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Abstract—Penetration testing (PT) serves as an effective tool 

for examining networks and identifying vulnerabilities by 

simulating a hacker's attack to uncover valuable information, 

such as details about the host's operating and database systems. 

Strong penetration testing is crucial for assessing system 

vulnerabilities in the constantly changing world of cyber security. 

Existing methods often struggle with adapting to dynamic 

threats, providing limited automation, and lacking the ability to 

discern subtle security weaknesses. In comparison to manual PT, 

intelligent PT has gained widespread popularity due to its 

efficiency, resulting in reduced time consumption and lower 

labor costs. Considering this, the effective penetration testing 

framework is developed using prairie natural swarm (PNS) 

optimized Q-learning ensemble deep CNN. Initially, the 

penetration testing environment (Shodan search engine) is 

simulated, and along with that expert knowledge base is also 

generated. Subsequently, the Nmap script engine and Metasploit 

are deployed, providing robust tools for network investigation 

and vulnerability assessment. The system state is then relayed to 

the Q-learning ensemble deep convolutional neural network (Q-

learning ensemble deep CNN) classifier. This unique ensemble 

combines the strengths of Q-learning and deep CNNs, enabling 

optimal policy learning for decision-making. The prairie natural 

swarm optimization algorithm is developed through the 

hybridization of coyote and particle swarm characteristics to 

fine-tune classifier parameters, enhancing performance. 

Additionally, the discriminator is trained to maximize standard 

action rewards while minimizing discounted action rewards, 

distinguishing valuable from less valuable information. By 

evaluating the advantage function, successful penetration 

likelihood is determined, informing situational decision-making 

through the Q-learning ensemble deep CNN classifier. Accuracy, 

sensitivity, and specificity as well as the proposed PNS-optimized 

Q-learning ensemble deep model are used to evaluate the output. 

In comparison to other approaches currently in use, CNN 

achieves values of 94.54%, 94.40%, 94.90% for TP, 94.64%, 

94.69%, and 94.52% for k-fold. 

Keywords—Penetration testing; Q-learning; ensemble deep 

CNN; prairie natural swarm optimization; Nmap script engine 

I. INTRODUCTION 

In today's interconnected world, the significance of robust 
cybersecurity measures cannot be overstated. With the 
relentless advancement of technology, the frequency and 
sophistication of cyber threats have risen to unprecedented 
levels. This digital age has ushered in a landscape where 
individuals, businesses, and governments are all interconnected 
through complex networks, presenting both unparalleled 
opportunities and considerable risks [1]. The escalating 
frequency of cyber threats underscores the gravity of the 

situation. Malicious actors are exploiting vulnerabilities in 
software, networks, and infrastructure at an alarming rate, 
leading to data breaches, financial losses, and significant 
disruptions. These threats are not confined to specific sectors; 
they affect organizations of all sizes across industries, as well 
as individuals who rely on technology for daily tasks. The 
sophistication of modern cyber threats adds another layer of 
complexity. Hackers are using advanced tactics, techniques, 
and procedures that can bypass traditional security measures 
[2]. From advanced malware to social engineering and zero-
day vulnerabilities, cyber threats have become multifaceted 
and difficult to predict. This calls for cyber security measures 
that can adapt and respond to evolving attack vectors [3]. As 
our lives become increasingly digitized, from critical 
infrastructure to personal devices, the potential consequences 
of a successful cyber attack become more severe. Breaches can 
compromise sensitive data, disrupt essential services, and even 
pose risks to public safety. This underscores the urgent need 
for robust cyber security measures that can effectively counter 
these threats. 

The threat landscape in the realm of cyber security is 
dynamic and ever-evolving. It is a landscape characterized by 
constant change, as cybercriminals consistently innovate and 
develop new techniques to exploit vulnerabilities and breach 
systems [4]. This dynamic nature of the threat landscape 
presents a significant challenge to individuals, organizations, 
and institutions responsible for safeguarding digital assets and 
sensitive information. Cybercriminals exhibit remarkable 
adaptability, constantly refining their tactics, techniques, and 
procedures (TTPs) to stay one step ahead of security measures 
[5]. Just as security professionals identify and mitigate one 
vulnerability cybercriminals quickly shift their focus to 
discover new avenues of attack [6][7]. This agility allows them 
to circumvent traditional security mechanisms and exploit 
unforeseen weaknesses [8]. ML and AI have transformed cyber 
security by automating complex tasks, analyzing vast data to 
detect anomalies, and adapting to evolving threats. In 
penetration testing, ML and AI automate threat detection, 
identifying vulnerabilities, and simulating attacks. They 
enhance response by swiftly isolating threats, and minimizing 
damage. This automation accelerates testing, enabling security 
professionals to focus on strategic analysis [9]. By enhancing 
threat detection accuracy, optimizing resource allocation, and 
reducing false positives, ML and AI elevate penetration 
testing's efficiency and effectiveness, fortifying cyber security 
in an increasingly intricate threat landscape. 

The fusion of Q Learning, a reinforcement learning 
technique, with Deep CNNs forms a powerful strategy to 
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tackle intricate, ever-changing decision-making tasks across 
diverse domains, spanning from robotics to gaming [10]. This 
combination leverages the strengths of both techniques to 
maximize decision-making accuracy in high-dimensional state 
spaces [11]. Q Learning, as a model-free reinforcement 
learning method, operates through trial-and-error, learning 
optimal actions by maximizing long-term rewards. It's 
particularly well-suited for sequential decision-making tasks in 
dynamic environments. However, it often faces challenges 
when dealing with high-dimensional or intricate state 
representations, which are common in applications such as 
image-based gaming or robotic perception [12]. This is where 
CNNs come into play. By using convolutional layers to 
recognize hierarchical patterns, these neural networks excel in 
processing complicated data, such as videos or images. They 
can extract meaningful features from raw sensory input, 
reducing the dimensionality of the state space and enabling 
more effective decision-making. CNNs also enable end-to-end 
learning, allowing the agent to autonomously discover relevant 
features for its task [13]. CNNs can analyze complex data and 
close the gap between perception and action when used in 
conjunction with Q Learning. The combination empowers 
reinforcement learning agents to operate efficiently in 
scenarios with high-dimensional state spaces [14]. For 
instance, in gaming, an agent can learn to play complex video 
games directly from pixel inputs, making it more versatile and 
adaptive. In robotics, it enables intelligent machines to navigate 
and interact with their environment, making them suitable for 
real-world applications [15]. The integration of Q Learning 
with CNNs represents a promising approach for enhancing 
decision-making accuracy in dynamic, high-dimensional 
environments. This combination of deep learning and 
reinforcement learning methods has the potential to completely 
transform a variety of applications by enhancing their 
intelligence, adaptability, and capacity for processing complex 
data, bringing in a new era of machine learning-driven 
solutions. 

The main aim of the research is to develop a prairie natural 
swarm-optimized Q-learning ensemble deep CNN for 
penetration testing. The initial step involves simulating a 
penetration testing environment using the Shodan search 
engine, alongside the generation of an expert knowledge base. 
Subsequently, the deployment of powerful tools, namely the 
Nmap script engine and Metasploit, facilitates the 
comprehensive investigation and assessment of network 
vulnerabilities. The state of the system is then conveyed to the 
Q-learning ensemble deep CNN classifier, which uniquely 
amalgamates the capabilities of Q-learning and deep CNNs to 
enable the acquisition of optimal decision-making policies. The 
optimization process involves the development of a prairie 
natural swarm optimization algorithm, achieved through the 
fusion of coyote and particle swarm characteristics, resulting in 
the refinement of classifier parameters for enhanced 
performance. Additionally, the discriminator is trained to 
maximize standard action rewards while minimizing 
discounted action rewards, discerning between valuable and 
less valuable data. The evaluation of the advantage function 
aids in determining the likelihood of successful penetrations, 
subsequently guiding situation-based decisions through the Q-

learning ensemble deep CNN classifier. The contributions of 
the research are as follows. 

Prairie natural swarm optimization: The prairie natural 
swarm optimization (PNS) is developed through the 
hybridization of coyote and particle swarm algorithms. In the 
coyote algorithm, the velocity and position are not interpreted 
so it faces limited capability to explore the search space 
effectively and slower convergence to optimal solutions. 
Considering this, the particle swarm algorithm velocity is 
merged with a coyote for faster convergence and balanced 
exploration and exploitation. 

PNS-optimized Q-learning ensemble deep CNN: The PNS-
optimized Q-learning ensemble deep CNN classifier is a 
combination of two powerful techniques in artificial 
intelligence such as Q-learning and deep CNNs. The advantage 
of an ensemble Q-learning and deep CNN classifier in 
penetration testing is its capacity to enhance the accuracy of 
identifying vulnerabilities and security weaknesses. The PNS 
algorithm helps in the fine-tuning of the parameters inside the 
classifier, which helps in enhancing the performance of the 
classifier. 

The manuscript follows a structured organization, 
commencing with Section II, which delves into the 
comprehensive reviews of penetration testing. Moving on to 
Section III, this section elaborates on the proposed 
methodology for conducting penetration testing and introduces 
the mathematical equation underpinning the PNS algorithm. 
Section IV is dedicated to a detailed examination of the 
empirical results and overarching conclusions drawn from the 
research findings. Finally, in Section V, the manuscript wraps 
up by presenting the ultimate thoughts and conclusions that 
emerge from the research work. 

II. LITERATURE REVIEW 

The vulnerability scanning and penetration testing with 
respect to network security reviews are as follows: A black-box 
Reinforcement Learning-based framework was presented by 
Wei Song et al. [13] to provide Adversarial Examples (AEs) 
for PE threat classifiers and AV engines. Although this 
approach achieved notably higher evasion rates and a more 
effective search for successful adversarial patterns, it may 
necessitate substantial computational resources and time to 
optimize the generation process. Soheil Malekshah et al. [4] 
introduced a deep reinforcement learning approach for 
identifying optimal strategies to adjust power flow when 
network reliability diminishes. While this method considered 
uncertainties and variability associated with distributed 
generation, providing a more precise representation of network 
performance, it introduced some complex challenges. A digital 
twin-powered IIoT architecture was introduced by Wei Yang et 
al. [15], in which the characteristics of industrial devices are 
captured for real-time processing and intelligent choice-
making. This method facilitated smoother and more effective 
collaborative learning, contributing to enhanced overall 
training accuracy. However, it may require specialized 
expertise in both industrial processes and advanced machine 
learning techniques. Mohsen Ahmadi et al. [1] presented 
DQRE-SCnet, a Deep-Q-Reinforcement Learning Ensemble 
integrated with Spectral Clustering, aimed at selectively 
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sharing data among nodes in Federated Learning. This 
approach improved privacy protection and efficiency, yet it 
grappled with overfitting challenges. LSTM-EVI, a deep 
learning-based penetration testing system specially created for 
scanning assaults within a smart airport-based test bed, was 
introduced by Nickolaos Koroniotis et al. [12]. It outperformed 
its peer techniques and effectively-identified vulnerabilities in 
systems. Nonetheless, it exhibited computational complexity. 
A smart penetration testing framework that included expert 
demonstration data was introduced by Yongjie Wang et al. [8]. 
This approach successfully mitigated overfitting concerns and 
improved the efficiency of penetration testing. However, it 
demanded significant computational resources and expertise in 
machine learning. Yang Li et al. [9] introduced an enhanced 
network graph model for penetration testing, which seamlessly 
integrated pertinent security attributes into the process. This 
intelligent penetration testing method leveraged reinforcement 
learning and social engineering factors. Yet, it entailed 
complexity and resource-intensiveness, necessitating expertise 
in both penetration testing and machine learning. An automated 
penetration testing methodology designed to find the most 
common weaknesses in IoT devices used in smart homes was 
presented by Rohit Akhilesh et al. [2]. This method reduced the 
time and effort required for penetration testing compared to 
manual approaches, enhancing efficiency. However, it 
confronted overfitting issues. 

The review on penetration testing in network security 
highlights various approaches, each with strengths and 
limitations. Common challenges include the need for 
significant computational resources and time, complexity in 
dealing with uncertainties and overfitting, resource 
intensiveness demanding specialized expertise, and struggling 
with overfitting issues. To address these limitations, a novel 
PSN-optimized Q-learning ensemble deep CNN framework is 
developed in this research that integrates multiple techniques 
like reinforcement learning, deep learning, and expert 
demonstration data while optimizing efficiency, enhancing 
robustness, and improving usability. This approach aims to 
advance the field of vulnerability scanning and penetration 
testing by mitigating drawbacks, improving the effectiveness 
of cyber security measures in network environments, and 
facilitating practical implementation in real-world scenarios. 

A. Challenges 

 Combining Q-learning, deep CNNs, and a discriminator 
framework presents integration challenges, requiring 
the harmonization of these diverse components for 
effective operation. 

 Handling intricate data sources in penetration testing, 
like network traffic, may lead to data preprocessing and 
feature extraction challenges for deep CNNs. 

 The discriminator requires a robust dataset of real-world 
attacks, which may be limited and pose challenges in 
creating a representative knowledge base. 

 Optimizing parameters for Q-learning, deep CNNs, and 
the discriminator, including learning rates and network 
architectures, presents challenges to achieving optimal 
performance. 

 Ensuring the framework's scalability to accommodate 
various network sizes and complexities while 
maintaining efficient decision-making can be 
challenging. 

III. PROPOSED METHODOLOGY FOR PENETRATION TESTING 

Penetration testing also referred to as pen testing, is a cyber 
security procedure that involves simulating actual assaults on 
computer networks, applications, or systems in order to find 
security flaws and vulnerabilities. The objective of penetration 
testing is to proactively assess the security measures of an 
organization's IT infrastructure and applications, with the goal 
of uncovering potential weaknesses before malicious attackers 
can exploit them. Initially, the penetration testing environment 
(Shodan search engine) is simulated and along with that expert 
knowledge base is generated. A CVE dataset is utilized in this 
research for penetration testing. After simulating the 
penetration testing environment, the Nmap script engine and 
Metasploit are employed. The Nmap script engine serves as a 
penetration scanning framework within Nmap, a robust tool for 
investigating and evaluating networks. NSE empowers users to 
develop and deploy scripts that automate a range of tasks 
pivotal to penetration testing. Similarly, Metasploit is a widely-
used penetration testing framework that helps cyber security 
professionals and ethical hackers identify vulnerabilities in 
computer systems, networks, and applications. It provides a 
range of tools and resources for assessing and exploiting 
security weaknesses, as well as testing the effectiveness of 
defense mechanisms and security controls. A deep CNN 
known as the Q learning ensemble is formed by combining the 
power of deep learning with reinforcement learning. Deep 
CNNs receive the state (current circumstance) as input and 
provide predictions for each possible action. To enable an 
agent to acquire the best policy for making decisions, Q-
learning must be enabled. A model-free reinforcement learning 
algorithm called Q-learning is used by the agent to learn the 
optimal policy for making decisions in a given state. It helps 
the agent to determine the best course of action by maximizing 
cumulative rewards over time. aids the agent in determining 
the optimal course of action to pursue in a particular state in 
order to optimize cumulative rewards over time. Here, Q 
learning is used to guide the agent in choosing actions that lead 
to successful penetration by mapping the states to action and 
optimizing the Q values which represent the predicted 
cumulative rewards. The Deep CNNs are efficient in handling 
complex data and extracting relevant features, making them 
suitable for analyzing the diverse aspects of penetration testing 
environments and decisions. The optimized Q-learning 
ensemble deep CNN classifier is a combination of two 
powerful techniques in artificial intelligence, Q-learning and 
deep CNNs. In reinforcement learning problems, this hybrid 
technique is applied when the agent has to learn an optimal 
policy for making decisions. An agent engages with its 
surroundings in reinforcement learning, and it is rewarded for 
its behaviors. The agent aims to learn a policy that maximizes 
the predicted cumulative reward, or Q-value, by mapping states 
to actions. The predicted cumulative reward if the agent begins 
in a state, performs a certain action, and then proceeds with 
further decisions in accordance with its policy is represented by 
the Q-value of a state-action pair. Here, the standard 
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hybridization of the coyote and particle swarm characteristics 
leads to the development of the prairie natural swarm 
optimization. These hybridized characteristics help in the fine-
tuning of the parameters inside the classifier, which helps in 
enhancing the performance of the classifier. Simultaneously, 
the discriminator receives the expert knowledge base and the 
data from the penetration testing environment. The 
discriminator plays a crucial role in training the agent by 
providing feedback on the quality of actions taken. A 
discounted reward is obtained by maximizing the typical action 
reward and reducing the action reward output, hence providing 
training for the discriminator. This feedback loop enables the 
agent to refine its decision-making process and improve its 
performance over time. The discounted reward provides the 
less valuable information and the q value provides the efficient 
information. Here the discounted reward is subtracted from the 
q value. In comparison to alternative possible actions, the 
advantage function calculates the benefit or advantage of 
performing a specific action in a given situation. Using this 
advantage function the possibility of successful penetration is 
determined and the decision according to the situation is made 
using the Q learning ensemble deep CNN classifier. The 
collaborative approach enhances operational efficiency by 
leveraging advanced machine learning techniques to navigate 
and adapt to the dynamic and complex nature of penetration 
testing environments. Overall, the model can facilitate adaptive 
and intelligent decision-making, leading to more effective 
penetration testing outcomes. The systematic representation of 
the proposed penetration testing framework is depicted in 
Fig. 1. 

 
Fig. 1. The proposed block diagram of the penetration testing framework. 

A. Penetration Testing Environment 

A penetration testing environment, often referred to as a 
pen-testing lab, is a controlled and isolated system or network 
setup specifically designed for simulating real-world cyber 
attacks safely. It duplicates the company’s actual IT 
architecture, including its systems, networks, and apps, 
enabling cybersecurity experts to find security flaws without 
endangering sensitive data or operational systems. This 
environment is equipped with various security tools and 
resources to assist in the testing process. Data sanitization is 
crucial to protect privacy and comply with regulations. 

Comprehensive documentation is essential for tracking and 
reporting findings. Penetration testing environments facilitate 
proactive security assessments and help organizations 
strengthen their cyber security defenses. Creating a penetration 
testing environment that simulates the Shodan search engine 
and incorporates an expert knowledge base is a valuable 
approach for cyber security testing. Shodan is a specialized 
search engine for finding and analyzing internet-connected 
devices. It is used by cybersecurity professionals to identify 
and assess potential security vulnerabilities and 
misconfigurations in these devices. Its advantage lies in 
helping experts proactively secure networks by providing 
insights into exposed assets and potential risks, enhancing 
cyber security posture. Segmenting the penetration testing 
environment into two distinct components, one for the Nmap 
Script Engine (NSE) and the other for the Metasploit 
framework, can provide an organized and efficient approach to 
penetration testing. 

1) Nmap Script Engine (NSE): The Penetration Scanning 

Framework for the Nmap Script Engine (NSE) is a critical 

component of a penetration testing environment. It serves as 

the initial reconnaissance and vulnerability scanning phase, 

aiming to identify weaknesses and potential entry points in 

target systems and networks. NSE leverages the Nmap tool, a 

versatile and widely used network scanner. Within this 

framework, NSE scripts are employed to automate specific 

scanning tasks. These scripts are highly customizable, 

allowing penetration testers to tailor them to the testing 

objectives. NSE is used to discover live hosts and open ports 

within the target environment. It helps testers map out the 

network’s topology and identify reachable systems. By 

utilizing NSE scripts, the framework gathers information 

about services running on open ports. This includes 

identifying service versions, banners, and configurations. NSE 

scripts capable of detecting vulnerabilities are executed 

against target systems. These scripts may check for known 

vulnerabilities in services, applications, or system 

configurations. Information obtained during scanning, such as 

service banners and version details, is collected and analyzed 

to identify potential weaknesses or misconfigurations. 

Comprehensive reports are generated based on the findings of 

NSE-based scans. These reports provide organizations with 

insights into their network's security posture, highlighting 

vulnerabilities that require remediation. 

2) Metasploit: The Penetration Testing Framework for 

Metasploit, often simply referred to as Metasploit, is a 

powerful and widely used penetration testing and exploitation 

framework. It provides security professionals, ethical hackers, 

and penetration testers with a comprehensive set of tools and 

resources for identifying vulnerabilities, exploiting them, and 

assessing the security of computer systems, networks, and 

applications. Metasploit includes a vast collection of exploit 

modules that allow testers to exploit known vulnerabilities in 

target systems. These modules are organized by the target's 

operating system, service, and application, making it easier to 

find and execute the right exploit. Metasploit supports various 
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payloads, which are pieces of code that are delivered to the 

target system after a successful exploit. Payloads can be used 

for tasks like gaining remote access, executing commands, or 

performing post-exploitation activities. The framework 

provides post-exploitation modules and functionalities to 

maintain control over compromised systems. This includes 

activities like privilege escalation, data exfiltration, and lateral 

movement within a network. Metasploit includes auxiliary 

modules for various tasks, such as scanning, reconnaissance, 

and vulnerability detection. These modules can be used to 

gather information about target systems or to perform non-

exploitative actions. Metasploit maintains a database of known 

vulnerabilities, exploits, payloads, and compromised hosts. 

This database helps testers keep track of their findings and 

simplifies the exploitation process. Metasploit can be 

integrated with other security tools and frameworks, making it 

a versatile tool for comprehensive security assessments. 

Integration with tools like Nmap, Wireshark, and Burp Suite 

enhances its capabilities. Metasploit is available in both open-

source community and commercial versions. The community 

version is free and open-source, while the commercial version 

offers additional features, support, and updates. Users can 

create custom scripts and automate tasks within Metasploit, 

allowing for more efficient and tailored penetration testing 

processes. Exploit Development: Metasploit provides a 

platform for developing custom exploits and modules for zero-

day vulnerabilities. The framework offers reporting 

capabilities to document findings, vulnerabilities, and the 

overall security assessment process. 

B. Optimized Q learning Ensemble Deep CNN 

The optimized Q-learning ensemble deep CNN classifier is 
a combination of two powerful techniques in artificial 
intelligence such as Q-learning and deep CNNs. The advantage 
of an ensemble Q-learning and deep CNN classifier in 
penetration testing is its capacity to enhance the accuracy of 
identifying vulnerabilities and security weaknesses. The PNS 
algorithm helps in the fine-tuning of the parameters inside the 
classifier, which helps in enhancing the performance of the 
classifier. 

A popular model-free reinforcement learning algorithm is 
Q-learning. Assessing the effectiveness of taking particular 
actions in distinct states, aids an agent in decision-making. By 
making updates to a Q-table or function that gives each state-
action pair a Q-value, the agent gradually learns to optimize its 
cumulative rewards. The predicted cumulative benefit of 
performing a certain action in a particular condition is 
represented by the Q-value. The Q-learning ensemble deep 
CNN combines the strengths of both Q-learning and deep 
CNNs. In this approach, the deep CNN is used as a function 
approximation to estimate Q-values. The agent uses the neural 
network to anticipate Q-values for state-action pairs rather than 
keeping a Q-table. This neural network is trained using Q-
learning principles, such as temporal difference updates, to 
learn an optimal policy. With the help of the optimized Q-
learning ensemble deep CNN classifier, the agent is able to 
decide depending on the Q-values that have been learned. The 

agent can utilize the neural network to evaluate the Q-values of 
potential actions given a current state and choose the action 
with the greatest estimated Q-value. This decision-making 
process is guided by the goal of maximizing cumulative 
rewards over time. 

1) Deep CNN classifier: A deep CNN is a specialized 

neural network created for processing organized grid-like data, 

with images being a common application. It has gained 

significant popularity in the realm of malware detection, 

where the primary objective is to categorize input data as 

either benign (safe) or potentially harmful (malicious). The 

input data typically takes the form of an image or a structured 

grid-like representation. In the context of malware detection, 

this representation could be a visual rendering of binary code, 

a heat map detailing system behavior, or some other organized 

format. The CNN's architecture typically begins with one or 

more convolutional layers. These layers employ a set of 

learnable filters, also known as kernels, which are applied to 

the input data. Each filter traverses the input data, extracting 

features by performing convolutions. These convolution 

operations are meticulously designed to identify distinct 

patterns or characteristics within the input data. In the context 

of malware detection, these patterns might correspond to 

specific code structures or behaviors typically associated with 

malicious software. An element-wise application of a non-

linear activation function, such as ReLU, follows each 

convolution operation. This introduces essential non-linearity 

into the model, enabling the network to grasp intricate 

relationships within the data. In order to reduce the spatial 

dimensions of the feature maps produced by the convolutional 

layers, pooling layers, which can be either MaxPooling or 

AveragePooling, are extremely important. This downsampling 

serves to simplify computational complexity while capturing 

the most significant features. The generated feature maps 

flatten into a 1D vector following many convolutional and 

pooling layers. This vector encapsulates the high-level 

features extracted from the input data. This flattened vector 

then passes through one or more completely connected layers. 

These layers are akin to conventional neural network layers, 

with each neuron establishing connections to every neuron in 

the preceding and following layers. The fully connected layers 

master intricate combinations of features and ultimately map 

these features to the output classes, namely benign or 

malicious. The final fully connected layer commonly employs 

a softmax activation function to yield probability scores for 

each class. The output layer, generally featuring two neurons 

representing benign and malicious classes, produces the 

ultimate classification results. The softmax function is 

instrumental in converting the network’s outputs into class 

probabilities, with the class exhibiting the highest probability 

serving as the ultimate prediction. For training, the network 

relies on labeled data where the ground truth (benign or 

malicious) is known. During this training process, the network 

adjusts its internal parameters, encompassing weights and 

biases, employing optimization algorithms. The goal is to 
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reduce the size of a loss function that measures the 

discrepancy between expected and real labels. The network is 

assisted in learning to differentiate between benign and 

malicious data by this repeated training procedure. Fig. 2 

illustrates the architecture of the deep CNN classifier. 

 
Fig. 2. Architecture of CNN. 

2) Q-learning algorithm: A method for reinforcement 

learning called Q-learning is essential in assisting agents in 

understanding the best course of action to adopt in contexts 

where their goal is to maximize their cumulative rewards. This 

algorithm proves to be particularly valuable when the agent 

starts with limited knowledge of the environment and needs to 

gather insights and refine its strategy through interactions over 

time. Its fundamental concept is rooted in Markov decision 

processes. The core process involves the agent perceiving the 

current state of the environment, deciding on the action to take 

through a specific strategy, and then receiving immediate 

feedback in the form of a reward. The information regarding 

the future state of the environment is also included in this 

comment. Essentially, Q-learning functions by creating a map 

that connects the present environmental condition to the most 

beneficial course of action. The primary steps of the algorithm 

can be summarized as follows. 

Step 1: To begin, define the state set as  1 2, ,.... nSe se se se

and the actions set as  1 2, ,.... nAe ae ae ae and also initiate the 

state-action function, denoted as  ,Q se ae , and create the reward 

matrix, represented as Re . Additionally, set crucial parameters, 

including the maximum number of iterations, denoted as M . 

Step 2: The process commences by randomly selecting an 
initial state from the state set S. The iteration ends and a new 
initial state is selected if, by chance, the initial state is already 
the goal state. On the other hand, the algorithm moves on to 
step 3 if the starting state is not the desired state. This 
mechanism ensures that the algorithm begins with a suitable 
starting point and repeats until it reaches the target state. 

Step 3: The algorithm chooses an action from the pool of 
all feasible actions available in the current state, adhering to the 
ε-greedy strategy. This chosen action then guides the agent to 
transition to the next state within the environment. This 
approach effectively balances exploration and exploitation, 
allowing the agent to make decisions that prioritize known, 
rewarding actions while occasionally exploring new 
possibilities. 

Step 4: Eq. (1) serves as the means to update the Q-matrix. 

         '
' 1, , * , max , ,t t t t t t ae A t t tQ se ae Q se ae R se ae Q se ae Q se ae   

           (1) 

Where tse  is the environment's state at the time t , at is the 

agent's action at time t ,  ,t tQ se ae  is the state-action operates 

at time t , 1tse   is the environment's state at time t + 1, 

 ,t tR se ae is the immediate reward of the environment's 

feedback from time t to time t + 1, and 'ae  is the action that 

maximizes value. Q When the agent arrives 1tse  , the learning 

rate is   varies from  0,1  the discount factor is 0,1    , and 

γ is the discount factor. 

Step 5: Proceed by updating the state for the next moment, 
setting it as the current state, which is expressed as 1t tse se  . If 

the current state ( tse ) is not the target state, the algorithm loops 

back to step 3. This iterative process continues until the target 
state is reached, ensuring that the agent refines its decision-
making strategy over multiple cycles. 

Step 6: The method ends when the maximum number of 
iterations is reached, indicating that the training phase is 
complete. At this point, the converged Q-matrix is acquired, 
and the optimal action strategy is determined using Eq. (2). 
However, if the maximum iterations have not been reached, the 
process returns to step 2, initiating the next iteration. This 
iterative approach continues until the training process reaches 
its defined limit, thereby ensuring the refinement of the optimal 
action strategy. 

    * argmax * ,a Ase Q se ae 
    (2) 

3) Prairie natural swarm optimization (PNS): The prairie 

natural swarm optimization (PNS) is developed through the 

hybridization of coyote and particle swarm algorithms. In the 

coyote algorithm, the velocity and position is not interpreted 

so it faces limited capability to explore the search space 

effectively and slower convergence to optimal solutions. 

Considering this, the particle swarm algorithm velocity is 

merged with coyote for faster convergence and balanced the 

exploration and exploitation. 
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Motivation  Coyote (prairie) Optimization is a novel meta-
heuristic algorithm that draws inspiration from the remarkable 
problem-solving and adaptability exhibited by coyotes, an 
exceptionally resourceful species. The development of this 
optimization technique is driven by several factors. Firstly, 
coyotes showcase remarkable problem-solving skills and 
adaptability in diverse environments, making them an 
intriguing source of inspiration for optimizing complex and 
dynamic scenarios. Their intelligence, social behavior, and 
efficient foraging strategies offer valuable insights for 
algorithm design. Secondly, in addressing complex and 
dynamic problems, existing optimization algorithms may not 
always be well-suited. Prairie Optimization aims to bridge this 
gap by providing a nature-inspired approach capable of 
effectively handling real-world complexities. Additionally, as 
researchers continue to explore nature-inspired optimization 
techniques, drawing inspiration from a wide array of species, 
the creation of new algorithms like Prairie Optimization adds 
to the expanding toolbox of computational intelligence 
methods for solving intricate problems in various domains, 
including engineering, logistics, and finance. 

Particle Swarm Optimization (Natural swarm) is an 
algorithm driven by the emulation of the collective behavior of 
birds and fish, drawing inspiration from the flocking patterns of 
birds and schooling behaviors of fish in the natural world. 
Natural Swarm aims to enhance the optimization of solutions 
within complex search spaces. Its motivation lies in harnessing 
the potential of swarm intelligence for problem-solving, with 
each particle in the swarm representing a potential solution. 
These particles interact with one another based on the 
principles of exploration and exploitation. They adjust their 
positions by learning from both their individual experiences 
and those of their neighbors, all with the aim of converging 
toward optimal solutions. Natural swarm is particularly well-
suited for tackling optimization problems that challenge 
traditional methods, such as those in high-dimensional spaces, 
non-convex landscapes, and scenarios with numerous local 
optima. Its foundation in nature highlights the strength of 
collective decision-making, adaptability, and the synergy 
among individual agents. In essence, the motivation behind 
natural swarms is to develop a versatile optimization technique 
that leverages the collective intelligence of swarms to discover 
high-quality solutions across a broad spectrum of applications 
in fields like engineering, economics, science, and more. 

C. Mathematical Equation of Prairie Natural Swarm 

Optimization 

This section delves into the mathematical equation that 
underpins Prairie Natural Swarm Optimization, which is 
presented in the following passage. 

In the COA algorithm, the coyote population is partitioned 

into *
qM M  packs, with each pack comprising *

aM M  

coyotes. This initial suggestion assumes that there are the same 
number of coyotes in each pack, everywhere. Thus, the 
algorithm's total population is determined by multiplying 

*
qM M  and *

aM M . To simplify matters, this initial version 

of the algorithm does not take into account solitary coyotes. In 
this formulation, each coyote symbolizes a potential solution to 

the optimization issue, and its social condition is expressed in 
the cost associated with the objective function. This is crucial 
to note for the convenience of the reader. 

Inspired by the social dynamics of coyotes, which are 

equivalent to the choice variables y


 in a global optimization 

problem, the COA mechanism was devised. Therefore, the 
social condition, denoted as V (comprising the set of decision 

variables), for the tha  coyote in the thq pack during the ths time 

instance is expressed as follows, 

 ,
1 2, ,......q s

a EV y y y y


 
    (3) 

The first step in the COA is to establish the coyote 
population worldwide. Due to the stochastic nature of the 
COA, randomization is used to set the initial social conditions 
for every single coyote. To do this, random values are assigned 

for the tha coyote in the thq  pack and along the thi  dimension 

within the defined search space, as follows. 

 ,
,

q s
i i i ia iV L k U L   

   (4) 

Where E  denotes the search space's dimension and iL  and 

iU  represent the thi  decision variable's lower and upper 

bounds, respectively. Furthermore, inside the range [0,1], ik  

represents a true random number that is produced from a 
uniform probability distribution. Following this randomization 
process, the adaptation of the coyotes within their current 
social conditions is assessed. 

 ,,
,

q sq s
a a if f V

    (5) 

Coyotes are randomly assigned to packs at the beginning. 
However, there are times when coyotes decide to leave their 
existing packs and live alone or decide to join a new pack. A 
coyote's eviction from a pack is contingent upon the size of the 
pack at that moment and occurs with a probability represented 
by the symbol qr. The following is a description of this 
process, 

20.005r aQ M 
    (6) 

Considering the parameter rQ  can take values exceeding 1 

for 200aM  , causing a maximum quantity of coyotes per 

pack to be limited to 14. The goal of this mechanism is to 
promote contact and diversity among all of the coyotes in the 
population. In essence, it encourages cross-cultural 
communication among people everywhere, leading to a more 
extensive and dynamic process of information sharing. 

In the natural behavior of this species, packs typically 
consist of two alpha individuals. However, in the COA, only 
one alpha is considered, specifically the one that demonstrates 
the highest level of adaptation to the environment. When 
dealing with a minimization problem, the following definition 

applies to the alpha of the thq pack at the ths  time instance, 
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    , ,,
, ,1,2,...| min

a

q s q sq s
a i a ia MV h f V 

   (7) 

The COA operates under the assumption that coyotes 
possess a level of organization that allows them to share their 
social conditions and aid in the upkeep of their packs, given the 
observable signs of swarm intelligence within this species. As 
a result, the COA compiles all of the data that came from the 
coyotes and treats it as the pack's cultural inclination. 

 
,

1

2
,

, ,

, 1 ,
2 2

,

,
2

a

a a

q s
aM

q s
q s q si
M M

i i

G M is odd

T
G G

otherwise



 
 

 






  



    (8) 

For each i  in the range, ,q sG  represents the social 

conditions that are ranked for all coyotes in the thq  pack 

during the ths  time occurrence [1, E]. To put it simply, the 

median social conditions of all the coyotes in that specific pack 
are computed to identify the pack's cultural inclination. 

With birth and death as basic biological events in mind, the 

COA determines the coyote's age ,q s
ab  in years. A new 

coyote's social circumstances are said to be a combination of 
its two randomly chosen parents' social circumstances as well 
as external factors. This can be stated in the manner shown 
below: 

,
11,

, ,
22,

,

,

,

q s
i tk i

q s q s
i t di k i

i

V kn Q or i i

g V kn Q Q or i i

B Otherwise

  



   


    (9) 

In this case, 1i  and 2i  stand for two randomly selected 

problem dimensions, and 1k  and 2k  stand for two randomly 

chosen coyotes from the thq  pack. Furthermore, iB  is a 

random number inside the boundaries of the thi  dimension's 

decision variable, ikn  is a uniformly produced random number 

within the range [0,1], and tQ , dQ , and ikn  represent the 

scatter and association probabilities, respectively. The scatter 
and association probability, tQ  and dQ , are important factors 

that influence how diverse the coyotes' cultures are within the 
pack. Here are the definitions of tQ  and dQ  in this first edition 

of the COA. 

1/tQ E
         (10) 

 1 / 2d tQ Q 
                 (11) 

Where, dQ  exerts an equivalent influence and impact on 

both parents. To capture the cultural dynamics within the 
packs, the COA introduces the concepts of the alpha influence 

 1  and the pack influence  2 . The alpha influence is the 

difference in culture between a randomly picked coyote in the 

pack  1ak  and the alpha coyote, while the pack influence is 

the difference in culture between another randomly selected 

coyote  2ak  and the group's cultural tendency. The uniform 

probability distribution is used to select these random coyotes, 
and 1 and 2  are expressed as follows, 

1

,,
1

q sq s
ak

V  
   (12) 

2

,,
2

q sq s
ak

T V  
   (13) 

In the coyote algorithm, the velocity and position is not 
interpreted so it faces limited capability to explore the search 
space effectively and slower convergence to optimal solutions. 
Considering this, the particle swarm algorithm velocity is 
merged with a coyote for faster convergence and balanced 
exploration and exploitation. Then the new mathematical 
equation becomes, 

1 1
1 1 2 2

t t tX X k k v     
       (14) 

           1
1 1 2 2 1 1 2 2

t t
best bestX X k k v t g u D t y t g u H t y t          

      (15) 

Where, the weighing factors for the pack influence and the 
alpha influence are represented by the variables 1k  and 2k , 

respectively. First, a uniform probability distribution is used to 
produce random numbers within the range [0,1] for both 1k  

and 2k . Furthermore, the particle swarm optimization's social 

and cognitive acceleration coefficients are represented by the 
parameters 1g  and 2g . In the meantime, two uniformly 

distributed random numbers produced within the interval [0, 1] 
are 1u  and 2u . 

Algorithm 1: Pseudo code for the proposed Prairie Natural 
Swarm Optimization 

S.No Pseudo code for the proposed Prairie Natural Swarm 

Optimization 

1.  
Initialize qM packs with aM coyotes (eqn 4) 

2.  Coyotes adaptation verification (eqn 5) 

3.  While do 

4. For each q pack do 

5. Define alpha coyote (eqn 7) 

6. Compute social tendency of the pack (eqn 8) 

7. For each a coyote of the pack q  do 

8. Update the social condition (eqn 12 and 13) 

9. Determine best solution (eqn 15) 

10. End for  

11. Birth and death (eqn 9) 

12. End for  

13. Transition between packs (eqn 6) 

14. Update age of coyotes 

15. End while 

16. Choose best adapted coyote 
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In the optimization process, the strategies employed draw 
from the adaptability and strategic decision-making observed 
in coyote behavior. This entails dynamically adjusting 
parameters in response to changes in the penetration testing 
environment. Just as coyotes adapt their hunting strategies 
based on factors like prey behavior and environmental 
conditions, the PNS optimization enables the system to flexibly 
modify parameters to optimize the performance as new threats 
emerge. Moreover, the PNS optimization leverages the 
collaborative optimization capabilities inspired by particle 
swarm behavior. Similar to how swarms of particles 
collectively explore and converge toward optimal solutions. 
This collaborative aspect ensures that the optimization process 
explores a diverse range of parameter configurations, allowing 
for the discovery of superior settings that enhance the system’s 
overall performance. 

  The PNS optimization is used to fine-tune the 
hyperparameters in Q learning ensemble deep CNN. This fine-
tuning process ensures that the models are configured 
optimally for the specific task of penetration testing. By tuning 
the parameters such as weight and bias, the optimization 
contributes to improved convergence rates, higher accuracy, 
and enhanced generalization capability of the models involved 
in penetration testing. This leads to more effective 
identification of security flaws and vulnerabilities within the IT 
applications. Additionally, the dynamic adjustment of 
parameters enables the system to adapt rapidly to new threats 
or changes in the environment, thereby enhancing operational 
efficiency and ensuring robust cyber security measures. 
Overall, by combining adaptability, strategic decision-making, 
and collaborative optimization, PNS optimization enables the 
system to achieve superior performance, effectively mitigating 
security risks and safeguarding the organization against cyber 
threats. 

IV. RESULT 

The subsequent section provides a comprehensive account 
of the outcomes achieved through the application of Q-learning 
ensemble deep CNN with Prairie Natural Swarm Optimization 
for the purposes of penetration testing. 

A. Experimental Setup 

The experiment, which centers on penetration testing and 
employs the optimization of Q-learning ensemble deep CNN, 
is conducted using Python. The experiment is conducted on a 
Windows 10 computer that has 8GB of internal memory. 

B. Dataset 

CVE dataset [22]: The research utilizes a dataset sourced 
from the National Institute of Standards and Technology 
(NIST) called Common Vulnerabilities and Exposures (CVE). 
The CVE dataset contains information about cyber security 
threats, vulnerabilities, and exposures making it a valuable 
source for penetration testing. It includes various software 
systems, networks, and applications, ensuring the dataset’s 
diversity. Furthermore, since CVE entries are meticulously 
documented and categorized, the dataset’s representativeness is 
enhanced, allowing for a wide range of cyber security threats to 
be captured and analyzed. 

C. Parameter Metrics 

1) Accuracy: Accuracy in penetration testing refers to the 

overall correctness of the testing results. It is a measure of 

how well the test findings and identified vulnerabilities align 

with the actual security weaknesses present in the target 

system. High accuracy means that the test results are reliable 

and reflect the true security status of the system, while low 

accuracy indicates a higher likelihood of false positives or 

false negatives. 

tn tp

tn tp fn fp

R R
acc

R R R R




  
              (16) 

2) Sensitivity: Sensitivity, also known as the true positive 

rate or recall, represents the ability of the penetration test to 

correctly identify and report actual vulnerabilities or security 

issues present in the system. A high sensitivity means that the 

test is effective at finding true vulnerabilities and minimizing 

the risk of overlooking them. 

tp

tp fn

R
sen

R R



             (17) 

3) Specificity: Specificity, on the other hand, measures the 

ability of the penetration test to avoid false alarms or false 

positives. A high specificity indicates that the test is less likely 

to report security issues that do not exist. This is important for 

minimizing the time and resources required for investigating 

and remediating issues, as well as preventing unnecessary 

disruption to the target system. 

tn

tn fp

R
spec

R R



    (18) 

D.  Performance Analysis 

Two important performance indicators are used to 
demonstrate the efficacy of Q-learning ensemble deep CNN 
optimization via Prairie Natural Swarm such as training 
percentage (TP) and k-fold. To fully evaluate its performance, 
this evaluation is carried out throughout several epochs, 
namely at intervals of 100, 200, 300, 400, and 500. 

1) Performance analysis with TP: Fig. 3 vividly illustrates 

the effectiveness of Prairie Natural Swarm (PSN) optimized 

Q-learning ensemble deep CNN when applied to penetration 

testing within the context of the TP. Fig. 3(a) shows that the 

PSN-optimized Q-learning ensemble deep CNN performs 

admirably when it comes to evaluating accuracy at TP 90, 

with results of 87.55%, 90.65%, 91.84%, 91.86%, and 94.54. 

Similarly, when evaluating sensitivity at TP 90 through the 

PSN-optimized Q-learning ensemble deep CNN, the results 

are notably robust, registering figures of 87.57%, 90.90%, 

91.63%, 91.96%, and 94.98 [as illustrated in Fig. 3(b)]. The 

PSN-optimized Q-learning ensemble deep CNN consistently 

yields high results in the evaluation of specificity for the 90% 

training, with values of 87.44%, 90.98%, 91.19%, 91.93%, 

and 94.99% [as shown in Fig. 3(c)]. These outcomes highlight 
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the method's effectiveness over many epochs and show how 

proficient it is becoming in penetration testing situations. 

  
a) Accuracy b) Sensitivity 

 
c) Specificity 

Fig. 3. Performance with TP. 

2) Performance analysis with k-fold: Fig. 4 shows the 

effectiveness of the Q-learning ensemble deep CNN optimized 

for Prairie Natural Swarm (PSN) in penetration testing, 

specifically using the k-fold evaluation framework. In the 

context of assessing accuracy at TP 90, the PSN-optimized Q-

learning ensemble deep CNN demonstrates performance 

results of 87.29%, 90.86%, 91.00%, 91.67%, and 94.82% ([as 

presented in Fig. 4(a)]. Similarly, when considering sensitivity 

at TP 90 through the PSN-optimized Q-learning ensemble 

deep CNN, the results remain robust, recording figures of 

87.97%, 90.58%, 90.60%, 91.68%, and 94.90% [as depicted 

in Fig. 4(b)]. The PSN-optimized Q-learning ensemble deep 

CNN regularly produces good results in the evaluation of 

specificity for the 90% training, with values of 87.83%, 

90.70%, 91.76%, 91.99%, and 93.89% [as shown in Fig. 4(c)]. 

These results illustrate the approach's efficacy in the k-fold 

evaluation and point to its possible applications in penetration 

testing scenarios. 

  
a) Accuracy b) Sensitivity 

 
c) Specificity 

Fig. 4. Performance with k-fold. 

E. Analysis based on Q-learning 

Fig. 5 provides a visual representation of the effectiveness 
of PSN-optimized Q-learning ensemble deep CNN in the 
context of penetration testing, specifically within the 
framework of loss and rewards evaluation. In the context of 
assessing loss at 90% data demonstrates results of 
0.007982595, 0.007981617, 0.007982108, 0.007980786, and 
0.00798194 for 995, 996, 997, 998, 999 episodes [as presented 
in Fig. 5(a)]. Similarly, when considering rewards at 90% data 
demonstrates results of 978, 979, 980, 980, and 981 for 995, 
996,997, 998, 999 episodes [in Fig. 5(b)]. 

  
a) b) 

Fig. 5. Analysis based on Q-learning. 

F. Comparative Methods 

KNN [H1] [16], CatBoost [H2] [17], Xgboost [H3] [18], 
Neural Network [H4] [19], LSTM [H5] [20], Deep CNN [H6] 
[21] is compared with PSN optimized Q-learning ensemble 
deep CNN [H7]. 

1) Comparative analysis with TP: Fig. 6 provides a visual 

representation of the penetration testing methodology 

evaluation. Surprisingly, Fig. 6(a) depicts that the H7 

outperforms the H6, outperforming by a gradually increasing 

margin of 0.93 when it comes to accuracy evaluation inside 

the 90% training. This significant improvement is also seen 

when sensitivity is assessed in the same training setting which 

is presented in Fig. 6(b), where H7 once more demonstrates a 

notable increase of 0.89 relative to H6. In addition, when 

looking at specificity for the 90% training, the H7 shows a 

1.34 gain over the H6, continuing its remarkable performance 

trend, and the analysis of specificity is illustrated in Fig. 6(c). 

These results highlight the H7's obvious benefits in the field of 

penetration testing. 
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2) Comparative analysis with k-fold: Fig. 7 provides a 

visual representation of the penetration testing methodology 

assessment. Surprisingly, Fig. 7(a) depicts that the H7 

outperforms the H6 by a steadily increasing margin of 1.00 

when it comes to accuracy assessment inside the nine-fold 

framework. This significant improvement is also shown in the 

sensitivity analysis in the same training situation which is 

presented in Fig. 7(b), where the H7 again demonstrates a 

noteworthy rise of 1.01 in comparison to the H6. In addition, 

the H7 exhibits a 1.01 improvement over the H6 in terms of 

specificity inside the 9-fold, thereby sustaining its remarkable 

performance trend, and the analysis of specificity is illustrated 

in Fig. 7(c). These outcomes highlight the H7's noteworthy 

benefits when it comes to penetration testing. 

  
a) Accuracy b) Sensitivity 

 
c) Specificity 

Fig. 6. Comparative with TP. 

  
a) Accuracy b) Sensitivity 

 
c) Specificity 

Fig. 7. Comparative with k-fold. 

G. Comparative Discussion 

Comparisons with other current methods are used to 
determine the efficacy of the proposed PSN-optimized Q-

learning ensemble deep CNN method. The PSN-optimized Q-
learning ensemble deep CNN outcomes are 94.54%, 94.40%, 
and 94.90% respectively for TP. For the k-fold, the PSN-
optimized Q-learning ensemble deep CNN obtained values are 
94.64%, 94.69%, and 94.52% respectively. Table I depicts the 
obtained values of the PSN-optimized Q-learning ensemble 
deep CNN method with existing methods. 

TABLE I. COMPARATIVE DISCUSSION OF PROPOSED METHOD WITH 

EXISTING METHODS 

Metho

ds 

TP(90) k-fold (9) 

Accura

cy (%) 

Sensitiv

ity (%) 

Specific

ity (%) 

Accura

cy (%) 

Sensitiv

ity (%) 

Specific

ity (%) 

KNN 67.87 66.53 67.29 66.62 67.13 67.14 

Cat 

Boost 
74.45 73.74 72.00 73.80 73.92 73.26 

Xgboo

st 
84.36 84.53 84.86 83.52 83.83 84.73 

Neural 

Netwo

rk 

92.64 91.22 92.05 91.47 92.20 92.30 

LSTM 92.96 92.77 92.99 92.81 92.54 92.86 

Deep 

CNN 
93.66 93.56 93.63 93.69 93.74 93.56 

Propos

ed 
94.54 94.40 94.90 94.64 94.69 94.52 

V. CONCLUSION 

In this research the effective penetration testing framework 
is developed using prairie natural swarm (PNS) optimized Q-
learning ensemble deep CNN. Initially, the penetration testing 
environment (Shodan search engine) is simulated and along 
with that expert knowledge base is also be generated. 
Subsequently, the Nmap script engine and Metasploit are 
deployed, providing robust tools for network investigation and 
vulnerability assessment. The system state is then relayed to 
the Q-learning ensemble deep CNN classifier. This unique 
ensemble combines the strengths of Q-learning and deep 
CNNs, enabling optimal policy learning for decision-making. 
The prairie natural swarm optimization algorithm is developed 
through the hybridization of coyote and particle swarm 
characteristics to fine-tune classifier parameters, enhancing 
performance. Additionally, the discriminator is trained to 
maximize standard action rewards while minimizing 
discounted action rewards, distinguishing valuable from less 
valuable information. By evaluating the advantage function, 
successful penetration likelihood is determined, informing 
situational decision-making through the Q-learning ensemble 
deep CNN classifier. PNS-optimized Q-learning ensemble 
deep learning is used to measure the output along with 
accuracy, sensitivity, and specificity. In comparison to other 
current approaches, it achieves higher efficiency, achieving 
94.54%, 94.40%, 94.90% for TP and 94.64%, 94.69%, 94.52% 
for k-fold. In the future, advanced deep learning techniques, 
dynamic environment adaption, integration with security 
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operations, privacy–preserving techniques will be involved to 
address the robustness and resilience challenges. 
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