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Abstract—In the ever-evolving landscape of education, 

institutions grapple with the intricate task of evaluating 

individual capabilities and forecasting student performance. 

Providing timely guidance becomes pivotal, steering students 

toward specific areas for focused academic enhancement. Within 

the educational domain, the utilization of data mining emerges as 

a powerful tool, revealing latent patterns within vast datasets. 

This study adopts the Random Forest classifier (RFC) for 

predicting student performance, bolstered by the integration of 

two innovative optimizers—Victoria Amazonia Optimization 

(VAO) and Phasor Particle Swarm Optimizer (PPSO). A notable 

contribution of this research lies in the introduction of these 

novel optimizers to augment the model's accuracy, elevating the 

precision of predictions. Robust evaluation metrics, including 

Accuracy, Precision, Recall, and F1-score, meticulously gauge the 

model's effectiveness in this context. Remarkably, the results 

underscore the supremacy of RFC+VAO, showcasing exceptional 

values for Accuracy (0.934), Precision (0.940), Recall (0.930), and 

F1-score (0.930). This substantiates the significant contribution 

of integrating VAO into the Random Forest framework, 

promising substantial advancements in predictive analytics for 

educational institutions. The findings not only accentuate the 

efficacy of the proposed methodology but also herald a new era 

of precision and reliability in predicting student performance, 

thereby enriching the landscape of educational data analytics. 
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I. INTRODUCTION 

Educational institutions, including schools, universities, 
and training centers, handle vast amounts of data originating 
from various sources like registration departments, exam 
centers, and virtual courses, as well as e-learning systems [1], 
[2]. Within this educational data lie valuable insights that, once 
uncovered, can significantly improve the effectiveness of the 
entire educational system [3]. Machine learning (ML) and 
statistical methods have been increasingly applied to develop 
intelligent educational systems [4], [5], [6]. These systems aid 
decision-makers in educational institutions in attaining a 
thorough grasp of their organization [7]. Forecasting students' 
performance presents a complex challenge, but doing so can 
enable lecturers and decision-makers to identify effective 
strategies for addressing students' underperformance [8]. 

Additionally, the prediction of students' ultimate 
examination scores through the consideration of diverse 
elements like quiz results, homework, and project 
achievements will offer a holistic evaluation of the student's 
educational competence [9]. Machine learning methods have 
proven to be effective when used on problems related to 
association rules, web mining, classification, clustering, and 
deep learning in the field of education [10]. Researchers in the 
education industry continue to be greatly inspired by 
complicated data, which motivates them to explore techniques 
such as clustering and classification in order to create very 
accurate instructional models [11], [12]. 

Data classification stands out as the most efficient method 
for conducting data mining research, relying on the 
classification of data through predictive attribute value [13]. 
Data quality, which can disrupt algorithms and lead to 
misclassification, impacting the model's performance, is central 
to the challenge of classification [14]. By using this predictor, 
educational institutions can identify underperforming students 
and offer support to help them attain higher grades, ultimately 
paving the way for a brighter future [15]. Several established 
prediction techniques encompass classification, regression, and 
density estimation [16]. In contemporary data science, aside 
from enhancing the accuracy of their results, it is now essential 
to have trust in and a comprehensive understanding of 
prediction models [17], [18]. 

It is imperative that strong machine learning technologies 
be developed so that teachers may make well-informed 
judgments to reduce the chance of student failure. The 
objective of this project is to construct a reliable model for 
forecasting student grades utilizing a dataset associated with 
student performance. This data can be categorized into 
personal details (e.g., parent status, family size, and family 
educational support), educational background (e.g., weekly 
study time, motivations for pursuing higher education, and 
extracurricular activities), and general information (e.g., home 
address and commute time to school). 

II. RELATED WORK 

In the realm of educational institutions, a multitude of 
researchers have utilized statistical techniques and machine 
learning algorithms to predict student performance. In their 
study, Bharadwaj et al. [19] utilized data from a past student 
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database, incorporating variables such as student attendance, 
class participation, seminar involvement, and assignment 
scores to anticipate semester-end outcomes. Their findings 
indicated that decision tree analysis yielded the highest 
accuracy, followed by K-nearest neighbor (KNN) classification 
[20], whereas Bayesian classification systems displayed the 
lowest accuracy. Ogunde et al. [21] undertook the development 
of a system that utilizes the decision tree technique known as 
Iterative Dichotomiser (ID3) and input data to predict grades. 
As per the authors, their approach has the potential to be highly 
efficient in predicting students' ultimate graduation levels. 
Duzhin and Gustafsson [22] introduced a machine-learning 
technique to take into account students' prior knowledge. Their 
method is based on symbolic regression and utilizes historical 
university scores as non-experimental input data. This 
classification approach holds promise for assisting the Ministry 
of Education in improving student performance through early 
performance predictions. Naïve Bayes [23] exhibits 
characteristics of conditional independence, making it skilled at 
determining class conditional probabilities. In their work, 
Watkins et al. [24] unveiled an approach called SENSE 
(Student Performance Quantifier using Sentiment analysis) to 
improve the content of secondary school reports by utilizing 
natural language processing. Sentiment analysis [25] can have 
a significant role in influencing student performance. 

Table I shows the limitations and proposed solutions of the 
mentioned literature. 

TABLE I. LIMITATIONS AND PROPOSED SOLUTIONS OF MENTIONED 

WORKS OF LITERATURE 

Study Limitations Proposed Solutions 

Bharadwaj et al. [19] 
Limited scope of 
variables, potential 

bias in data 

Expand variable 
inclusion, employ diverse 

data sources 

Ogunde et al. [21] 
Dependency on the 
decision tree 

technique ID3 

Explore alternative 
machine learning 

algorithms 

Duzhin and Gustafsson 

[22] 

Reliance on 

historical university 
scores as input data 

Incorporate additional 

non-experimental input 
data sources 

Watkins et al. [24] 

Emphasis on 

secondary school 
reports, potential 

bias 

Explore the integration of 

diverse data types and 

sources 

These limitations underscore the need for a more 
comprehensive and diverse approach to predicting student 
performance. To overcome these gaps, the current research 
introduces substantial variations of RFC algorithms. This 
approach aims to address the limitations identified in prior 
studies by incorporating a broader set of variables, exploring 
alternative machine learning algorithms, and diversifying input 
data sources. By taking these proposed solutions into account, 
the present study strives to provide a more robust and nuanced 
prediction model for student performance in the specific 
context of secondary school education statistics. This 
acknowledgment and proposed strategy not only build upon the 
existing body of knowledge but also pave the way for a more 
comprehensive and effective approach to addressing the 
limitations identified in previous research. 

Nevertheless, there have been limited attempts to apply 
classification algorithms within the context of secondary 
school education statistics. In this research, substantial 
variations of Random Forest Classification (RFC) 
classification algorithms have been included to assist educators 
and parents in predicting the performance of new students and 
improving next year's outcomes. Additionally, to ensure the 
utmost reliability in the results, both Victoria Amazonia 
Optimization (VAO) and Phasor Particle Swarm Optimizer 
(PPSO) techniques were integrated, leading to the attainment 
of promising outcomes. 

In the subsequent sections, the manuscript navigates 
through the intricacies of the dataset and methodology, 
providing a comprehensive understanding. It details the 
dataset's source, size, and preprocessing steps, highlighting key 
variables chosen for analysis. The methodology section 
explains the utilization of the RFC and the integration of VAO 
and PPSO, introducing a distinctive dual-optimizer approach. 
The results section presents findings through tables or figures, 
accompanied by a thorough discussion of evaluation metrics, 
including Accuracy, Precision, Recall, and F1-score. The 
analysis extends to comparing different models or variations 
within the methodology and interpreting results in the context 
of research questions and existing literature. The conclusion 
synthesizes key findings, discusses practical implications for 
educational institutions, acknowledges study limitations, and 
suggests future research directions. Together, these sections 
contribute to a coherent narrative, guiding readers through the 
research process and providing valuable insights into predictive 
analytics in the context of education. 

III. DATASET AND METHODOLOGY 

A. Data Gathering 

Within this research, a dataset pertaining to education was 
employed, encompassing 33 distinct attributes thoughtfully 
selected to provide a precise depiction of students' performance 
during their academic journey, considering their individual 
information and circumstances [26]. This dataset compilation 
was achieved by integrating data obtained from two 
questionnaire methods and the academic records of the 
students. 

These attributes encompass various aspects related to 
students, including demographic factors like gender, age, 
school attended, and type of residence (address). Additionally, 
they encompass parental characteristics such as parents' 
cohabitation status (𝑃𝑠𝑡𝑎𝑡𝑢𝑠 ), educational background, and 
occupation ( 𝑀𝑒𝑑𝑢 , 𝑀𝑗𝑜𝑏 , 𝐹𝑒𝑑𝑢 , 𝐹𝑗𝑜𝑏 ). The student's 
guardian, household characteristics such as family size 
(famsize), the quality of family relationships (famrel), and 
other characteristics such as the reason for choosing the school 
(reason), the time it takes to commute to school (𝑡𝑟𝑎𝑣𝑒𝑙𝑡𝑖𝑚𝑒), 
the amount of time spent studying each week (𝑠𝑡𝑢𝑑𝑦𝑡𝑖𝑚𝑒), 
previous academic setbacks (failures), involvement in 
extracurricular activities (activities), attendance in paid classes 
( 𝑝𝑎𝑖𝑑𝑐𝑙𝑎𝑠𝑠 ), internet accessibility (internet), attendance in 
nursery school (school), ambitions for higher education 
(higher), romantic relationship status (romantic), free time 
availability after school (𝑓𝑟𝑒𝑒𝑡𝑖𝑚𝑒 ), socializing preferences 
(go out), alcohol consumption during working days (𝐷𝑎𝑙𝑐) and 
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weekends (𝑊𝑎𝑙𝑐), as well as the current health status of the 
individual (health), the reason for school choice (reason), 
participation in supplementary educational programs 
(𝑠𝑐ℎ𝑜𝑜𝑙𝑠𝑢𝑝), family educational support (famsup). Together 
with this, 3 other features—Grade 2 (G2), Grade 1 (G1), and 
Final—display students' grades for each of their three 
educational assessment periods. The values range from zero, 
which represents the lowest grade, to twenty, which represents 
the greatest grade. G3 is the pupils' final grade. As model 
outputs (dependent variables), these three characteristics were 

chosen together with the absence number from school. In order 
to assign grades, the students were split into four groups: 0-12: 
Subpar; 12-14: Tolerable; 14–16: Good; and 16–20: 
Outstanding. 

In Fig. 1, as anticipated, the cells along the central axis 
appear in red, indicating a correlation value of 1. The three 
characteristics, G1, G2, and final, which are all dependent 
variables and correlate to students' grades, show the highest 
correlation values among themselves, as seen in the previously 
mentioned figure. 

 

Fig. 1. Correlation matrix for the input and output variables. 

B. Random Forest Classifier (RFC) 

Breiman's suggested random forest model [27] is composed 
of a collection of tree predictors. Each tree is constructed 
following the procedure below: 

1) In the bootstrap phase, a local training set is created by 

randomly selecting a subset from the training dataset [28]. The 

remaining samples in the training dataset are designated as the 

out-of-bag (OOB) set, and they serve the purpose of 

evaluating the goodness-of-fit of the random forest model.  

2) In the expansion phase, the tree's growth involves 

partitioning the local training set at each node based on a 

single variable's value. This variable is selected from a 

randomly sampled subset of variables, and the division, 

known as the optimal split, is determined using the 

Classification and Regression Tree (CART) method. 

3) Every tree is allowed to grow to its maximum extent, 

with no pruning being employed. 

The bootstrap and growth phases make use of random 
variables [29]. It is assumed that these variables are 
independent across different trees and follow an identical 
distribution. Consequently, each tree can be considered an 
independent sample drawn from the entire ensemble of tree 
predictors for a specific training dataset. During the prediction 
phase, an instance is processed through each tree within the 
forest until it reaches a terminal node that assigns it a class. 
The predictions from the trees are then subjected to a voting 
procedure, where the forest selects the class that receives the 
highest number of votes. In cases of ties, the final decision is 
made through a random selection. To introduce the feature 
contribution method in the upcoming section, a probabilistic 
interpretation of the prediction process in the forest needs to be 
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established. The collection of classes is denoted as C = {𝐶1, 𝐶2, 
..., 𝐶𝐾}, and the set ∆𝑘 is used to represent. 

∆𝑘= {(𝑃1, … , 𝑃𝐾): ∑ 𝑃𝑘 = 1 𝑎𝑛𝑑 𝑃𝑘 ≥ 0𝐾
𝐾=1 } (1) 

An element in the set ∆𝑘  can be seen as a probability 
distribution that covers the classes in C. Consider, for example, 
ek, an element in ∆𝑘 , where its value is 1 at position k, 
indicating that it is a probability distribution focused on class 
Ck. When a tree labeled as t predicts that an instance 𝑖 pertains 

to class Ck, express this as 𝑌𝑖,�̂� = 𝑒𝑘 . This forges a link 

between the tree's predictions and the set ∆𝑘 , which denotes 
probability distributions across C. 

𝑌�̂� =
1

𝑇
∑ 𝑌𝑖,�̂�

𝑇
𝑡=1    (2) 

Within this context, with T denoting the overall number of 

trees in the forest, the predicted value 𝑌�̂� falls within the set ∆𝑘. 
The random forest's prediction, for instance, 𝑖 aligns with class 

Ck when the 𝑘 − 𝑡ℎ coordinate of 𝑌�̂� is the most substantial. 

C. Victoria Amazonica Optimization (VAO) 

The VAO approach is primarily preoccupied with the 
dispersal of the initial populace, comprising both Leaves and 
Flowers and their respective potential to propagate or expand 
across the external façade [30]. The algorithm being examined 
is mainly characterized as a metaheuristic algorithm based on 
swarm local search. However, its sole drawback is its 
susceptibility to getting stuck in local optima. Moreover, it 
demonstrates exceptional speed and robustness, rendering it 
extremely well-suited for a wide spectrum of optimization 
challenges. The present study utilizes the scientific 
nomenclature, 𝜉, to depict the circular expansion of the entity's 
diameter as it grows circularly. The augmentation, as 
mentioned earlier, is succeeded by the quantum of the 
geographical area that they could potentially acquire through 
the exertion of physical force on fellow entities, driven by their 
augmenting potency and thorny projections. The 
aforementioned competition is commonly known by its 
designations of intra-competition or Γ for the formulation. 

Furthermore, there exist three commonly encountered 
obstacles that impede the growth of vegetation. The mortality 
of beetles within the floral structure, inadequate or absent 
pollination by beetle species, and a reduction in ambient 
temperature are factors that contribute to suboptimal 
reproductive success in plants. All of the constituents 
mentioned above can exert negative effects on the given 
procedure, and collectively, they are denoted as 𝜑 herein. A 
higher value of the parameter ω corresponds to a plant with 
less vigor. Pests, such as water lily Aphids, have the potential 
to inflict damage upon the plant by feeding on its leaves and 
resulting in the formation of perforations. The symbol denoted 
by Θ is deemed representative of the hazard quotient in the 
present exposition. The conditions for plant growth and 
expansion become increasingly favorable as the value of Θ 
decreases. 

Subsequently, the occurrence of mutation arises as a result 
of cross-pollination between the beetles within the pond and a 
distinct variety of water lilies. The present phenomenon is 
denoted as Hybrid Mutation and is symbolized by the 𝜂. As 

posited in [30], this alteration has the potential to manifest in 
either a positive or negative trajectory, with an incidence 
of   0.2%  for each succession of offspring. The optimal leaf 
specimen can be delineated by its superior size and robust 
physical attributes, designated as α. Moreover, the VAO 
algorithm is delineated below in the pseudo-code form. 

𝑉𝑂𝐴 = ∑ ∑ (𝑥𝑖𝑗[𝜉𝑖𝑗, Γij] + Θ + 𝜑) × (𝜂)𝑛
𝑗=1

𝑛
𝑖=1  (3) 

Algorithm 1 pseudo code of VOA  

Start 

Developing population of plants 𝑥𝑖 (𝑖 = 1,2,… , 𝑛)  

Determine Expansion 𝜉𝑖 in 𝑥𝑖  

Determine Intra Competition Γi in 𝑥𝑖  

Determine the Drawback coefficient of 𝜑 in xi (random range in [0.1 to 

0.3])  

Determine the Drawback coefficient of Θ in xi (random range in [0.1 to 

0.3])  

Determine Hybrid Mutation Rate of 𝜂 =  0.2  

While Max iterations are not satisfied 

For 𝑖 = 1 𝑡𝑜 𝑛 plants  

For 𝑗 = 1 𝑡𝑜 𝑛 plants 

If 𝜉𝑖 > 𝜉𝑗 𝑜𝑟 Γi > Γj for 𝑥𝑖 (𝑖 = 1,2, … , 𝑛) 

Plant i goes planet j 

End if 

Apply hybrid mutation 𝜂  

Apply Drawback coefficient 𝜑 and Θ  

Evaluate new solutions by cost function and update expansion  

End 

End 

Sort and rank plants and find the current global best  

Developing new generation  

End of while 

End 

D. Phasor Particle Swarm Optimization (PPSO) 

1) The parameter's setting: In consideration of the 

enhanced PSO algorithms utilized in prior research, the 

regulation and guidance of a system or process can be 

achieved through the implementation of appropriate control 

methods. A range of strategies must be included in the PSO 

parameters in order to properly optimize a specific issue. The 

objective of this work is to improve the efficiency of 

optimization in order to increase the convergence capabilities 

[31]. The PPSO generates PSO control parameters by using 

suitable and efficient phasor angle functions to achieve the 

aforementioned goals. To effectively implement a range of 

strategies in PPSO, an individual scalar phasor angle is 

assigned to each particle. These phasor angles are used to 

describe the PSO control parameters using mathematical 

functions that include both cos and sin. 𝑋𝑖
⃗⃗  ⃗∠𝜃𝑖, where 𝜃𝑖 is the 

phasor angle and ( 𝑋𝑖
⃗⃗  ⃗ ) is the magnitude vector used to 

represent the ith particle as an example. 

The PSO-TVAC in [32] and a contemporary PSO-TVAC 
[33] are similar in that their inertia weight values are zero. 
Below is an outline of the suggested particle movement model 
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for PPSO. Still, this technique may be improved by combining 
ideas from other enhanced PSO techniques. 

𝑉𝑖
𝑖𝑡 = 𝑝(𝜃𝑖

𝑖𝑡) × (𝑝𝑏𝑒𝑠𝑡𝑖
𝑖𝑡 − 𝑥𝑖

𝑖𝑡) + 𝑔(𝜃𝑖
𝑖𝑡) × (𝐺𝑏𝑒𝑠𝑡𝑖

𝑖𝑡 − 𝑥𝑖
𝑖𝑡)

 (4) 

After examining several 𝑔(𝜃𝑖
𝑖𝑡) and 𝑝(𝜃𝑖

𝑖𝑡) functions, the 

PPSO algorithm selected the following functions. 

𝑝(𝜃𝑖
𝑖𝑡) = |𝑐𝑜𝑠𝜃𝑖

𝑖𝑡|
2×𝑠𝑖𝑛𝜃𝑖

𝑖𝑡

   (5) 

𝑔(𝜃𝑖
𝑖𝑡) = |𝑠𝑖𝑛𝜃𝑖

𝑖𝑡|
2×𝑐𝑜𝑠𝜃𝑖

𝑖𝑡

   (6) 

The proposed functions, which depend solely on the phasor 
angles of the particles, can enable behaviors such as reversal of 
values, simultaneous increase or decrease of values, reaching 
of large values, and attainment of identical values. The 
aforementioned behaviors give rise to adaptive search traits, 
promoting a balance between local and global searches. 
Consequently, PPSO is an adaptive and non-parametric 
algorithm that excels at evading local optima and 
circumventing premature convergence, a shortcoming often 
associated with the PSO. 

2) Formulation of PSO: The velocity of individual 

particles is computed in every iteration of the algorithm 

utilizing the subsequent formula. 

𝑉𝑖
𝑖𝑡 = |𝑐𝑜𝑠𝜃𝑖

𝑖𝑡|
2×𝑠𝑖𝑛𝜃𝑖

𝑖𝑡

× (𝑝𝑏𝑒𝑠𝑡𝑖
𝑖𝑡 − 𝑥𝑖

𝑖𝑡) 

+|𝑠𝑖𝑛𝜃𝑖
𝑖𝑡|

2×𝑐𝑜𝑠𝜃𝑖
𝑖𝑡

× (𝐺𝑏𝑒𝑠𝑡𝑖
𝑖𝑡 − 𝑥𝑖

𝑖𝑡)         (7) 

Then, the following equation is used to update the particle's 
position: 

𝑥 𝑖
𝑖𝑡+1 = 𝑥 𝑖

𝑖𝑡 + �⃗� 𝑖
𝑖𝑡   (8) 

Afterward, in a manner similar to the traditional PSO 
method, the locations of the Global Best (Gbest) and Personal 
Best (Pbest) are determined. 

Subsequently, an update will be made to the particles' 
maximum velocities and phasor angles as follows: 

𝜃𝑖
𝑖𝑡+1 = 𝜃𝑖

𝑖𝑡 + 𝑇(𝜃) × (2𝜋) 

= 𝜃𝑖
𝑖𝑡 + |cos (𝜃𝑖

𝑖𝑡) + sin (𝜃𝑖
𝑖𝑡)| × (2𝜋) (9) 

𝑉𝑖,𝑚𝑎𝑥
𝑖𝑡+1 = 𝑊(𝜃) × (𝑋𝑚𝑎𝑥 − 𝑋𝑚𝑖𝑛) 

= |𝑐𝑜𝑠𝜃𝑖
𝑖𝑡|

2
× (𝑋𝑚𝑎𝑥 − 𝑋𝑚𝑖𝑛)  (10) 

It should be noted that the empirical formulae used in Eq. 
(4) to Eq. (7) and Eq. (8) to Eq. (10) were selected after a wide 
range of functions were tested. It would be impossible to list 
every function that was evaluated for this reason because there 
were so many of them. 

E. Performance Criteria 

When evaluating classifier performance, there exists a 
variety of evaluation criteria. Accuracy, a widely used 
measure, evaluates classifier effectiveness by determining the 
percentage of correctly predicted samples. In addition to 
Accuracy, Precision and Recall are commonly used metrics. 

Recall calculates the ratio of correctly predicted positive 
instances to the total actual positive instances, while precision 
assesses the probability of positive predictions being correct. 
Combining Precision and Recall results in a composite metric 
called the F1-score. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
                (11) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
          (12) 

𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃𝑅 =
𝑇𝑃

𝑃
=

𝑇𝑃

𝑇𝑃+𝐹𝑁
               (13) 

𝐹1 𝑠𝑐𝑜𝑟𝑒 =
2×𝑅𝑒𝑐𝑎𝑙𝑙 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

𝑅𝑒𝑐𝑎𝑙𝑙+𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
                (14) 

In these formulas, TP represents a positive prediction that 
matches the actual positive outcome. FP signifies a positive 
prediction when the actual outcome is negative. TN denotes a 
negative prediction that aligns with the actual negative 
outcome. FN stands for a negative prediction when the actual 
outcome is positive. 

IV. RESULT AND DISCUSSION 

A. Convergence 

The suggested models' convergence curve is shown in Fig. 
2, which provides a visual depiction of the algorithm's 
development in the direction of its goal. This curve delineates 
the accuracy performance metric against the number of 
iterations, unveiling crucial insights into the optimization 
process. The curve's shape and behavior become instrumental 
in gauging convergence efficiency; a steep descent signifies 
rapid convergence, while plateaus or erratic fluctuations may 
indicate challenges in reaching the optimal solution. 

Convergence curves serve as pivotal tools in evaluating 
algorithm performance, refining parameters and 
comprehending the trade-offs between speed and accuracy in 
diverse computational tasks. Within this context, Fig. 2 
specifically examines and illustrates the convergence curves of 
RFC+VAO and RFC+PPS. Notably, the accuracy curve of 
RFC+VAO commences from a more advantageous point 
compared to RFC+PPS and achieves its optimal result more 
swiftly. This observation implies that RFC+VAO outperforms 
RFC+PPS as iterations progress, suggesting its superior 
convergence efficiency in this computational task. 

B. Comparison of Developed Models 

The results in Table II reveal the performance metrics of 
the presented models, including RFC+VAO, RFC+PPS, and 
RFC, based on various index values: Accuracy, Precision, 
Recall, and F1-Score. These metrics are crucial for assessing 
the models' effectiveness in predicting student performance. 
RFC+VAO achieves an impressive accuracy of 0.934, 
indicating its correct predictions of student performance in the 
majority of cases. With a precision score of 0.940, it 
demonstrates a high level of precision, suggesting accurate 
predictions when it anticipates student success. The recall 
value of 0.930 shows that the model effectively identifies a 
substantial portion of students who will perform well. The F1-
Score of 0.930 underscores its effectiveness in achieving a 
balance between precision and recall. 
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Fig. 2. Convergence curve of hybrid models. 

In comparison, RFC+PPSO exhibits a respectable accuracy 
of 0.914, implying its effective performance in predicting 
student success. It achieves a precision score of 0.910, 
indicating a solid ability to make accurate predictions. With a 
recall value of 0.910, RFC+PPS effectively identifies a 
substantial portion of students who will perform well, although 
slightly lower than RFC+VAO. The F1-Score of 0.910 
showcases RFC+PPS's ability to maintain a good balance 
between precision and recall. As for RFC, without the 
additional optimizers, it still demonstrates a reasonable 
accuracy of 0.889. With a precision value of 0.890, RFC 
maintains a good level of precision. The recall value of 0.890 
indicates its effectiveness in identifying students with good 
performance, although slightly lower than RFC+VAO. The F1 
Score of 0.890 underscores RFC's balanced performance 
between precision and recall. 

In summary, the results in Table II highlight the positive 
impact of incorporating optimization techniques, such as VAO 
and PPS, into the Random Forest Classifier (RFC). RFC+VAO 
outperforms RFC+PPS and RFC in all metrics, showcasing its 
effectiveness in predicting student performance. The high 
precision and recall values for RFC+VAO and RFC+PPS 
indicate their potential for early identification of students who 
may excel, which is crucial for educational institutions aiming 
to provide timely guidance and support to improve overall 
academic performance. 

TABLE II. RESULT OF PRESENTED MODELS 

Model 
Index values 

Accuracy Precision Recall F1 _core 

RFC+VAO 0.934 0.940 0.930 0.930 

RFC+PPS 0.914 0.910 0.910 0.910 

RFC 0.889 0.890 0.890 0.890 

Table III presents a thorough evaluation of the developed 
models' performance based on various grade categories, 
namely Excellent, Good, Acceptable, and Poor. The models, 
including RFC+VAO, RFC+PPSO, and RFC, are assessed in 
terms of Precision, Recall, and F1-score for each category. For 
RFC+VAO, the "Excellent" category reveals a precision of 
0.97, while the recall is 0.82, resulting in an F1-score of 0.89. 
In the "Good" category, the model shows a precision of 0.87 
and a recall of 0.90, leading to an F1-score of 0.89, indicating a 
well-balanced prediction. The "Acceptable" category exhibits a 
precision of 0.83 and a recall of 0.89, resulting in an F1-score 
of 0.86. In the "Poor" category, the model performs 

exceptionally well with a precision and recall of 0.97, yielding 
an F1-score of 0.97, highlighting its high accuracy. 

Turning to RFC+PPS, the "Excellent" category displays a 
precision of 0.91 and a recall of 0.80, resulting in an F1 score 
of 0.85. In the "Good" category, it achieves a precision of 0.81 
and a recall of 0.87, leading to an F1-score of 0.84. For the 
"Acceptable" category, the model has a precision of 0.82 and a 
recall of 0.81, resulting in an F1-score of 0.81. Similar to 
RFC+VAO, in the "Poor" category, it attains a precision and 
recall of 0.97, resulting in an F1-score of 0.97. As for RFC, it 
exhibits a precision of 0.82 and a recall of 0.78 in the 
"Excellent" category, resulting in an F1 score of 0.79. In the 
"Good" category, it has a precision of 0.80 and a recall of 0.80, 
leading to an F1-score of 0.80. For the "Acceptable" category, 
it showcases a precision of 0.73 and a recall of 0.84, resulting 
in an F1-score of 0.78. In the "Poor" category, it attains a 
precision of 0.97 and a recall of 0.94, resulting in an F1-score 
of 0.96. These results offer a detailed breakdown of the 
performance of each model across different grade categories. 
RFC+VAO and RFC+PPS consistently outperform RFC, 
particularly in the "Excellent" and "Good" categories, where 
they exhibit higher precision and recall values, signifying the 
positive impact of optimization techniques on accurate grade-
level predictions. 

To comprehensively evaluate the model's proficiency in 
predicting student performance and facilitate meaningful 
comparisons, Fig. 3 presents a column chart representing the 
four grades under consideration. This visual representation 
provides a clear indication of which model closely aligns with 
the measured values for each grade, thereby highlighting 
superior performance. 

Upon examination of accuracy, both hybrid models, 
RFC+VAO and RFC+PPS, stand out by correctly predicting 
227 out of 233 instances, while RFC closely follows by 
predicting 220 instances. In the categories of "Acceptable" and 
"Good" grades, the models demonstrate comparable 
performance, with RFC+VAO showing a slight edge in both 
instances. However, in predicting "Excellent" grades, all 
models perform closely, with RFC+VAO exhibiting a slightly 
superior performance. 

This visual assessment not only aids in discerning the 
models' accuracy across different grade categories but also 
emphasizes the nuanced distinctions in performance, 
particularly highlighting the marginal superiority of 
RFC+VAO in certain instances. 
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Fig. 3. A column chart displaying the association between the observed and anticipated values. 

TABLE III. PERFORMANCE EVALUATION INDICES FOR THE DEVELOPED MODELS BASED ON GRADES 

Model Grade 
Index values 

Precision Recall F1-score 

RFC+VAO 

Excellent 0.97 0.82 0.89 

Good 0.87 0.9 0.89 

Acceptable 0.83 0.89 0.86 

Poor 0.97 0.97 0.97 

RFC+PPS 

Excellent 0.91 0.8 0.85 

Good 0.81 0.87 0.84 

Acceptable 0.82 0.81 0.81 

Poor 0.97 0.97 0.97 

RFC 

Excellent 0.82 0.78 0.79 

Good 0.8 0.8 0.8 

Acceptable 0.73 0.84 0.78 

Poor 0.97 0.94 0.96 
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Fig. 4. Confusion matrix for each model's accuracy. 

 

 
 

 

In Fig. 4, the confusion matrix visually depicts the 
relationship between observed and predicted classes, where the 
horizontal axis represents observed classes, and the vertical 
axis corresponds to predicted classes. Notably, the main 
diagonal cells in the matrix stand out with higher values, 
indicating successful predictions by the models. 

Taking RFC+VAO as an example, it showcases a robust 
ability to predict the majority of observation classes accurately. 
For instance, in a scenario where 233 students were in the 
"Poor" class, RFC+VAO demonstrated a remarkable accuracy 
of 97.40%, accurately predicting 227 students. Merely six 
students were misclassified into the "Poor" category, 
underscoring the precision of the model. 

This high precision extends to other classes as well, with 
accuracies of 88.70%, 90%, and 82.50% for the "Acceptable," 
"Good," and "Excellent" classes, respectively. It is worth 
noting that these figures, while slightly lower, distinguish 
RFC+VAO's performance from other model configurations. 

Comparatively, RFC+PPS achieves accuracies of 97.40%, 
80.64%, 86.66%, and 80% for the "Poor," "Acceptable," 
"Good," and "Excellent" classes, respectively. Meanwhile, 
RFC delivers accuracies of 94.42%, 83.87%, 80%, and 77.5% 
for the same classes. This comprehensive breakdown offers a 

nuanced understanding of the models' predictive performance 
across various classes, emphasizing RFC+VAO's notable 
precision and distinctions from other model configurations. 

V. DISCUSSION 

A. Future Study 

In future research, there are several key directions for 
enhancing predictive modeling in academic settings. The 
refinement of optimizers, specifically the VAO and PPSO 
techniques, should involve further fine-tuning to optimize their 
predictive performance. Additionally, the integration of 
additional data sources, such as socio-economic factors, health 
records, or extracurricular activities, is recommended to enrich 
the model and improve predictive accuracy. 

A crucial aspect is the suggestion to conduct a longitudinal 
analysis, tracking academic trajectories over multiple semesters 
or years. This would provide insights into the model's stability 
and its ability to adapt to changes in student performance 
patterns over time. Lastly, a comparative analysis with other 
optimization algorithms would contribute valuable insights into 
the relative efficiency and effectiveness of the proposed VAO 
and PPSO optimizers within the educational data analytics 
context. 
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B. Limitations 

The study acknowledges its focus on secondary school 
education statistics, cautioning against the direct generalization 
of findings to other educational systems due to potential 
variations in structures and demographics. The dependence on 
dataset availability and quality is recognized, emphasizing the 
need to address biases in data collection for robust outcomes. 
The study also acknowledges the sensitivity of machine 
learning algorithms to parameter changes and advocates for 
sensitivity analyses to assess the model's robustness. Ethical 
considerations, including transparency, fairness, and 
accountability, are highlighted to ensure the responsible and 
ethical deployment of predictive analytics in education. 
Overall, these considerations contribute to a nuanced 
understanding of the study's limitations and underscore the 
importance of ethical and context-aware applications of 
predictive models in diverse educational contexts. 

C. Comparison with Papers 

Table IV compares the present research paper with 
previously published studies, focusing on the predictive models 
and their respective accuracy levels. The present paper 
employs a RFC with VAO, achieving a notable accuracy of 
93.4%. In contrast, previous studies predominantly used DTC 
or NBC and reported lower accuracy levels ranging from 
69.94% to 82%. The methodological advancement in the 
present paper, incorporating VAO, suggests a promising 
improvement in predictive accuracy, with potential 
implications for more precise student performance predictions 
in educational settings. 

TABLE IV. COMPARISON BETWEEN THE PRESENTED AND PUBLISHED 

PAPERS 

Article Model 
Index values 

Accuracy 

Edin Osmanbegovic et al. [34] NBC 76.65% 

Kabakchieva [35] DTC 72.74% 

Nguyen and Peter [36] DTC 82% 

Bichkar and R. R. Kabra [37] DTC 69.94% 

Present paper RFC+VAO 93.4% 

VI. CONCLUSION 

In this extensive study, the focus was on predictive 
modeling for student performance using a dataset derived from 
the educational landscape. The goal was to enhance the 
predictive accuracy of the Random Forest Classifier (RFC) by 
integrating innovative optimization techniques, namely, 
Victoria Amazonia Optimization (VAO) and Phasor Particle 
Swarm Optimizer (PPS). The results shed light on the 
effectiveness of these models in predicting student 
performance across various grade categories. The analysis 
revealed that both RFC+VAO and RFC+PPS models 
consistently outperformed the standard RFC. This superiority 
was evident not only in predicting student grades but also in 
distinguishing between different academic performance levels. 
RFC+VAO and RFC+PPS consistently exhibited higher 
precision, recall, and F1 scores, particularly in the "Excellent" 
and "Good" grade categories. This underscores the impact of 
optimization techniques in improving model accuracy and their 

potential to enhance student support systems. The models 
excelled in identifying students falling within the "Excellent" 
and "Good" grade categories, which is vital for educational 
institutions aiming to provide timely guidance and support for 
academic excellence. RFC+VAO, in particular, demonstrated a 
slight advantage in predicting "Excellent" grades, indicating 
the potential of the Victoria Amazonia Optimization technique 
in fine-tuning model performance. Furthermore, the confusion 
matrix in this analysis highlighted the models' proficiency in 
classifying observations, with the main diagonal consistently 
containing higher values, confirming the model's precision in 
predicting various class categories. In summary, this research 
underscores the promising potential of machine learning 
models, especially when combined with optimization 
techniques, in educational data analysis. It provides a 
foundation for institutions to utilize these models as valuable 
tools in student performance prediction and support systems. 
The accurate prediction of a student's academic trajectory 
benefits not only the students themselves but also empowers 
educational institutions to implement tailored strategies and 
interventions. As the educational landscape evolves, the 
integration of machine learning and optimization techniques 
will play a pivotal role in ensuring academic success for 
students, ultimately shaping a brighter future for the education 
sector. The findings presented in this article encourage further 
exploration and real-world testing to refine and optimize these 
models for effective utilization in educational institutions. 
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