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Abstract—Climate change is a global issue with far-reaching 

consequences, and understanding regional temperature patterns 

is critical for effective climate change analysis. In this context, 

accurate forecasting of temperature is critical for mitigating and 

understanding its impact. This study proposes an effective 

temperature forecasting approach in Saudi Arabia, a region 

highly vulnerable to climate change's effects, particularly rising 

temperatures.  The approach uses advanced neural networks 

models such as the Long Short-Term Memory (LSTM), Gate 

Recurrent Unit (GRU), and Bidirectional LSTM (BiLSTM) 

model. A comparative analysis of these models is also introduced 

to determine the most effective model for forecasting the mean 

values of temperatures in the following years, understanding 

climate variability, and informing sustainable adaptation 

strategies. Several experiments are conducted to train and 

evaluate the models on a time series data of temperatures in 

Saudi Arabia, taken from a public dataset of countries' historical 

global average land temperatures. Performance metrics such as 

Mean Absolute Error (MAE), Mean Relative Error (MRE), Root 

Mean Squared Error (RMSE), and coefficient of determination 

(R-squared) are employed to measure the accuracy and 

reliability of each model. Experimental results show the models' 

ability to capture short-term fluctuations and long-term trends in 

temperature patterns. The findings contribute to the 

advancement of climate modeling methodologies and offer a basis 

for selecting a suitable model in similar environmental contexts. 
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I. INTRODUCTION 

The environment, human societies, and ecosystems are all 
significantly impacted by climate change, which is a major 
worldwide concern [1]. Being able to predict temperature 
changes with accuracy is a critical component of understanding 
and preventing climate change [2]. Temperature is a crucial 
indication of climate change, which is caused by complicated 
interactions between many environmental elements [2]. 
Climate change may have an influence on agriculture, change 
ecosystems, and cause more frequent and severe weather 
events [3]. To comprehend climate change consequences and 
develop practical adaptation and mitigation plans, an accurate 
temperature forecasting method is required, which is also 
crucial [4]. Numerical weather models that replicate 
atmospheric dynamics are the foundation of conventional 
temperature forecasting techniques [5]. Although these models 
have their uses, they cannot fully represent the intricate, 

nonlinear processes linked to climate change [6]. In contrast, 
machine learning (ML) is particularly worthy of dealing with 
big information [7], traffic recovery [8], social mobilization 
and migration prediction [9], seeing minute patterns [10], and 
responding to shifting circumstances [11]. As a potent 
instrument in climate research, ML provides advanced methods 
for examining past data, seeing trends, and forecasting 
outcomes. The use of machine learning for temperature 
forecasting has contributed greatly to climate change analysis. 
Researchers and scientists may obtain deeper insights into 
climate trends by utilizing ML algorithms [11]. This can help 
them make better-informed decisions and more accurate 
forecasts for reducing the effects of climate change. 
Temperature predictions may be made using linear regression 
and more sophisticated regression algorithms using historical 
data [12]. These models consider a number of variables, 
including location, season, and time of day. For the purpose of 
evaluating temperature data over time and identifying patterns, 
algorithms such as AutoRegressive Integrated Moving Average 
(ARIMA) and Seasonal ARIMA (SARIMA) work well [13]. 
By utilizing the advantages of various methods can improve 
prediction accuracy. However, there is a limitation in capturing 
temporal relationships of time series temperature data, which is 
the gap that the study is trying to fill to improve the 
performance of the forecasting process. The main goal of this 
study is to forecast Saudi Arabia's average temperature patterns 
using sophisticated forecasting techniques. It proposes an 
effective approach to produce accurate and dependable 
forecasts of future temperature trends by utilizing cutting-edge 
methods, including Gate Recurrent Unit (GRU), Bidirectional 
LSTM (BiLSTM), and Long Short-Term Memory (LSTM). 
These recurrent neural networks models have been chosen 
because they are excellent to find complex patterns in 
temperature data and capturing the intricate temporal 
correlations and relationships present in such time series data, 
which makes them useful for predicting applications. Thus, the 
main contributions of the work can be summarized in the 
following points: 

 Proposing a forecasting average temperature approach 
to achieve an accurate analysis of climate change in 
Saudi Arabia. 

 Developing effective neural networks models that are 
able to capture temporal relationships of time series 
temperature data. 
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 Evaluating the proposed approach on a time series data 
of temperatures in Saudi Arabia, taken from a public 
dataset of countries' historical global average land 
temperatures. 

 A comparative analysis of the developed models will be 
introduced to determine the most effective model for 
forecasting the average values of temperatures in the 
next years. 

The rest of the paper is organized into five sections. Section 
II gives a literature review. Section III explains the materials 
and methods in detail.  Section IV presents the experimental 
results and discussions. Finally, section V summarizes the 
conclusion and future work. 

II. LITERATURE REVIEW 

Climate change boosts temperatures and causes water 
scarcity [14]. Extreme weather events such as severe drought, 
heavy downpours, heat waves, and cold waves are becoming 
increasingly regular. Climate change has a wide-ranging 
impact on people's life, including agriculture and fisheries [15], 
mental health [16], physical health [17], and the economy [18]. 
Overall, the potential costs as a result of climate change 
outweighed the advantages. Communities with lower levels of 
socioeconomic development are more likely to endure the 
potential consequences. Many third-world nations are located 
in tropical climates, which are particularly vulnerable to 
climate change. Climate change has led to a significant 
influence on Southeast Asia, North and South India, Sub-
Saharan Africa, West Africa, East and Southern Africa, 
Northern Latin America, and Central America [19]. As a result, 
these nations' food security is exposed and it is critical to 
predict and mitigate the effects of climate change. They are 
required to minimize the vulnerability of life in human-related 
sectors such as ecosystems, health, agriculture and fishing, 
economics, and culture. Monitoring temperature variations is 
one method for anticipating climate change and forecasting 
future temperatures can help humans prepare for future 
conditions. Consequently, the fast growth of statistical 
methodology, certain methods may now be used to forecast the 
future, including temperature. With a large amount of data 
from previous events, regression and statistical modeling tools 
are utilized for creating a relationship between variables [20]. 

Many researchers have employed regression models, 
particularly Autoregression (AR), to predict not only 
temperature but also other scientific variables. Yau et al. [21] 
applied AR and Support Vector Machine Regression (SVMR) 
Integrated Moving Average to predict the daily arrival of 
visitors in southwest China. Witaradya and Putranto [22] 
proposed to use AR for temperature predication and 
investigated its effectiveness as a regression mode for time-
series data. Zakaria et al. [23] used the ARIMA model to 
analyze data from four weather stations in Iraq between 1990 
and 2011. Chen et al. [24] examined monthly mean 
temperatures in Nanjing, China. They used monthly mean 
temperature data from 1951 to 2014 as the training set and data 
from 2015 to 2017 as the testing set to create an ARIMA 
model for their research. Murat et al. [25] introduced research 
on predicting and modeling daily temperature for four 
European sites in various climatic zones using data from 1980 

to 2010. They employed the Seasonal Autoregressive 
Integrated Moving Average (SARIMA), and ARIMA with 
external regression method and demonstrated that the 
generated models could describe the data series and be used to 
estimate future daily temperatures. Dwivedi et al. [26] used the 
SARIMA model to forecast the average temperature for the 
city of Gujarat, India, using data from 1984 to 2015. They 
tested numerous models and chose the best SARIMA model 
for average temperature forecasting based on the Akaike 
Information Criterion (ACI). They examined the model's 
adequacy, and the diagnostics revealed that the model was 
reliable for projecting monthly average temperatures. 

Also, Asha et al. [27] introduced an approach to forecasting 
daily maximum temperatures for four distinct locations in 
Kerala, India, using three different methods: ARIMA, 
SARIMA, and Autoregressive Fractional Integrated Moving 
Average (ARFIMA), utilizing data from January 2019 to 
December 2020. They then examined the performance of three 
techniques using measures such as Mean Squared Error 
(MSE), Mean Squared Error (MSE), and percentage accuracy 
(PA). According to the results, all of the models performed 
well, with the ARFIMA model outperforming the ARIMA and 
SARIMA models. Hennayake et al. [28] proposed a method 
using Long Short-Term Memory (LSTM) model for 
forecasting the most important meteorological variables, such 
as precipitation and temperature, for a weather station in Sri 
Lanka. They evaluated model performance using Mean 
Absolute Error (MAE) and Root Mean Squared Error (RMSE) 
measures. As a consequence, they demonstrated that both 
LSTM models designed for precipitation and temperature 
forecasting functioned well and could be used to forecast 
precipitation and temperature accurately. 

Mitu and Hasan [29] presented a work based on SARIMA 
model for Memphis, Tennessee, using daily temperature data 
from 2016 to 2019. They examined temperature data from that 
time period to identify patterns and transitory fluctuations. 
They employed the Mann-Kendall (M-K) test as a 
nonparametric tool to discover time series analysis trends. 
They also used the SARIMA approach to anticipate the 
temperature for the following 50 days. The prognosis also 
indicated an upward tendency for the location. Dimri et al. [30] 
utilized monthly average maximum and minimum 
temperatures for the Bhagirathi River watershed in India using 
a seasonal ARIMA model based on data from 2001 to 2020. 
Their findings revealed that projected data is consistent with 
the data trend. 

Gangshetty et al. [31] published a work for time series 
temperature forecasting in Pune, India, utilizing data from 
2009 to 2020. They used SARIMA model and autocorrelation 
function with the partial autocorrelation function, as well as 
normalized residuals, to identify the best fit for the time series 
for their study. They discovered that the model performed well 
at predicting temperature values. Hoang et al. [32] 
implemented and developed a model using an LSTM on 
Amazon Web Services (AWS) machine learning platform. 
They discovered that the LSTM model produced significant 
and accurate results compared with other weather forecasting 
models. 
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Recently, Jaharabi et al. [33] investigated the use of 
machine and deep learning for temperature prediction of major 
cities in the world. Koçak [34] presented a time-series 
prediction approach of temperature based on LSTM and 
ARIMA models. Khokhar et al. [35] introduced a comparative 
analysis of ARIMA, LSTM, and BiLSTM for temperature and 
rainfall forecasting on Pakistan’s time-series data of 116 years. 
Jafarian-Namin et al. [36] applied ARIMA and Artificial 
Neural Network (ANN) models for monthly temperature 
analysis and prediction on Tehran’s time-series data. Topalova 
and Radoyska [37] proposed an automated change detection 
method to track the climate change of temperature in local 
geographic regions using a two-level structure of neural 
networks. However, the research gap of the previous work is 
that no study investigates, analyzes, and develops an effective 
machine learning model for climate change in Saudi Arabia’s 
average temperature. This work explores the average 
temperature change in Saudi Arabia for the past 152 years 
(from 1861 to 2013). Furthermore, we show the effectiveness 
of Gate Recurrent Unit-based Neural Network (GRU-NN) 
model for average temperature forecasting and compare it with 
other RNN variants and other common models in the previous 
studies. 

III. MATERIALS AND METHODS 

A. Earth Surface Temperature Dataset 

The Earth Surface Temperature (EST) dataset is received 
from the KAGGLE platform [38]. It is collected by the 
National Oceanic and Atmospheric Administration (NOAA) 
Merged Land-Ocean Surface Temperature Analysis (MLOST), 
NASA GISTEMP, and UK HadCrut organizations. This 
collected data is repackaged or put together by Berkeley Earth 
and affiliated with Lawrence Berkeley National Laboratory. 
The EST dataset has several CSV files, including global ocean-
and-land temperatures, global land temperatures by city, global 
average land temperature by country, global land temperatures 
by major city, and global average land temperature by state. 
Each file in the EST dataset comprises certain types of data 
that are required for climate data analysis and finding long-
term trends and patterns in temperature and climate variables. 

The date, nation, average temperature, longitude, and latitude 
columns give critical information that allows researchers to 
obtain insight into the environmental impact of climate change 
and develop mitigation solutions. The study focuses on the 
monthly global land temperatures by city file, which contains 
8599212 instances and seven attributes. Table I presents the 
attribute types of the selected dataset file. From this file, the 
data instances related to Saudi Arabia and its cities are filtered 
to form a dataset of 12795 instances. It consists of the average 
temperature in Saudi Arabia from January 1st, 1861 to 
September 1st, 2013. Table II gives the first and the last five 
rows of the dataset used in this study. 

The DT column gives the date of collected temperature 
data as a time series. The average temperature column gives 
data on temperatures for the location in which the data was 
gathered. This column is commonly represented as a numerical 
data type, with the temperature measured in degrees Celsius. 
The average temperature column is critical for assessing 
climate data to determine temperature trends over time and 
identify changes in temperature patterns caused by climate 
change. The longitude column describes a point's east-west 
location on the Earth's surface. The latitude indicates the north-
south position of a specific location wherever temperature data 
was recorded. The longitude and latitude columns are 
commonly represented as a numeric value expressed in degrees 
with the longitude or latitude letter. 

TABLE I.  TYPES OF ATTRIBUTES FOR THE SELECTED DATASET FILE 

No. Column Data type 

1 DT Date 

2 AverageTemperature float64 

3 AverageTemperatureUncertainty float64 

4 City String 

5 Country String 

6 Latitude String 

7 Longitude String 

TABLE II.  FIRST AND LAST FIVE ROWS OF THE DATASET USED IN THIS STUDY 

DT AverageTemperature AverageTemperatureUncertainty City Country Latitude Longitude 

1861-01-01 17.429 1.834 Abha Saudi Arabia 18.48N 42.25E 

1861-02-01 19.162 1.810 Abha Saudi Arabia 18.48N 42.25E 

1861-03-01 21.228 1.610 Abha Saudi Arabia 18.48N 42.25E 

1861-04-01 23.592 1.711 Abha Saudi Arabia 18.48N 42.25E 

1861-05-01 25.909 1.676 Abha Saudi Arabia 18.48N 42.25E 

... ... ... ... ... ... ... 

2012-12-01 13.012 0.423 Tabuk Saudi Arabia 28.13N 37.27E 

2013-01-01 12.134 0.328 Tabuk Saudi Arabia 28.13N 37.27E 

2013-02-01 14.880 0.232 Tabuk Saudi Arabia 28.13N 37.27E 

2013-03-01 18.676 1.919 Tabuk Saudi Arabia 28.13N 37.27E 

2013-04-01 21.375 0.612 Tabuk Saudi Arabia 28.13N 37.27E 
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B. Recurrent Neural Networks Models 

Recurrent neural networks (RNNs) are a type of artificial 
neural network (ANN) developed to process data from 
sequential activities. The RNNs are able to maintain the hidden 
state or memory of past inputs compared with standard feed-
forward neural networks because of their connections forming 
directed cycles. The use of RNN’s internal state makes it 
suitable for processing sequences of input, especially time 
series data of some applications, such as speech recognition, 
natural language processing, and cloud service forecasting, in 
which temporal dependencies or context are crucial. 

The key feature of RNNs is their ability to maintain a 
hidden state that captures information about previous inputs in 
the sequence. This hidden state is updated at each time step and 
influences the network's output at the current time step. The 
basic formula for updating the hidden state ℎ𝑡  at time 𝑡 in an 
RNN is: 

                       ℎ𝑡 = 𝑓(𝑊ℎℎℎ𝑡−1 + 𝑊𝑥ℎ𝑥𝑡 + 𝑏ℎ)                    (1) 

where, ℎ𝑡  is the hidden state at time 𝑡, 𝑥𝑡   is the input at 
time 𝑡, 𝑊ℎℎ is the weight matrix for the hidden state, 𝑊𝑥ℎ is the 
weight matrix for the input, 𝑏ℎ is the bias vector, and 𝑓 is the 
activation function. 

However, the vanishing gradient problem, in which the 
gradients decrease exponentially as they are transmitted back in 
time during training, is one issue facing the classic RNNs. The 
RNNs have difficulty capturing long-term dependencies in 
sequences because of this restriction [19]. To overcome this 
problem, effective variations of RNNs have been created, 
including Long Short-Term Memory networks (LSTMs), 
Bidirectional LSTM (BiLSTM), and Gated Recurrent Units 
(GRUs). These architectures are able to capture long-term 
dependencies in sequential data because they have the 
capabilities to selectively preserve or forget information. The 
following subsections explain the effective neural networks 
models proposed to forecast the average values of temperatures 
from historical time-series average temperature data. 

1) Long Short-Term Memory-based Neural Network 

(LSTM-NN) Model: This neural network model depends on 

long short-term memory (LSTM) cells, which is a popular 

type of RNNs. It is most frequently utilized in sequential data 

issues. The design of an LSTM cell consists of four primary 

parts: input gate, cell state, forget gate, and output gate. The 

gates determine which data should be retained or discarded for 

each cell, which represents a time step. In order to create a 

forecast, it only does that by passing pertinent data down a 

lengthy chain of sequences. For that reason, LSTM-NN may 

learn long-term dependencies more effectively than traditional 

RNNs. To regulate when memory material is given to other 

cells, LSTM makes use of cell state. Fig. 1 describes the 

LSTM cell design [39]. 

2) Gated Recurrent Unit-based Neural Network (GRU-

NN) Model: It is developed based on the gated recurrent unit 

(GRU). It is another type of RNN, presented with the intention 

of preserving significant information in a sequence, much like 

LSTM-NN. On the other hand, the architecture of GRU-NN 

has fewer parameters and is less complex, making it 

computationally less expensive and faster to train. The GRU 

has just two gates: the reset gate and the update gate, which 

can eliminate the cell state and make the full memory 

accessible to other units. The update gate specifies which data 

to retain, whereas the reset gate merges the fresh input with 

the prior memory cell. Fig. 2 depicts the architecture of the 

GRU cell design [39]. 

3) Bidirectional LSTM-based Neural Network (BiLSTM-

NN) Model: Based on the concept of Bidirectional RNNs [20], 

it is an extension of conventional LSTM-based neural 

networks that can enhance model performance. BiLSTM takes 

into account sequences in both forward and backward order as 

it is the result of combining several LSTMs on input in several 

opposed orientations. The essential components of a BiLSTM-

NN are forward LSTM, backward LSTM, and combination. 

The forward LSTM can process the sequence from beginning 

to end. The backward LSTM processes the sequence from end 

to beginning. The outputs from both directions are combined 

or merged before being sent on to the next layer or job through 

a combination component. This may offer more network 

information to help with forecast accuracy. The main 

advantage of utilizing a BiLSTM is its capacity to gather 

information from both the past and the future at each time 

step. This is especially valuable for jobs that require knowing 

the context from both sides. In average temperature 

forecasting, information about an average temperature can be 

influenced by both previous and subsequent average 

temperatures. Fig. 3 illustrates the design of BiLSTM cell 

architecture [39]. 

 
Fig. 1. The architecture of LSTM cell design. 

 

Fig. 2. The architecture of GRU cell design. 
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Fig. 3. Design of BiLSTM cell architecture. 

C. Earth Surface Temperature Dataset 

The flowchart of the proposed approach for this study is 
shown in Fig. 4. It contains four core steps, including data 
preprocessing, data analysis and splitting, model building and 
training, and model comparison and evaluation. Explaining 
these steps in detail is given the following subsections. 

 
Fig. 4. Flowchart of the proposed approach. 

1) Data analysis: Data analysis is a critical step in 

understanding data and making a decision about which models 

of machine learning are appropriate for prediction or 

forecasting duty. Data analysis of average temperature in 

Saudi Arabia involves loading the average temperature data in 

its structured formats, exploring the distribution of average 

temperatures over time, visualizing trends, and extracting 

meaningful insights. First, the step checks if the data is 

stationary. The Augmented Dickey-Fuller (ADF) statistical 

test is usually used to determine whether a particular time 

series data is stationary or not. The null hypothesis of the ADF 

test is not stationary. To reject the null hypothesis, the p-value 

should be less than 0.05. 

Other tasks of the data analysis step include calculating the 
basic statistics such as mean, median, and standard deviation, 
comparing average temperatures across different years, 
months, and cities within the country, visualizing their trends 

using relevant visualization charts, and looking for seasonality 
or patterns in the data. 

2) Data Pre-processing: In data mining applications, data 

pre-processing is the most critical and time-consuming step. 

Because the temperature data of this study is the models' 

input, it is reasonable that the more accurate the input, the 

more accurate the output. The obtained data are the monthly 

temperature data from previous years. Temperature readings 

may not be recorded or have no value for a variety of reasons. 

In this study, we employed the interpolation method to prevent 

data bias. The interpolation method uses two known data 

points to estimate unknown data values. It is most commonly 

used to fill in missing values in a data record or series during 

data pre-processing. 

An interpolation method is used to fill missing values with 
the aid of their neighbors. Filling missing time-series data with 
average values does not work well. Therefore, interpolation is 
suitable for time-series data to fill missing values with the 
preceding one or two values. For time-series data of average 
temperatures, it is preferred to fill the month's average 
temperature with the mean of the past two months rather than 
the months’ mean. 

The second method in data preprocessing step is data 
normalization. In data normalization, the average values of 
temperatures are scaled into a small and specific domain 
between 0 and 1 to prevent the neural network models from 
biasing the results. In this step, the min–max normalization 
method is used to convert the data to the range of 0 to 1. 
Computing min–max value for each average temperature 𝑡𝑖 is 
done by the following equation, in which𝑀𝑎𝑥𝑡𝑛

and 𝑀𝑖𝑛𝑡𝑛
are 

the maximum and minimum values of average temperatures.  

                                 𝑡𝑖 =
𝑡𝑖−𝑀𝑖𝑛𝑡𝑛

𝑀𝑎𝑥𝑡𝑛−𝑀𝑖𝑛𝑡𝑛

                                  (2) 

The third method is data splitting. In data splitting, we use a 
train-validation-test split technique to divide the dataset into 
training, validation, and test sets with a ratio of 60%, 30%, and 
10%, respectively. First, we take 10% of the dataset for the 
unseen test set. Then, from the 90%, we take 30% for the 
validation set, and the remaining 60% is as a training set. 
Because we deal with time series data, temporal aspects are 
considered when splitting to ensure that the test set represents 
future data. 

3) Model building and training: The model building and 

training step is an iterative process of evaluation and 

refinement to produce a model that performs effectively on the 

specified task. The model's effectiveness depends on carefully 

selecting architectures, hyper-parameters, and optimization 

algorithms at this step. Based on our experience with deep 

learning and the size of data, we build each of the three 

recurrent neural network models to have one hidden layer with 

𝑥  units, where 𝑥  ∈  [50, 100, 150] These three values are 

enough for search on the best number of hidden layer units, 

achieving an accurate forecasting of average temperatures 

from time-serious data. These built models are trained for 200 

epochs, and the best values of the parameters set are preserved 
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for evaluation. It is worth noting that a model's gates interact 

with data using a set of weights and biases known as 

parameters or hyper-parameters. During training, the back-

propagation method is used to update these parameters. The 

final parameters set is referred to as the trained model and is 

used to make forecasting. The more parameters a model 

contains, the more computation time and resources it requires. 

As a result, the total number of parameters indicates a model's 

complexity and efficiency. Table III shows the number of 

parameters in each model. 

TABLE III.  MODEL’S TOTAL NUMBER OF PARAMETERS 

Model 
Total Number of Parameters 

50 units 100 units 150 units 

LSTM-NN 10,451 40,901 91,351 

GRU-NN 8,001 31,001 69,001 

BiLSTM-NN 20,901 81,801 182,701 

To successfully train the models, we feed the training set 
into the model and adjust the model's weights based on the loss 
values between forecasted and actual values. The models are 
iteratively updated their parameters through a series of pre-
defined epochs. The models’ performance is also monitored on 
the validation set to detect the under-fitting or over-fitting in 
the training progress. 

4) Model evaluation and comparison: Once the training 

process is complete, the test set's model evaluation and 

comparison step is started to assess the generalization 

performance of trained models on the unseen data. The 

performance measures utilized to evaluate the proposed 

temperature forecasting models are statistical measurements. 

They are used to assess the models’ ability to fit the data and 

include the Mean Absolute Error (MAE), Mean Relative Error 

(MRE), Root Mean Squared Error (RMSE), and coefficient of 

determination (R-squared). Models work well on the test set, 

obtaining the lowest value of all error measures. These lowest 

values of errors imply that the discrepancies between the 

actual and forecasted values are relatively small and unbiased. 

A higher R-squared value indicates that the models can 

accurately fit the data. In other words, error metrics evaluate 

the models’ capacity to correctly estimate average 

temperatures based on the error values. The R-squared statistic 

simply indicates the relationship between actual and 

forecasted average temperatures. The following equations are 

used to compute all of the used performance measures: 

                           𝑀𝐴𝐸 =
1

𝑁
∑|𝑣𝑘 − 𝑣�̂�|

𝑁

𝑘=1

                                    (3) 

                           𝑀𝑅𝐸 =
1

𝑁
∑

|𝑣𝑘 − 𝑣�̂�|

𝑣𝑘

                                   (4)

𝑁

𝑘=1

 

                           RMSE = √
1

𝑁
∑(𝑣𝑘 − 𝑣�̂�)2

𝑁

𝑘=1

                            (5) 

                           R-squared = 1 −
∑ (𝑣𝑘 − 𝑣�̂�)2𝑁

𝑘=1

∑ (𝑣𝑘 − �̅�)2𝑁
𝑘=1

               (6) 

The actual values of average temperatures are denoted 
by 𝑣𝑘 , the forecasted values are represented by  𝑣�̂� , and the 
mean value of actual average temperatures is denoted by �̅�. 

IV. EXPERIMENTAL RESULTS AND DISCUSSIONS 

This section conducts several experiments on the dataset 
using Python programming language. In the first experiment, 
we applied the ADF test of the data analysis step to check 
whether the average temperature data in Saudi Arabia was 
stationary. This is required for Table IV, which presents the 
results of the ADF test on the dataset. 

Table IV shows that the test statistics are lower than the 
Critical Value of 5%, and the p-value (0.0193) is less than 
0.05. This means we reject the null hypothesis (data is not 
stationary). Therefore, the time series data of Saudi Arabia’s 
temperature seems stationary. In stationary time-series data, 
there is no notable trend or variation in the mean, which makes 
it a critical quality for trustworthy analysis and modeling. 
Constant variance is another essential attribute, suggesting that 
data point dispersion remains constant across time. 

The second experiment is applied to show the average 
temperature trend in Saudi Arabia per year based on time-
series data. We resample the mean of average temperatures 
yearly instead of monthly for the last 152 years, as shown in 
Fig. 5. 

TABLE IV.  RESULTS OF AUGMENTED DICKEY-FULLER (ADF) TEST 

Metric Value 

Test Statistic -3.2128 

p-value 0.0193 

Lags Used 40.0000 

Number of Observations Used 12754.0000 

Critical Value (1%) -3.4309 

Critical Value (5%) -2.8618 

Critical Value (10%) -2.5669 

 
Fig. 5. The average temperature of Saudi Arabia in the last 152 years 
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From Fig. 5, we can see that there is a significant increase 
in the average temperature after the year 1995. Fig. 6 illustrates 
the average temperature curve of Saudi Arabia colored orange. 
It shows the growth of average temperature per year. 

 
Fig. 6. The average temperature curve of Saudi Arabia in the last 152 years. 

The trend of actual and forecast temperature regarding the 
growth of average temperatures is given in Fig. 7. As seen in 
this TA, the trend of temperature forecasting in the year 2045 
will reach approximately 28 °C. 

 
Fig. 7. Trend of actual and forecast temperature regarding to the average 

temperatures. 

Through the experiment, we also visualize the monthly 
average temperature of Saudi Arabia from January 1st, 1861 to 
September 1st, 2013, as shown in Fig. 8. We can see a 
fluctuation in the temperature distribution with a little increase 
until 1995. This fluctuation is due to temperature variations 
throughout the months of each year. Fig. 9 illustrates the major 
cities of Saudi Arabia with the highest average temperatures. It 
shows that Buraydah and Riyadh have the highest average 
temperatures compared to other cities. Fig. 10 uses a box plot 
to visualize the monthly distribution and range of numerical 
data using the average daily temperature values. The box plot 
shows that February, March, May, and December have the 
most extended boxes and whiskers. However, February has the 
most extensive distribution of average temperatures. 

 
Fig. 8. Distribution of monthly average temperature time-series data 

 
Fig. 9. Cities of Saudi Arabia with highest average temperature 

 

Fig. 10. Average temperature by months 

Fig. 11 shows the average temperature season-wise over 
the years. The average temperature seasonally across the years 
can have a variety of effects depending on geographical 
location, climatic patterns, and local ecosystems of Saudi 
Arabia. 

The previous figures give a picture for understanding the 
long-term trends of average temperatures and their season-wise 
over the years, which are crucial for mitigating and addressing 
the impacts of climate change on human society and the 
environment. It enables informed decision-making and the 
creation of adaptation strategies to climate change. 

After performing a data analysis experiment, we conduct 
another experiment for average temperature forecasting using 
developed neural network models. We first apply the data pre-
processing step. We check the number of null values in the 
dataset. We found that 146 records have null values for the 
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number of Average Temperature and Average Temperature 
Uncertainty columns, as presented in Table V. For these null 
values, we fill them using an interpolation technique, which 
replaces them with the mean of the past two months. Then, we 
normalize the average temperature values to be in the range 
between 0 and 1. The normalization of average temperature 
values is required for the gradient descent of the neural 
network. Next, the dataset is divided into training and test sets 
using the data splitting step. Fig. 12 visualizes the distribution 
of training and test sets. 

 

Fig. 11. Average temperature season-wise over the years. 

TABLE V.  CHECKING THE NUMBER OF NULL VALUES 

Column Name No. of Null Values 

DT 0 

AverageTemperature 146 

AverageTemperatureUncertainty 146 

City 0 

Country 0 

Latitude 0 

Longitude 0 

 
Fig. 12. Distribution of training and test sets. 

After that, we train the LSTM-NN, BiLSTM-NN, and 
GRU-NN models on the training set using different numbers of 
hidden layer’s units, which are 50, 100, and 150. In the training 
process, 30% of the training set is used for validation. Fig. 13 
to 23 show the training and validation loss during the learning 
progress for the models at 50 units, 100 units, and 150 units. 
As shown in these figures, we can see that the gap between 
training and validation loss for the models with 50 units is very 

small compared to using other numbers of hidden layer’s units. 
This means that there is no over-fitting in the training of the 
models. However, the gap between training and validation loss 
for the GRU-NN with 50 hidden layer’s units is the smallest, 
indicating that its performance is better than the other models. 

 
Fig. 13. Training and validation loss of LSTM-NN with 50 hidden layer’s 

units 

 
Fig. 14. Training and validation loss of BiLSTM-NN with 50 hidden layer’s 

units 

 
Fig. 15. Training and validation loss of GRU-NN with 50 hidden layer’s units 
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Fig. 16. Training and validation loss of LSTM-NN with 100 hidden layer’s 

units. 

 
Fig. 17. Training and validation loss of BiLSTM-NN with 100 hidden layer’s 

units. 

 
Fig. 18. Training and validation loss of GRU-NN with 100 hidden layer’s 

units. 

 
Fig. 19. Training and validation loss of LSTM-NN with 150 hidden layer’s 

units. 

 
Fig. 20. Training and validation loss of BiLSTM-NN with 150 hidden layer’s 

units. 

 
Fig. 21. Training and validation loss of GRU-NN with 150 hidden layer’s 

units. 
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Table VI gives the performance results regarding MAE, 
MRE, RMSE, and R-squared for the LSTM-NN, BiLSTM-NN, 
and GRU-NN models on the test set using a different number 
of hidden layer’s units. 

TABLE VI.  PERFORMANCE RESULTS OF DEVELOPED MODELS 

Model 
Evaluation 

Measure 

Number of Units in Hidden Layer 

50 Units 100 Units 150 Units 

LSTM-NN 

MAE 0.04213 0.03561 0.03811 

MRE 0.09291 0.07855 0.08406 

RMSE 0.05252 0.04468 0.04787 

R-squared 94.808% 96.242% 95.685% 

BiLSTM-NN 

MAE 0.03309 0.03251 0.03062 

MRE 0.07298 0.07172 0.06754 

RMSE 0.04172 0.04264 0.03931 

R-squared 96.723% 96.578% 97.091% 

GRU-NN 

MAE 0.02976 0.03072 0.03121 

MRE 0.06565 0.06777 0.06883 

RMSE 0.03889 0.04015 0.04046 

R-squared 97.152% 96.965% 96.919% 

As listed in Table VI, we can see that the GRU-NN with 50 
hidden layer’s units achieves the best performance result on the 
test set for all evaluation measures, as highlighted in bold font. 
Figs. 22-24 display the distributions of ground-truth average 
temperatures of the test set and forecasted average 
temperatures generated by the three models with 50 hidden 
layer’s units. We can see in Fig. 24 that the forecasted average 
temperatures generated by the GRU-NN model are more fitted 
with ground-truth average temperatures of the test set than the 
two other models. 

 
Fig. 22. Distribution of ground truth and forecasted average temperatures for 

the LSTM-NN model with 50 hidden layer’s units. 

 
Fig. 23. Distribution of ground-truth and forecasted average temperatures for 

BiLSTM-NN model with 50 hidden layer’s units. 

 
Fig. 24. Distribution of ground truth and forecasted average temperatures for 

GRU-NN model with 50 hidden layer’s units. 

For visualizing the performance of the three models, Fig. 
25 compares the results of RMSE, showing that the GRU-NN 
model with 50 hidden layer’s units has a lower value than the 
other models. Moreover, we compare the GRU-NN model with 
50 hidden layer’s units with two common regression models 
used widely in the literature review, which are ARIMA [21] 
and SVMR [21]. Fig. 26 and Fig. 27 present the distribution of 
ground truth and forecasted average temperatures for the 
ARIMA [21] and SVMR [21] models, respectively. We can 
see that the ground truth and forecasted average temperatures 
are not more fitted like the GRU-NN model. Finally, we 
compare the results of RMSE for ARIMA and SVMR models 
with the GRU-NN model, as shown in Fig. 28. Clearly, we can 
see that the GRU-NN model achieves the lowest RMSE value 
compared with ARIMA and SVMR models. This confirms the 
ability of the GRU-NN model with 50 hidden layer’s units for 
accurate temperature forecasting and its suitability for the 
nature of Saudi Arabia’s time-series temperature data. 

 

Fig. 25. Results of RMSE for the three models with 50 hidden layer’s units. 

 
Fig. 26. Distribution of ground truth and forecasted average temperatures for 

ARIMA model. 
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Fig. 27. Distribution of ground truth and forecasted average temperatures for 

SVMR model. 

 
Fig. 28. Comparison results of RMSE for ARIMA, SVMR, and GRU-NN 

with 50 hidden layer’s units models. 

V. CONCLUSION AND FUTURE WORK 

Analyzing and forecasting the temperature of Saudi Arabia 
region using historical time-series data can give valuable 
insights for climate change mitigation and adaptation plans. 
Decision-makers can use the analysis outcomes and forecasts 
to plan and execute actions to mitigate the anticipated effects of 
climate change, such as water scarcity, severe temperatures, 
and changes in agricultural methods. Average temperature 
forecasting utilizing recurrent neural networks plays a vital role 
in accurate climate change analysis. 

The use of sophisticated neural network architectures, such 
as LSTM-NN, BiLSTM-NN, and GRU-NN, has shown great 
promise in capturing the complicated patterns and temporal 
correlations seen in temperature time-series data. They have 
been exposed to be successful in capturing the temporal 
dependencies seen in Saudi Arabia's historical temperature 
data. Their capacity to understand long-term relationships 
allows for more accurate representations of climatic trends and 
fluctuations across time. The experimental results showed that 
the GRU-NN model has improved accuracy in temperature 
forecasting for Saudi Arabia compared with other models. The 
model has demonstrated its ability to handle the non-linear and 
complex nature of temperature fluctuations, making it a 
valuable tool for climate change analysis. 

In future work, we plan to implement a strategy for real-
time temperature forecasting-based climate change monitoring 
and deployment of proposed models in operational settings. 
Moreover, we will investigate the transferability of LSTM-NN, 
BiLSTM-NN, and GRU-NN models to other domains beyond 
temperature forecasting, such as energy consumption or 
environmental monitoring. These directions of future work 

make the field of temperature forecasting using LSTM-NN, 
BiLSTM-NN, and GRU-NN models continue to evolve, 
providing more reliable and accurate predictions or forecasts 
for a wide range of applications. 
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