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Abstract—Cloud computing is revolutionizing the delivery of 

on-demand scalable and customizable resources. With its flexible 

resource access and diverse service models, cloud computing is 

essential to modern computing infrastructure. In cloud 

environments, assigning Virtual Machines (VMs) to Physical 

Machines (PMs) remains a complex and challenging task critical 

to optimizing resource utilization and minimizing energy 

consumption. Given the NP-hard nature of VM allocation, 

solving this optimization problem requires efficient strategies, 

usually addressed by metaheuristic algorithms. This study 

introduces a novel method for allocating VMs based on the 

Harris Hawks Optimization (HHO) algorithm. HHO has 

exhibited the capacity to provide optimal solutions to specific 

issues inspired by the hunting behavior of Harris's falcons in the 

natural world. However, there are often problems with 

convergence to local optima, which affects the quality of the 

solution. To mitigate this challenge, this study employs a tent 

chaotic map during the initialization phase, aiming for enhanced 

diversity in the initial population. The proposed method, 

Enhanced HHO (EHHO), has superior performance compared to 

previous algorithms. The results confirm the effectiveness of the 

introduced tent chaotic map improvement and suggest that 

EHHO can improve solution quality, higher convergence speed, 

and improved robustness in addressing VM allocation challenges 

in cloud computing deployments. 
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I. INTRODUCTION 

Cloud computing is a revolutionary paradigm that has 
fundamentally changed how we deal with modern computing 
[1]. It offers a diverse array of services and resources over the 
Internet that can be easily customized and accessed as needed 
[2]. This cutting-edge architecture enables consumers to 
leverage configurable computing resources, such as 
applications, storage, servers, and networks [3, 4]. Cloud 
computing is primarily characterized by its capacity to offer 
flexibility, agility, and cost-effectiveness by abstracting and 
virtualizing resources [5]. This enables users to allocate and 
release resources dynamically according to their specific needs 
[6]. Efficiently distributing Virtual Machines (VMs) onto 
Physical Machines (PMs) has become a crucial topic in cloud 
systems [7]. The allocation procedure substantially influences 
the usage of resources, consumption of energy, and overall 
performance of the system in cloud infrastructures [8]. 

VM allocation entails the optimal assignment of VMs to 
PMs to achieve optimal resource utilization, minimize energy 

consumption, and maintain satisfactory performance metrics 
[9, 10]. Due to the intrinsic complexity and NP-hard nature of 
this issue, conventional optimization approaches generally fail 
to deliver efficient solutions within acceptable time limits. 
Meta-heuristic algorithms have become prominent as effective 
and adaptable optimization methods to tackle these difficulties 
[11-13]. These algorithms provide a novel approach to address 
intricate optimization issues using principles derived from 
natural occurrences, social behavior, or biological systems [14-
16]. Meta-heuristic algorithms are crucial in cloud computing 
to develop effective techniques to allocate VMs and find 
feasible solutions to this complex optimization issue [17]. Peer-
to-peer (P2P) file sharing plays a crucial role in VM allocation 
by enabling decentralized distribution of resources, facilitating 
dynamic resource allocation and load balancing [18]. 
Furthermore, the integration of machine learning and deep 
learning techniques in VM allocation enhances decision-
making processes by leveraging historical data and patterns to 
predict resource demands and optimize allocation strategies, 
ultimately improving overall system efficiency and 
performance in cloud computing environments [19, 20]. 

Heidari, et al. [21] introduced the Harris Hawks 
Optimization (HHO) algorithm, drawing inspiration from the 
hunting patterns of Harris hawks in the natural world. This 
algorithm encompasses three distinct stages: exploration, 
transition to exploitation, and exploitation. This algorithm 
distinguishes itself with its simplicity in principles, minimal 
parameterization, and robust local optimization capabilities. Its 
application has extended across various domains, including 
image segmentation, neural networks, control of electric 
machines, and other relevant fields. Despite its merits, the 
HHO algorithm presents limitations, such as restricted 
optimization accuracy, sluggish convergence rates, and 
susceptibility to falling into local optima, aligning with 
challenges prevalent in several meta-heuristic algorithms. 
Consequently, numerous researchers have attempted to 
improve the HHO algorithm. 

For instance, Jia, et al. [22] proposed a mutation technique 
paired with parameter regulation to calculate escape energy 
during the exploration phase, yielding promising outcomes 
through parameter regulation. Houssein, et al. [23] suggested 
the integration of mutation and cross-cooperative gene 
operators, resulting in the development of an optimization 
method using oppositional learning. This innovative approach 
bolstered exploration capabilities and effectively generated the 
initial population. YiMing, et al. [24] integrated the Chan 
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algorithm to compute a starting point and replaced the original 
positions to reduce pointless exploration and augment 
convergence speed. Despite these enhancement strategies, 
there is still much room for improving the HHO algorithm to 
address its inherent limitations. 

A novel approach to VM allocation utilizing the HHO 
algorithm is presented in this study. A new variant of the HHO 
algorithm, Enhanced HHO (EHHO), addresses the limitations 
of the conventional HHO algorithm. By incorporating a tent 
chaotic map during the initialization phase, EHHO attempts to 
increase diversity within the initial population, effectively 
reducing the tendency of the algorithm to converge 
prematurely to local optima. This paper comprises five 
sections. Section II reviews existing research on VM allocation 
algorithms, highlighting their strengths and limitations. Section 
III introduces the HHO algorithm for the VM allocation 
problem. Section IV presents simulation outcomes, validating 
the efficacy of the proposed algorithm. Finally, Section V 
summarizes findings and discusses the implications of EHHO 
for enhancing VM allocation in cloud computing 
environments. 

II. RELATED WORK 

This section provides a comprehensive overview of 
existing research on VM allocation in cloud computing 
environments. The strengths and weaknesses of various 
metaheuristic optimization techniques are discussed. 
Furthermore, the importance of VM allocation for optimizing 
resource utilization and minimizing energy consumption within 
cloud infrastructures is highlighted. Table I provides an 
overview of the methods discussed. 

The increasing need for cloud computing services has led to 
the widespread deployment of worldwide cloud data centers, 
intensifying the difficulty of effectively controlling the energy 
usage of these facilities. Despite numerous software and 
hardware strategies proposed to address this issue, an optimal 
resolution remains elusive. Tarahomi and Izadi [25] proposed a 
novel strategy for managing cloud resources online, utilizing 
the live migration technique of VMs to decrease power usage. 
Their approach combines a power-aware and prediction-based 
VM allocation method and creates a three-tier structure to 
improve the energy efficiency of cloud data centers. 
Experimental findings underscore the effectiveness of their 
approach, demonstrating a noteworthy reduction in power 
consumption while concurrently enhancing service-level 
agreement violation (SLAV). 

The Enhanced-Modified Best Fit Decreasing (E-MBFD) 
Algorithm was used by Shalu and Singh [26] to introduce a 
novel VM allocation methodology. This approach utilizes an 
Artificial Neural Network (ANN) to verify the VMs allocated 
to PMs. In addition, it provides the benefit of detecting 
incorrect assignments brought about by inefficient resource 
use, making the reassignment of these virtual computers easier. 
Empirical evidence demonstrates that the E-MBFD 
methodology surpasses traditional methods in terms of reduced 
SLA violations and decreased power consumption. A VM 
allocation method using the elephant herd optimization scheme 
was presented by Madhusudhan, et al. [27]. Upon conducting 
tests on real-time workloads, the methodology demonstrated 
substantial energy and resource utilization enhancements 
versus conventional approaches. 

TABLE I. COMPARISON OF VM ALLOCATION METHODOLOGIES IN CLOUD COMPUTING ENVIRONMENTS 

Method Methodology Strengths 

[25] Prediction-based and power-aware VM allocation 
Integrates live migration of VMs to reduce power consumption. 
Three-tier framework for energy efficiency 

[26] Enhanced-modified best fit decreasing 
Utilizes artificial neural network. 

Detects and corrects inefficient resource use. 

[27] Elephant herd optimization for VM allocation 
Shows significant improvements in energy consumption and 
resource utilization. 

[28] Hybrid model with hierarchical task prioritization 
Integrates BAT and Bar system model. 

Minimizes VM overload within the data center. 

[29] Energy-aware flower pollination algorithm 
Employs dynamic switching probability. 
Considers memory, storage, and processor constraints for VM 

allocation 

[30] Energy-aware VM allocation using a two-step strategy 
Uses SAG algorithm for VM power reduction. 

Addresses energy consumption through multiple VM power-down 

[31] Auction-based setup for online VM allocation 
Mathematical model for efficient resource use. 

Aims to maximize social welfare through resource allocation 

Sreenivasulu and Paramasivam [28] suggested an 
innovative hybrid approach that utilizes a hierarchical method 
to rank tasks prior to their submission to the scheduler. The 
Bandwidth-Aware Divisible Task (BAT) scheduling 
framework was upgraded by incorporating the Bar system 
approaches, resulting in an advanced hybrid optimization 
strategy. To mitigate VM overload within the data center, the 
hybrid model incorporates the Minimum Overload and 
Minimum Lease policy, facilitating pre-emption. The 
performance of this hybrid model was assessed through 
comprehensive evaluation using various parameters. The 

simulation outcomes convincingly demonstrated the efficacy 
and efficiency of this novel hybrid model. 

Feng, et al. [30] propose an energy-aware VM allocation 
method. Using a two-step SAG algorithm, multiple VMs in 
cloud data centers can be powered down to reduce energy 
consumption. SAG was evaluated through extensive 
experiments, and its performance was measured and compared 
with other typical algorithms. In experiments, the global-
energy-aware VM allocation method reduced cloud data center 
energy consumption compared to different algorithms. The 
problem of online VM allocation with multiple types of 
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resources is addressed by Liu and Liu [31]. To achieve the 
most efficient overall use of resources, they proposed an 
accurate mathematical model based on an auction-based setup. 
Multiple VMs are provided and allocated efficiently to 
maximize social welfare and encourage users to provide 
truthful requests. 

Usman, et al. [29] suggested the Energy-Aware Flower 
Pollination Algorithm (E-FPA) to distribute VMs within cloud 
data centers. Employing an optimization strategy named 
Dynamic Switching Probability (DSP), the allocation process 
efficiently discovers near-optimal solutions while exploiting 
local and global searches. This approach considers the 
limitations of PMs in terms of memory, storage, and processor 
while prioritizing energy-conscious allocations. As evidenced 
by MultiRecCloudSim, using the planet data, E-FPA 
outperformed First Fit Decreasing (FFD) by 24%, Order of 
Exchange Migration (OEM) by 21% and genetic algorithm by 
22%. Consequently, implementing E-FPA significantly 
enhanced data center performance, thereby contributing to 
improved environmental sustainability. 

III. PROPOSED METHOD 

A. Cloud Model 

Cloud computing architecture facilitates the effortless 
storage, retrieval, and concurrent handling of large volumes of 
data. Cloud resources, such as PMs and VMs, perform tasks in 
response to user requests. VM migration is a process 
specifically designed to address customer requirements 
promptly and flexibly, thereby ensuring the effective delivery 
of cloud-based offerings. Cloud computing uses resource 
allocation methods for efficiently assigning resources to VMs 
for task execution. Given that the effectiveness of the cloud 
model can be affected by performance degradation and overall 
cloud operation, it is crucial to design resource allocation 
algorithms carefully. Each task in the cloud is assigned a 
distinct deadline and duration. Following the principle of 
minimizing costs, the resource allocator assigns tasks to 
available VMs. The resource allocator consistently changes the 
state of VMs to guarantee appropriate task allocation and 
execution. Fig. 1 illustrates the process of allocating resources 
in the cloud model. 

 

Fig. 1. Resource allocation process. 

B. Problem Statement 

The need to allocate resources efficiently in cloud service 
provisioning, taking into account service needs and 
reconfiguration costs, has resulted in the development of a new 
computing architecture in the cloud environment. This study 
presents an efficient strategy for allocating resources in the 
cloud computing architecture, utilizing the suggested EHHO 
algorithm. The EHHO algorithm is utilized to achieve optimal 
resource allocation, hence improving the overall efficiency of 
the cloud model. Due to cloud resources' extensive and 
dispersed characteristics, efficient resource allocation is 
essential for attaining maximum performance. PM oversees 
and regulates VMs, which differ in terms of MIPS and memory 

allocated to CPUs. The resource allocation paradigm includes 
many VM service suppliers associated with VMs, including 
private and external organizations. Given two PMs, labeled as 
P1 and P2, and five VMs, labeled as V1, V2, V3, V4, and V5, 
respectively, user-assigned tasks are performed utilizing these 
VMs. The collection of VMs is represented as V = (V1, V2, V3, 
V4, V5). Users submit applications labeled as A, each consisting 
of distinct tasks labeled as s. Utilizing the EHHO algorithm in 
the resource allocation strategy greatly improves the efficiency 
of the cloud model. 

C. Task Flow 

Consider three tasks, denoted as s1, s2, and s3, each with 
corresponding deadlines D1, D2, and D3, start times S1, S2, and 
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S3, and runtimes R1, R2, and R3. These parameters are outlined 
in Table II, along with the task flow. These tasks are assigned 
to a VM for processing. The EHHO algorithm assigns tasks to 
VMs after receiving an application for cloud processing. VM 
allocation decisions consider variables such as runtime, 
deadline, and cost. The cloud architecture encompasses both 
public and private clouds, with a preference for allocating tasks 
to the private cloud due to its cost-free resources. Assigning the 
task with the lowest resource cost to the VM for efficient 
resource allocation is accomplished using the proposed 
optimization algorithm by evaluating the deadline and runtime 
of arriving tasks. 

TABLE II. TASK FLOW 

Tasks Start time Runtime Deadline 

s1 S1 R1 D1 

s2 S2 R2 D2 

s3 S3 R3 D3 

Consider three different applications, denoted as T1, T2, and 
T3, each comprising various tasks. Table III details the tasks' 
deadlines, runtimes, and start times for each application. The 
start time for all tasks is indicated as 1. Tasks s1 and s2 belong 
to application T1, tasks s3, s4, and s5  belong to T2, and tasks s6 
and s7 belong to T3. The resource allocation decisions are 
driven by the EHHO algorithm, prioritizing tasks based on 
their cost-effectiveness, runtime, and deadline considerations. 

TABLE III. TASK DEADLINES, RUNTIMES, AND START TIMES FOR 

DIFFERENT APPLICATIONS 

Parameter 
Application (T1) Application (T2) Application (T3) 

S1 S2 S3 S4 S5 S6 S7 

Start time 1 1 1 1 1 1 1 

Runtime 2 2 3 2 4 3 3 

Deadline 4 3 6 5 4 7 8 

Table IV illustrates resource allocation to VMs, considering 
their defined deadline and runtime. Tasks are allocated to VMs 
based on the lowest cost of each task. Assigning tasks to VMs 
is done based on the proposed EHHO, which ensures that tasks 
are completed within the constraints of the runtime and 
deadline. 

TABLE IV. TASKS DETAILS 

Time slots V1 V2 V3 

P1 s2 s5 s4 

P2 s2 s5 s4 

P3 s2 s5 s6 

P4 s1 s5 s6 

P5 s1 s5 s6 

P6  s3 s7 

P7  s3 s7 

P8  s3 s7 

Consider eight-time slots and three VMs for task allocation. 
For tasks s1 and s2 under application T1 with values of 0.4 and 
0.2, respectively, s2 has the minimum value. Consequently, s2 
is allocated to V1 due to its minimum cost. Given that the 
runtime of s2 is 2 and the deadline is 3, it executes in V1 during 
time slots P1 and P3. With a runtime and deadline of 2 and 4 
for s1, it is allocated to V1 during time slots P4 and P5. For tasks 
s3, s4 and s5 under application T2 with values of 0.5, 0.6 and 
0.4, respectively, s5 has the minimum value and is allocated to 
V2 during time slots P1-P5, given that the runtime of s5 is 5. 
Then, s3 is allocated to V2 during time slots P6-P8. Similarly, 
the remaining tasks are allocated to VMs based on their 
minimal values. 

D. Fitness Function 

The EHHO algorithm, introduced in this study, assigns 
tasks to VMs at the lowest cost. The EHHO algorithm 
performs resource allocation by taking into account fitness 
values linked to characteristics, including skewness, resource 
utilization, MIPS, RAM, and CPU usage. Fig. 2 illustrates the 
suggested strategy for allocating cloud resources. Cloud 
resources are allocated based on the solution vector encoded 
for best performance. As shown in Fig. 3, each task is 
associated with a solution vector. The suggested optimization 
approach distributes tasks to VMs, prioritizing the task with the 
lowest value. When allocating resources in the cloud, tasks are 
compared based on their values. The solution vector has the 
form [1 × 7], representing the allocation of seven tasks. 

 

Fig. 2. Resource allocation model based on EHHO algorithm. 
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Fig. 3. Solution encoding. 

The fitness evaluation aims to compute the fitness function 
and acquire satisfactory solutions. The fitness function with the 
lowest score is considered to be the optimal one. The fitness 
value is computed using Eq. (1). 

𝑓 = ∑ 𝑅𝑛 + ∑ (𝐹𝑚 + (1 − 𝐵𝑚) + 𝐺𝑚)
𝑝
𝑚=1

𝑡
𝑛=1  (1) 

where, t refers to task count, Gm represents skewness, Bm 
reflects the resource utilization of mth VM, Fm indicates nth VM 
cost, and Rn stands for the runtime of nth task. The terms Bm and 
Gm are defined by Eq. (2) and Eq. (3), respectively. 

𝐵𝑚 =
𝑈𝑚

𝑣 ×𝑄𝑚
𝑣 ×𝐿𝑚

𝑣

𝑈𝑚
𝑡 ×𝑄𝑚

𝑡 ×𝐿𝑚
𝑡 ×

𝑊𝑢

𝑊𝑥
  (2) 

𝐺𝑚 = (
𝐵𝑚

𝐵
− 1)2   (3) 

where, 𝑈𝑚
𝑣  signifies the MIPS usage of the mth VM, 𝑄𝑚

𝑣  
describes the memory usage of the mth VM, and 𝐿𝑚

𝑣  indicates 
the CPU usage of the mth VM. 𝑈𝑚

𝑡  stands for the available 
MIPS, 𝑄𝑚

𝑡  represents the available memory, and 𝐿𝑚
𝑡  represents 

the entire CPU capacity in the mth VM. 𝑊𝑢 refers to the use of 
a time slot, whereas 𝑊𝑥 represents the maximum total number 
of slots. 

E. Improved HHO Algorithm for Resource Allocation 

The HHO algorithm employs mathematical equations to 
simulate Harris Hawks' hunting behavior to identify the most 
optimal solutions for problems. The Harris hawks in this 
algorithm serve as the candidate solutions, while the prey 
symbolizes the ideal solution [32]. The HHO algorithm 
consists of two phases: global exploration and local 
exploitation. The transition from global exploration to local 
exploitation is determined by the energy equation of the prey, 
calculated by Eq. (4) and Eq. (5), where E denotes the escape 
energy of the prey, E0 represents the initial energy state of the 
prey, T is the maximum number of iterations, and rand is a 
random number between 0 and 1. When the absolute value of E 
is greater than or equal to 1, the HHO algorithm enters the 
global exploration phase. On the other hand, when the total 
value of E is less than 1, local exploitation begins. The 
different phases of the HHO are depicted in Fig. 4, illustrating 
how hawks trace, encircle, and ultimately attack their prey. 

𝐸 = 2𝐸0(1 −
𝑡

𝑇
)   (4) 

𝐸0 = 2 × 𝑟𝑎𝑛𝑑 − 1  (5) 

During the period of global exploration, the Harris hawks 
thoroughly examine and oversee the search space, which is 
determined by the lower bound (lb) and upper bound (ub). 
They employ two distinct tactics to look for prey in a random 
manner. The Harris hawks' location is updated in each cycle 

with a certain probability (q) using Eq. (6). The equation 
relates the locations of the Harris Hawks in the (t + 1)th and tth 
iterations, denoted as Xt+1 and Xt, respectively. The variable 
Xprey,t represents the prey locations in the tth iteration. r1, r2, r3, 
r4, and q are uniformly distributed random variables in the 
range [0, 1]. lb and ub represent the bottom and upper limits of 
the search space, respectively. The variable Xrand,t represents 
the random position of the Harris hawks in the tth iteration. The 
variable Xaverage,t represents the mean location of the Harris 
hawks in the tth iteration, given a population size of N. 

 

Fig. 4. HHO steps. 

𝑋𝑡+1 = 

{
𝑋𝑟𝑎𝑛𝑑 − 𝑟1|𝑋𝑟𝑎𝑛𝑑 − 2𝑟2𝑋𝑡|                                          𝑞 ≥ 0.5

(𝑋𝑝𝑟𝑒𝑦,𝑡 − 𝑋𝑎𝑣𝑒𝑟𝑎𝑔𝑒,𝑡) − 𝑟3(𝑙𝑏 + 𝑟4(𝑢𝑏 − 𝑙𝑏))       𝑞 < 0.5

 (6) 

These equations and strategies are utilized to guide the 
search for optimal solutions by the Harris hawks, simulating 
their hunting behavior to approach the optimal solution 
iteratively. 

𝑋𝑎𝑣𝑒𝑟𝑎𝑔𝑒,𝑡 =
1

𝑁
∑ 𝑋𝑖,𝑡

𝑁
𝑖=1        (7) 

During the local exploitation stage, the value of E plays a 
vital role in determining the besiege technique used by the 
Harris hawks. A gentle besiege technique is undertaken when 
the magnitude of E is larger than or equal to 0.5. On the other 
hand, if the absolute value of E is less than 0.5, a rigorous 
besiege tactic is executed. The likelihood of the prey's 
successful escape is governed by the randomly generated 
variable u, created at initialization. If the value of u is larger 
than or equal to 0.5, then the prey can escape successfully. 
HHO employs four tactics to replicate the chase attack 
behaviors observed in Harris hawks, taking into account both 
the hawks' pursuit approach and the escape behavior of their 
prey. 

When the escape energy E of the prey is sufficient and u is 
greater than or equal to 0.5, the Harris hawks gradually 
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consume the prey's energy. They then execute a surprise dive 
in the best position to capture the prey. The position update 
strategy is given by Eq. (8)-(10), where Δ𝑋𝑡  represents the 
difference between the positions of the Harris hawks and the 
prey during each iteration, J denotes the random jump of the 
prey when escaping, and r5 is a random number between 0 and 
1. 

𝑋𝑡+1 = Δ𝑋𝑡 − 𝐸|𝐽𝑋𝑝𝑟𝑒𝑦,𝑡 − 𝑋𝑡|  (8) 

Δ𝑋𝑡 = 𝑋𝑝𝑟𝑒𝑦,𝑡 − 𝑋𝑡  (9) 

𝐽 = 2(1 − 𝑟5)   (10) 

When the prey is exhausted and the escape energy E is very 
low (|E| < 0.5), the Harris hawks swiftly raid the prey. The 
position update strategy is expressed by Eq. (11), which 
determines the rapid movement towards the prey. 

𝑋𝑡+1 = 𝑋𝑝𝑟𝑒𝑦,𝑡 − 𝐸|Δ𝑋𝑡|      (11) 

When the escape energy E of the prey is sufficient (|E| ≥ 
0.5) but u is less than 0.5, the Harris hawks establish a soft 
besiege strategy before launching an attack. The Levy function 
(LF) is integrated into HHO to simulate the prey's jumping 
action and escape mode. The position update strategy is given 
by Eq. (12)- (14), where D represents the problem dimension, S 
is a random vector of size 1 × D, u and v are random values 
between 0 and 1, and β is a constant set to 1.5. 

𝑋𝑡+1 = {
𝑌: 𝑋𝑝𝑟𝑒𝑦,𝑡 − 𝐸|𝐽𝑋𝑝𝑟𝑒𝑦,𝑡 − 𝑋𝑡|    𝐹(𝑌) < 𝐹(𝑋𝑡)

𝑍: 𝑌 + 𝑆 × 𝐿𝐹(𝐷)  𝐹(𝑍) < 𝐹(𝑋𝑡)
 (12) 

𝐿𝐹(𝑥) = 0.01 ×
𝑢×𝜎

|𝜐|
1
𝛽

  (13) 

𝜎 = (
Γ(1+𝛽)×sin (

𝜋𝛽

2
)

Γ(
1+𝛽

2
)×β×2

(
𝛽−1

2 )
)

1

𝛽  (14) 

When the prey's escape energy E is insufficient (|E| < 0.5), 
the Harris hawks construct a hard besiege strategy before 
striking, reducing the average position distance between 
themselves and the escaping prey. Eq. (15) represents the 
expression of the position updating approach. 

𝑋𝑡+1 = {
𝑌: 𝑋𝑝𝑟𝑒𝑦,𝑡 − 𝐸|𝐽𝑋𝑝𝑟𝑒𝑦,𝑡 − 𝑋𝑚,𝑡|    𝐹(𝑌) < 𝐹(𝑋𝑡)

𝑍: 𝑌 + 𝑆 × 𝐿𝐹(𝐷)  𝐹(𝑍) < 𝐹(𝑋𝑡)
 (15) 

HHO uses the energy parameter and the factor u to control 
the hunting strategies between the Harris hawks and prey. This 
allows the algorithm to move towards the best possible solution 
for the situation at hand. Recent studies have demonstrated that 
the integration of chaotic maps into population-based 
metaheuristic algorithms can enhance the efficiency of the 
search process. Chaotic maps are commonly incorporated at 

several stages of the algorithm, including the beginning 
population, exploration, or exploitation phase. The primary 
goal of this research is to augment the variety of the beginning 
population. 

The initial location of the population provides a notable 
influence on both the variety of the population and the stability 
of the algorithm. Although the HHO algorithm gives the 
random distribution of population positions during 
initialization, it does not guarantee uniformity. Chaotic 
sequences have the properties of ergodicity and high 
unpredictability, which make them very suitable for improving 
performance. Chaotic mapping produces pseudo-random 
numbers that follow a uniform distribution from 0 to 1. By 
utilizing chaotic mapping, the starting placements of the hawks 
may be altered, thereby enhancing variation. 

The mathematical description of the modification to the 
initial positions is shown in Eq. (16). In this equation, Xi+1 
represents the new position of the hawks after applying chaotic 
mapping, Xi denotes the current position of the hawks, and the 
parameter a is set to 0.7. By incorporating chaotic mapping 
into the initialization process, population diversity in the HHO 
algorithm is effectively enhanced, leading to potential 
improvements in performance. 

𝑋𝑡+1 = {

𝑋𝑖

𝑎
           𝑋𝑖 < 𝑎

1−𝑋𝑖

1−𝑎
   𝑋𝑖 ≥ 𝑎 

          (16) 

IV. EXPERIMENTAL RESULTS 

In this section, we aim to comprehensively assess and 
compare the performance of our proposed resource allocation 
algorithm (EHHO) with several existing approaches. To 
rigorously evaluate the effectiveness of our algorithm, we 
conducted a series of experiments utilizing the Matlab 
simulator version 2016b. Specifically, we selected three related 
algorithms for comparison: Glow Worm Swarm Optimization 
(GWO) [33], genetic [34], Particle Swarm Optimization (PSO) 
[35], and original HHO [21]. These algorithms were chosen 
based on their relevance and established usage in addressing 
similar optimization problems within cloud computing 
environments. The experiments were meticulously designed to 
cover a range of scenarios and configurations outlined in Table 
V. We employed key performance metrics, including 
skewness, CPU usage, memory utilization, and resource 
consumption, to objectively evaluate the effectiveness of our 
algorithm in comparison to the selected benchmarks. 
Furthermore, to ensure the robustness and reliability of our 
findings, each experiment was conducted multiple times, and 
the results were analyzed using statistical methods to account 
for variability and ensure consistency. This systematic 
approach allowed us to draw meaningful comparisons and 
insights regarding the performance of our proposed algorithm 
relative to existing state-of-the-art techniques. 
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TABLE V. SIMULATION PARAMETERS 

Entity Parameter Value 

Datacenter Count 4 

 Number of hosts 1 

 Storage 1,000,000*2 

 Bandwidth 10,000*2 

 RAM 16,384*2 

VM Count 30 

 Bandwidth 1000 

 RAM 512 MB 

 MIPS 1000*2 

Cloudlets 
Total number of 

tasks 
100 

 Task length 200 

Resource utilization is a quantitative indicator that 
calculates the proportion of allocated resources to the overall 
number of available resources. It evaluates the efficiency of 
resource utilization. 

𝑅 =
𝐶

𝑊
            (17) 

Memory usage is the proportion of memory resources that 
are used over a period of time to process all tasks that have 
been submitted. The calculation is performed using Eq. (18), 
where vi represents the total available memory and ui represents 
the memory demanded for task execution. 

𝑀 = ∑
𝑢𝑖

𝑣𝑖

𝑦
𝑖=1    (18) 

CPU utilization refers to the mean amount of CPU 
resources used by all servers when processing user requests. 
Eq. (19) is employed to determine the value, with Hi 
representing the total available CPU resources and Ei denoting 
the CPU resources demanded for task execution. 

𝐶 = ∑
𝐸𝑖

𝐻𝑖

𝑦
𝑖=1    (19) 

Skewness quantifies the degree of asymmetry or lack of 
evenness in a probability distribution. It offers insight into the 
disparate consumption of various resources on a server. 
Skewness arises when a performance manager operates many 
memory-intensive VMs with a low workload, resulting in 
inadequate memory and a shortage of resources to support an 
extra VM. Eq. (20) is used to measure the unevenness in 
resource use throughout a server, which is known as skewness. 
The equation defines R as the resource consumption of the nth 
VM, whereas A represents the average resource utilization. 

𝑊 = (
𝑅𝑛

𝐴
− 1)2   (20) 

The suggested technique demonstrates higher performance 
compared to current algorithms while considering 30 VMs. 
Fig. 5 to Fig. 8 depict the persistent superiority of the EHHO 
algorithm over the PSO, genetic, and GWO algorithms. The 
EHHO algorithm performs better in reducing skewness values, 
achieving faster convergence and maintaining this 
improvement even with increasing iterations. The excellence of 
this system is related to its rapid and precise adjustment to 
different datasets, which is made possible by enhanced learning 
rates and variable adjustments. Therefore, it allows for higher 

levels of effective optimization, resulting in improved 
efficiency. 

Fig. 5 demonstrates that the suggested algorithm improves 
resource utilization in comparison to previous strategies while 
keeping the number of repetitions constant. This emphasizes its 
higher effectiveness and capacity to provide better outcomes 
with fewer repetitions. Moreover, Fig. 6 illustrates that the 
proposed technique has improved efficiency in memory 
utilization, requiring significantly less memory than existing 
methods for the same number of repeats. Fig. 7 demonstrates 
that the proposed method outperforms existing models in terms 
of task efficiency. It achieves greater efficiency by reducing the 
time required to accomplish tasks without altering the number 
of repeats. 

The proposed approach clearly exhibits greater 
performance in comparison to existing algorithms across a 
range of measures. Although the statistics mostly show 
improvements in skewness values, it is crucial to underline that 
the algorithm's advantages also include enhanced memory 
utilization. The EHHO algorithm demonstrates improved 
efficiency in memory use, shown in Fig. 6. This figure clearly 
depicts a decrease in memory usage compared to other 
approaches that have the same number of repeats. This increase 
demonstrates the algorithm's capacity to efficiently allocate 
resources, leading to better usage of memory resources in the 
cloud computing environment. The EHHO method enhances 
resource optimization and operational efficiency in cloud 
computing systems by minimizing memory utilization. 

 

Fig. 5. CPU utilization comparison. 

 

Fig. 6. Memory utilization comparison. 
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Fig. 7. Resource utilization comparison. 

 

Fig. 8. Skewness comparison. 

V. CONCLUSION 

This research introduced an energy-efficient optimization 
method utilizing the HHO algorithm for allocating VMs in 
cloud computing environments. The suggested approach was 
evaluated against conventional techniques such as PSO, GWO, 
and genetic algorithms. Performance testing has shown that 
EHHO is better in several aspects. First and foremost, EHHO 
routinely surpasses other algorithms in terms of skewness. It 
rapidly produces reduced skewness values and maintains them 
consistently, even with additional repetitions. The 
improvement may be ascribed to the algorithm's heightened 
learning rate and parameter adjustment, which allows it to 
adapt to diverse datasets more efficiently. A decrease in 
skewness suggests a more equitable and effective allocation of 
resources among servers. Moreover, the suggested method 
demonstrates enhanced efficiency in utilizing resources. It 
efficiently employs a larger quantity of resources compared to 
current methods during an equivalent number of repetitions. 
This exemplifies its heightened efficacy and capacity to attain 
superior outcomes with fewer repetitions. Efficient allocation 
of resources is essential in cloud computing systems to 
maximize performance and fulfill user requirements. 
Furthermore, the method exhibits exceptional efficiency in 
terms of memory use. It consumes substantially less memory 
than current methods for the same number of iterations. This 
capability is especially beneficial in contexts with limited 

resources when optimizing memory is crucial for efficient task 
execution and overall system efficiency. 

Given the results and consequences of this work, there are 
various possible areas for future research that may be explored 
and developed in the field of cloud computing resource 
allocation. A topic of potential exploration is examining the 
scalability and suitability of the EHHO method for larger and 
more intricate cloud computing settings. This may include 
expanding the algorithm to handle dynamic variations in 
workload, diverse kinds of resources, and many optimization 
targets. Incorporating machine learning approaches, such as 
reinforcement learning or deep learning, might improve the 
flexibility and intelligence of resource allocation choices in 
cloud settings. Moreover, examining the influence of several 
limitations, such as energy consumption, cost minimization, 
and security concerns, on resource allocation algorithms may 
result in the creation of more extensive and resilient 
optimization frameworks. Furthermore, investigating the 
implementation of EHHO in future concepts like edge 
computing and fog computing may provide valuable insights 
into its efficacy in decentralized and distributed computing 
settings. 
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