilities. 

VI. CONCLUSION 

This paper presents in detail the steps of collecting and 
processing sEMG signals effectively. These sEMG signals 
have been applied to control a robotic arm model with complex 
movements of each finger. The experimental results (see Table 
I of Appendix) confirm that the model works stably and 
efficiently. The future work inspired from this research will 
focus on incorporating additional wrist rotation, as well as 
flexion and extension of the forearm, to complete the complex 
movements of the robotic arm model. In this scenario, the 
model has been fully designed for commercialization and 
widely applied in a developing country like Vietnam. 
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APPENDIX 

TABLE I.  PARAMETERS OF THE MAIN COMPONENTS USED TO DESIGN THE EXPERIMENTAL ARM ROBOT MODEL 

No. Component  Specifications 

1 Gravity Analog EMG 

Supply voltage: + 3.3V ~ 5.5V 
Supply current: >20mA 

Operating voltage: +3.0V 

Detection range: +/- 1.5mV 
Output voltage: 0 ~ 3.0V 

Reference voltage: +1.5V 

Gain: x1000 
Effective spectrum range: 20Hz ~ 500Hz 

2 MG996R Servo Motor 

Motor type: DC motor servo 

Operating range: 0-180 degrees 
Operating voltage: 4.8V ~ 7.2 VDC 

Runing current: 500mA ~ 900mA (6V) 

Stall current: 2.5A (6V) 
Stall torque: 9.4 kgf·cm (4.8 V), 11 kgf·cm (6 V)  

Operating speed: 0.17 s/60º (4.8 V), 0.14 s/60º (6 V)   

Dead band width: 5 µs 

Weight: 55 g 

Dimension: 40.7 x 19.7 x 42.9 mm approx 

Temperature range: 0° ~ 55℃ 

3 ATMEGA32U4-MU 

CPU Family: AVR RISC 

Core Size: 8 bit 
Program Memory Size (KB): 32 

RAM (bytes): 2560 

Data EEPROM (bytes): 1024 
Frequency: 8 Mhz (2.7V), 16 Mhz (4.5V) 

Number of Terminations: 44 

Number of I/Os: 26 I/O 

Operation Voltage (V): 5.5 (Max), 2.7 (Min) 

Supply Current-Max: 15 mA 

Max ADC Resolution (bits): 10 

Number of ADC Channels: 12 

Number of PWM Channels: 8 

Number of Timers/Counters: 5 

Number of USB Channels: 1 

Interface: I2C, SPI, UART/USART, USB 

Temperature range: -40 ~ 85℃ 
 


