
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 3, 2024

845 | P a g e

www.ijacsa.thesai.org

Penetration Testing Framework using the Q Learning

Ensemble Deep CNN Discriminator Framework

Dipali Nilesh Railkar, Dr. Shubhalaxmi Joshi

Dr. Vishwanath Karad, MIT World Peace University, Pune, Maharashtra, India

Abstract—Penetration testing (PT) serves as an effective tool

for examining networks and identifying vulnerabilities by

simulating a hacker's attack to uncover valuable information,

such as details about the host's operating and database systems.

Strong penetration testing is crucial for assessing system

vulnerabilities in the constantly changing world of cyber security.

Existing methods often struggle with adapting to dynamic

threats, providing limited automation, and lacking the ability to

discern subtle security weaknesses. In comparison to manual PT,

intelligent PT has gained widespread popularity due to its

efficiency, resulting in reduced time consumption and lower

labor costs. Considering this, the effective penetration testing

framework is developed using prairie natural swarm (PNS)

optimized Q-learning ensemble deep CNN. Initially, the

penetration testing environment (Shodan search engine) is

simulated, and along with that expert knowledge base is also

generated. Subsequently, the Nmap script engine and Metasploit

are deployed, providing robust tools for network investigation

and vulnerability assessment. The system state is then relayed to

the Q-learning ensemble deep convolutional neural network (Q-

learning ensemble deep CNN) classifier. This unique ensemble

combines the strengths of Q-learning and deep CNNs, enabling

optimal policy learning for decision-making. The prairie natural

swarm optimization algorithm is developed through the

hybridization of coyote and particle swarm characteristics to

fine-tune classifier parameters, enhancing performance.

Additionally, the discriminator is trained to maximize standard

action rewards while minimizing discounted action rewards,

distinguishing valuable from less valuable information. By

evaluating the advantage function, successful penetration

likelihood is determined, informing situational decision-making

through the Q-learning ensemble deep CNN classifier. Accuracy,

sensitivity, and specificity as well as the proposed PNS-optimized

Q-learning ensemble deep model are used to evaluate the output.

In comparison to other approaches currently in use, CNN

achieves values of 94.54%, 94.40%, 94.90% for TP, 94.64%,

94.69%, and 94.52% for k-fold.

Keywords—Penetration testing; Q-learning; ensemble deep

CNN; prairie natural swarm optimization; Nmap script engine

I. INTRODUCTION

In today's interconnected world, the significance of robust
cybersecurity measures cannot be overstated. With the
relentless advancement of technology, the frequency and
sophistication of cyber threats have risen to unprecedented
levels. This digital age has ushered in a landscape where
individuals, businesses, and governments are all interconnected
through complex networks, presenting both unparalleled
opportunities and considerable risks [1]. The escalating
frequency of cyber threats underscores the gravity of the

situation. Malicious actors are exploiting vulnerabilities in
software, networks, and infrastructure at an alarming rate,
leading to data breaches, financial losses, and significant
disruptions. These threats are not confined to specific sectors;
they affect organizations of all sizes across industries, as well
as individuals who rely on technology for daily tasks. The
sophistication of modern cyber threats adds another layer of
complexity. Hackers are using advanced tactics, techniques,
and procedures that can bypass traditional security measures
[2]. From advanced malware to social engineering and zero-
day vulnerabilities, cyber threats have become multifaceted
and difficult to predict. This calls for cyber security measures
that can adapt and respond to evolving attack vectors [3]. As
our lives become increasingly digitized, from critical
infrastructure to personal devices, the potential consequences
of a successful cyber attack become more severe. Breaches can
compromise sensitive data, disrupt essential services, and even
pose risks to public safety. This underscores the urgent need
for robust cyber security measures that can effectively counter
these threats.

The threat landscape in the realm of cyber security is
dynamic and ever-evolving. It is a landscape characterized by
constant change, as cybercriminals consistently innovate and
develop new techniques to exploit vulnerabilities and breach
systems [4]. This dynamic nature of the threat landscape
presents a significant challenge to individuals, organizations,
and institutions responsible for safeguarding digital assets and
sensitive information. Cybercriminals exhibit remarkable
adaptability, constantly refining their tactics, techniques, and
procedures (TTPs) to stay one step ahead of security measures
[5]. Just as security professionals identify and mitigate one
vulnerability cybercriminals quickly shift their focus to
discover new avenues of attack [6][7]. This agility allows them
to circumvent traditional security mechanisms and exploit
unforeseen weaknesses [8]. ML and AI have transformed cyber
security by automating complex tasks, analyzing vast data to
detect anomalies, and adapting to evolving threats. In
penetration testing, ML and AI automate threat detection,
identifying vulnerabilities, and simulating attacks. They
enhance response by swiftly isolating threats, and minimizing
damage. This automation accelerates testing, enabling security
professionals to focus on strategic analysis [9]. By enhancing
threat detection accuracy, optimizing resource allocation, and
reducing false positives, ML and AI elevate penetration
testing's efficiency and effectiveness, fortifying cyber security
in an increasingly intricate threat landscape.

The fusion of Q Learning, a reinforcement learning
technique, with Deep CNNs forms a powerful strategy to

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 3, 2024

846 | P a g e

www.ijacsa.thesai.org

tackle intricate, ever-changing decision-making tasks across
diverse domains, spanning from robotics to gaming [10]. This
combination leverages the strengths of both techniques to
maximize decision-making accuracy in high-dimensional state
spaces [11]. Q Learning, as a model-free reinforcement
learning method, operates through trial-and-error, learning
optimal actions by maximizing long-term rewards. It's
particularly well-suited for sequential decision-making tasks in
dynamic environments. However, it often faces challenges
when dealing with high-dimensional or intricate state
representations, which are common in applications such as
image-based gaming or robotic perception [12]. This is where
CNNs come into play. By using convolutional layers to
recognize hierarchical patterns, these neural networks excel in
processing complicated data, such as videos or images. They
can extract meaningful features from raw sensory input,
reducing the dimensionality of the state space and enabling
more effective decision-making. CNNs also enable end-to-end
learning, allowing the agent to autonomously discover relevant
features for its task [13]. CNNs can analyze complex data and
close the gap between perception and action when used in
conjunction with Q Learning. The combination empowers
reinforcement learning agents to operate efficiently in
scenarios with high-dimensional state spaces [14]. For
instance, in gaming, an agent can learn to play complex video
games directly from pixel inputs, making it more versatile and
adaptive. In robotics, it enables intelligent machines to navigate
and interact with their environment, making them suitable for
real-world applications [15]. The integration of Q Learning
with CNNs represents a promising approach for enhancing
decision-making accuracy in dynamic, high-dimensional
environments. This combination of deep learning and
reinforcement learning methods has the potential to completely
transform a variety of applications by enhancing their
intelligence, adaptability, and capacity for processing complex
data, bringing in a new era of machine learning-driven
solutions.

The main aim of the research is to develop a prairie natural
swarm-optimized Q-learning ensemble deep CNN for
penetration testing. The initial step involves simulating a
penetration testing environment using the Shodan search
engine, alongside the generation of an expert knowledge base.
Subsequently, the deployment of powerful tools, namely the
Nmap script engine and Metasploit, facilitates the
comprehensive investigation and assessment of network
vulnerabilities. The state of the system is then conveyed to the
Q-learning ensemble deep CNN classifier, which uniquely
amalgamates the capabilities of Q-learning and deep CNNs to
enable the acquisition of optimal decision-making policies. The
optimization process involves the development of a prairie
natural swarm optimization algorithm, achieved through the
fusion of coyote and particle swarm characteristics, resulting in
the refinement of classifier parameters for enhanced
performance. Additionally, the discriminator is trained to
maximize standard action rewards while minimizing
discounted action rewards, discerning between valuable and
less valuable data. The evaluation of the advantage function
aids in determining the likelihood of successful penetrations,
subsequently guiding situation-based decisions through the Q-

learning ensemble deep CNN classifier. The contributions of
the research are as follows.

Prairie natural swarm optimization: The prairie natural
swarm optimization (PNS) is developed through the
hybridization of coyote and particle swarm algorithms. In the
coyote algorithm, the velocity and position are not interpreted
so it faces limited capability to explore the search space
effectively and slower convergence to optimal solutions.
Considering this, the particle swarm algorithm velocity is
merged with a coyote for faster convergence and balanced
exploration and exploitation.

PNS-optimized Q-learning ensemble deep CNN: The PNS-
optimized Q-learning ensemble deep CNN classifier is a
combination of two powerful techniques in artificial
intelligence such as Q-learning and deep CNNs. The advantage
of an ensemble Q-learning and deep CNN classifier in
penetration testing is its capacity to enhance the accuracy of
identifying vulnerabilities and security weaknesses. The PNS
algorithm helps in the fine-tuning of the parameters inside the
classifier, which helps in enhancing the performance of the
classifier.

The manuscript follows a structured organization,
commencing with Section II, which delves into the
comprehensive reviews of penetration testing. Moving on to
Section III, this section elaborates on the proposed
methodology for conducting penetration testing and introduces
the mathematical equation underpinning the PNS algorithm.
Section IV is dedicated to a detailed examination of the
empirical results and overarching conclusions drawn from the
research findings. Finally, in Section V, the manuscript wraps
up by presenting the ultimate thoughts and conclusions that
emerge from the research work.

II. LITERATURE REVIEW

The vulnerability scanning and penetration testing with
respect to network security reviews are as follows: A black-box
Reinforcement Learning-based framework was presented by
Wei Song et al. [13] to provide Adversarial Examples (AEs)
for PE threat classifiers and AV engines. Although this
approach achieved notably higher evasion rates and a more
effective search for successful adversarial patterns, it may
necessitate substantial computational resources and time to
optimize the generation process. Soheil Malekshah et al. [4]
introduced a deep reinforcement learning approach for
identifying optimal strategies to adjust power flow when
network reliability diminishes. While this method considered
uncertainties and variability associated with distributed
generation, providing a more precise representation of network
performance, it introduced some complex challenges. A digital
twin-powered IIoT architecture was introduced by Wei Yang et
al. [15], in which the characteristics of industrial devices are
captured for real-time processing and intelligent choice-
making. This method facilitated smoother and more effective
collaborative learning, contributing to enhanced overall
training accuracy. However, it may require specialized
expertise in both industrial processes and advanced machine
learning techniques. Mohsen Ahmadi et al. [1] presented
DQRE-SCnet, a Deep-Q-Reinforcement Learning Ensemble
integrated with Spectral Clustering, aimed at selectively

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 3, 2024

847 | P a g e

www.ijacsa.thesai.org

sharing data among nodes in Federated Learning. This
approach improved privacy protection and efficiency, yet it
grappled with overfitting challenges. LSTM-EVI, a deep
learning-based penetration testing system specially created for
scanning assaults within a smart airport-based test bed, was
introduced by Nickolaos Koroniotis et al. [12]. It outperformed
its peer techniques and effectively-identified vulnerabilities in
systems. Nonetheless, it exhibited computational complexity.
A smart penetration testing framework that included expert
demonstration data was introduced by Yongjie Wang et al. [8].
This approach successfully mitigated overfitting concerns and
improved the efficiency of penetration testing. However, it
demanded significant computational resources and expertise in
machine learning. Yang Li et al. [9] introduced an enhanced
network graph model for penetration testing, which seamlessly
integrated pertinent security attributes into the process. This
intelligent penetration testing method leveraged reinforcement
learning and social engineering factors. Yet, it entailed
complexity and resource-intensiveness, necessitating expertise
in both penetration testing and machine learning. An automated
penetration testing methodology designed to find the most
common weaknesses in IoT devices used in smart homes was
presented by Rohit Akhilesh et al. [2]. This method reduced the
time and effort required for penetration testing compared to
manual approaches, enhancing efficiency. However, it
confronted overfitting issues.

The review on penetration testing in network security
highlights various approaches, each with strengths and
limitations. Common challenges include the need for
significant computational resources and time, complexity in
dealing with uncertainties and overfitting, resource
intensiveness demanding specialized expertise, and struggling
with overfitting issues. To address these limitations, a novel
PSN-optimized Q-learning ensemble deep CNN framework is
developed in this research that integrates multiple techniques
like reinforcement learning, deep learning, and expert
demonstration data while optimizing efficiency, enhancing
robustness, and improving usability. This approach aims to
advance the field of vulnerability scanning and penetration
testing by mitigating drawbacks, improving the effectiveness
of cyber security measures in network environments, and
facilitating practical implementation in real-world scenarios.

A. Challenges

 Combining Q-learning, deep CNNs, and a discriminator
framework presents integration challenges, requiring
the harmonization of these diverse components for
effective operation.

 Handling intricate data sources in penetration testing,
like network traffic, may lead to data preprocessing and
feature extraction challenges for deep CNNs.

 The discriminator requires a robust dataset of real-world
attacks, which may be limited and pose challenges in
creating a representative knowledge base.

 Optimizing parameters for Q-learning, deep CNNs, and
the discriminator, including learning rates and network
architectures, presents challenges to achieving optimal
performance.

 Ensuring the framework's scalability to accommodate
various network sizes and complexities while
maintaining efficient decision-making can be
challenging.

III. PROPOSED METHODOLOGY FOR PENETRATION TESTING

Penetration testing also referred to as pen testing, is a cyber
security procedure that involves simulating actual assaults on
computer networks, applications, or systems in order to find
security flaws and vulnerabilities. The objective of penetration
testing is to proactively assess the security measures of an
organization's IT infrastructure and applications, with the goal
of uncovering potential weaknesses before malicious attackers
can exploit them. Initially, the penetration testing environment
(Shodan search engine) is simulated and along with that expert
knowledge base is generated. A CVE dataset is utilized in this
research for penetration testing. After simulating the
penetration testing environment, the Nmap script engine and
Metasploit are employed. The Nmap script engine serves as a
penetration scanning framework within Nmap, a robust tool for
investigating and evaluating networks. NSE empowers users to
develop and deploy scripts that automate a range of tasks
pivotal to penetration testing. Similarly, Metasploit is a widely-
used penetration testing framework that helps cyber security
professionals and ethical hackers identify vulnerabilities in
computer systems, networks, and applications. It provides a
range of tools and resources for assessing and exploiting
security weaknesses, as well as testing the effectiveness of
defense mechanisms and security controls. A deep CNN
known as the Q learning ensemble is formed by combining the
power of deep learning with reinforcement learning. Deep
CNNs receive the state (current circumstance) as input and
provide predictions for each possible action. To enable an
agent to acquire the best policy for making decisions, Q-
learning must be enabled. A model-free reinforcement learning
algorithm called Q-learning is used by the agent to learn the
optimal policy for making decisions in a given state. It helps
the agent to determine the best course of action by maximizing
cumulative rewards over time. aids the agent in determining
the optimal course of action to pursue in a particular state in
order to optimize cumulative rewards over time. Here, Q
learning is used to guide the agent in choosing actions that lead
to successful penetration by mapping the states to action and
optimizing the Q values which represent the predicted
cumulative rewards. The Deep CNNs are efficient in handling
complex data and extracting relevant features, making them
suitable for analyzing the diverse aspects of penetration testing
environments and decisions. The optimized Q-learning
ensemble deep CNN classifier is a combination of two
powerful techniques in artificial intelligence, Q-learning and
deep CNNs. In reinforcement learning problems, this hybrid
technique is applied when the agent has to learn an optimal
policy for making decisions. An agent engages with its
surroundings in reinforcement learning, and it is rewarded for
its behaviors. The agent aims to learn a policy that maximizes
the predicted cumulative reward, or Q-value, by mapping states
to actions. The predicted cumulative reward if the agent begins
in a state, performs a certain action, and then proceeds with
further decisions in accordance with its policy is represented by
the Q-value of a state-action pair. Here, the standard

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 3, 2024

848 | P a g e

www.ijacsa.thesai.org

hybridization of the coyote and particle swarm characteristics
leads to the development of the prairie natural swarm
optimization. These hybridized characteristics help in the fine-
tuning of the parameters inside the classifier, which helps in
enhancing the performance of the classifier. Simultaneously,
the discriminator receives the expert knowledge base and the
data from the penetration testing environment. The
discriminator plays a crucial role in training the agent by
providing feedback on the quality of actions taken. A
discounted reward is obtained by maximizing the typical action
reward and reducing the action reward output, hence providing
training for the discriminator. This feedback loop enables the
agent to refine its decision-making process and improve its
performance over time. The discounted reward provides the
less valuable information and the q value provides the efficient
information. Here the discounted reward is subtracted from the
q value. In comparison to alternative possible actions, the
advantage function calculates the benefit or advantage of
performing a specific action in a given situation. Using this
advantage function the possibility of successful penetration is
determined and the decision according to the situation is made
using the Q learning ensemble deep CNN classifier. The
collaborative approach enhances operational efficiency by
leveraging advanced machine learning techniques to navigate
and adapt to the dynamic and complex nature of penetration
testing environments. Overall, the model can facilitate adaptive
and intelligent decision-making, leading to more effective
penetration testing outcomes. The systematic representation of
the proposed penetration testing framework is depicted in
Fig. 1.

Fig. 1. The proposed block diagram of the penetration testing framework.

A. Penetration Testing Environment

A penetration testing environment, often referred to as a
pen-testing lab, is a controlled and isolated system or network
setup specifically designed for simulating real-world cyber
attacks safely. It duplicates the company’s actual IT
architecture, including its systems, networks, and apps,
enabling cybersecurity experts to find security flaws without
endangering sensitive data or operational systems. This
environment is equipped with various security tools and
resources to assist in the testing process. Data sanitization is
crucial to protect privacy and comply with regulations.

Comprehensive documentation is essential for tracking and
reporting findings. Penetration testing environments facilitate
proactive security assessments and help organizations
strengthen their cyber security defenses. Creating a penetration
testing environment that simulates the Shodan search engine
and incorporates an expert knowledge base is a valuable
approach for cyber security testing. Shodan is a specialized
search engine for finding and analyzing internet-connected
devices. It is used by cybersecurity professionals to identify
and assess potential security vulnerabilities and
misconfigurations in these devices. Its advantage lies in
helping experts proactively secure networks by providing
insights into exposed assets and potential risks, enhancing
cyber security posture. Segmenting the penetration testing
environment into two distinct components, one for the Nmap
Script Engine (NSE) and the other for the Metasploit
framework, can provide an organized and efficient approach to
penetration testing.

1) Nmap Script Engine (NSE): The Penetration Scanning

Framework for the Nmap Script Engine (NSE) is a critical

component of a penetration testing environment. It serves as

the initial reconnaissance and vulnerability scanning phase,

aiming to identify weaknesses and potential entry points in

target systems and networks. NSE leverages the Nmap tool, a

versatile and widely used network scanner. Within this

framework, NSE scripts are employed to automate specific

scanning tasks. These scripts are highly customizable,

allowing penetration testers to tailor them to the testing

objectives. NSE is used to discover live hosts and open ports

within the target environment. It helps testers map out the

network’s topology and identify reachable systems. By

utilizing NSE scripts, the framework gathers information

about services running on open ports. This includes

identifying service versions, banners, and configurations. NSE

scripts capable of detecting vulnerabilities are executed

against target systems. These scripts may check for known

vulnerabilities in services, applications, or system

configurations. Information obtained during scanning, such as

service banners and version details, is collected and analyzed

to identify potential weaknesses or misconfigurations.

Comprehensive reports are generated based on the findings of

NSE-based scans. These reports provide organizations with

insights into their network's security posture, highlighting

vulnerabilities that require remediation.

2) Metasploit: The Penetration Testing Framework for

Metasploit, often simply referred to as Metasploit, is a

powerful and widely used penetration testing and exploitation

framework. It provides security professionals, ethical hackers,

and penetration testers with a comprehensive set of tools and

resources for identifying vulnerabilities, exploiting them, and

assessing the security of computer systems, networks, and

applications. Metasploit includes a vast collection of exploit

modules that allow testers to exploit known vulnerabilities in

target systems. These modules are organized by the target's

operating system, service, and application, making it easier to

find and execute the right exploit. Metasploit supports various

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 3, 2024

849 | P a g e

www.ijacsa.thesai.org

payloads, which are pieces of code that are delivered to the

target system after a successful exploit. Payloads can be used

for tasks like gaining remote access, executing commands, or

performing post-exploitation activities. The framework

provides post-exploitation modules and functionalities to

maintain control over compromised systems. This includes

activities like privilege escalation, data exfiltration, and lateral

movement within a network. Metasploit includes auxiliary

modules for various tasks, such as scanning, reconnaissance,

and vulnerability detection. These modules can be used to

gather information about target systems or to perform non-

exploitative actions. Metasploit maintains a database of known

vulnerabilities, exploits, payloads, and compromised hosts.

This database helps testers keep track of their findings and

simplifies the exploitation process. Metasploit can be

integrated with other security tools and frameworks, making it

a versatile tool for comprehensive security assessments.

Integration with tools like Nmap, Wireshark, and Burp Suite

enhances its capabilities. Metasploit is available in both open-

source community and commercial versions. The community

version is free and open-source, while the commercial version

offers additional features, support, and updates. Users can

create custom scripts and automate tasks within Metasploit,

allowing for more efficient and tailored penetration testing

processes. Exploit Development: Metasploit provides a

platform for developing custom exploits and modules for zero-

day vulnerabilities. The framework offers reporting

capabilities to document findings, vulnerabilities, and the

overall security assessment process.

B. Optimized Q learning Ensemble Deep CNN

The optimized Q-learning ensemble deep CNN classifier is
a combination of two powerful techniques in artificial
intelligence such as Q-learning and deep CNNs. The advantage
of an ensemble Q-learning and deep CNN classifier in
penetration testing is its capacity to enhance the accuracy of
identifying vulnerabilities and security weaknesses. The PNS
algorithm helps in the fine-tuning of the parameters inside the
classifier, which helps in enhancing the performance of the
classifier.

A popular model-free reinforcement learning algorithm is
Q-learning. Assessing the effectiveness of taking particular
actions in distinct states, aids an agent in decision-making. By
making updates to a Q-table or function that gives each state-
action pair a Q-value, the agent gradually learns to optimize its
cumulative rewards. The predicted cumulative benefit of
performing a certain action in a particular condition is
represented by the Q-value. The Q-learning ensemble deep
CNN combines the strengths of both Q-learning and deep
CNNs. In this approach, the deep CNN is used as a function
approximation to estimate Q-values. The agent uses the neural
network to anticipate Q-values for state-action pairs rather than
keeping a Q-table. This neural network is trained using Q-
learning principles, such as temporal difference updates, to
learn an optimal policy. With the help of the optimized Q-
learning ensemble deep CNN classifier, the agent is able to
decide depending on the Q-values that have been learned. The

agent can utilize the neural network to evaluate the Q-values of
potential actions given a current state and choose the action
with the greatest estimated Q-value. This decision-making
process is guided by the goal of maximizing cumulative
rewards over time.

1) Deep CNN classifier: A deep CNN is a specialized

neural network created for processing organized grid-like data,

with images being a common application. It has gained

significant popularity in the realm of malware detection,

where the primary objective is to categorize input data as

either benign (safe) or potentially harmful (malicious). The

input data typically takes the form of an image or a structured

grid-like representation. In the context of malware detection,

this representation could be a visual rendering of binary code,

a heat map detailing system behavior, or some other organized

format. The CNN's architecture typically begins with one or

more convolutional layers. These layers employ a set of

learnable filters, also known as kernels, which are applied to

the input data. Each filter traverses the input data, extracting

features by performing convolutions. These convolution

operations are meticulously designed to identify distinct

patterns or characteristics within the input data. In the context

of malware detection, these patterns might correspond to

specific code structures or behaviors typically associated with

malicious software. An element-wise application of a non-

linear activation function, such as ReLU, follows each

convolution operation. This introduces essential non-linearity

into the model, enabling the network to grasp intricate

relationships within the data. In order to reduce the spatial

dimensions of the feature maps produced by the convolutional

layers, pooling layers, which can be either MaxPooling or

AveragePooling, are extremely important. This downsampling

serves to simplify computational complexity while capturing

the most significant features. The generated feature maps

flatten into a 1D vector following many convolutional and

pooling layers. This vector encapsulates the high-level

features extracted from the input data. This flattened vector

then passes through one or more completely connected layers.

These layers are akin to conventional neural network layers,

with each neuron establishing connections to every neuron in

the preceding and following layers. The fully connected layers

master intricate combinations of features and ultimately map

these features to the output classes, namely benign or

malicious. The final fully connected layer commonly employs

a softmax activation function to yield probability scores for

each class. The output layer, generally featuring two neurons

representing benign and malicious classes, produces the

ultimate classification results. The softmax function is

instrumental in converting the network’s outputs into class

probabilities, with the class exhibiting the highest probability

serving as the ultimate prediction. For training, the network

relies on labeled data where the ground truth (benign or

malicious) is known. During this training process, the network

adjusts its internal parameters, encompassing weights and

biases, employing optimization algorithms. The goal is to

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 3, 2024

850 | P a g e

www.ijacsa.thesai.org

reduce the size of a loss function that measures the

discrepancy between expected and real labels. The network is

assisted in learning to differentiate between benign and

malicious data by this repeated training procedure. Fig. 2

illustrates the architecture of the deep CNN classifier.

Fig. 2. Architecture of CNN.

2) Q-learning algorithm: A method for reinforcement

learning called Q-learning is essential in assisting agents in

understanding the best course of action to adopt in contexts

where their goal is to maximize their cumulative rewards. This

algorithm proves to be particularly valuable when the agent

starts with limited knowledge of the environment and needs to

gather insights and refine its strategy through interactions over

time. Its fundamental concept is rooted in Markov decision

processes. The core process involves the agent perceiving the

current state of the environment, deciding on the action to take

through a specific strategy, and then receiving immediate

feedback in the form of a reward. The information regarding

the future state of the environment is also included in this

comment. Essentially, Q-learning functions by creating a map

that connects the present environmental condition to the most

beneficial course of action. The primary steps of the algorithm

can be summarized as follows.

Step 1: To begin, define the state set as  1 2, ,.... nSe se se se

and the actions set as  1 2, ,.... nAe ae ae ae and also initiate the

state-action function, denoted as  ,Q se ae , and create the reward

matrix, represented as Re . Additionally, set crucial parameters,

including the maximum number of iterations, denoted as M .

Step 2: The process commences by randomly selecting an
initial state from the state set S. The iteration ends and a new
initial state is selected if, by chance, the initial state is already
the goal state. On the other hand, the algorithm moves on to
step 3 if the starting state is not the desired state. This
mechanism ensures that the algorithm begins with a suitable
starting point and repeats until it reaches the target state.

Step 3: The algorithm chooses an action from the pool of
all feasible actions available in the current state, adhering to the
ε-greedy strategy. This chosen action then guides the agent to
transition to the next state within the environment. This
approach effectively balances exploration and exploitation,
allowing the agent to make decisions that prioritize known,
rewarding actions while occasionally exploring new
possibilities.

Step 4: Eq. (1) serves as the means to update the Q-matrix.

         '
' 1, , * , max , ,t t t t t t ae A t t tQ se ae Q se ae R se ae Q se ae Q se ae   

          (1)

Where tse is the environment's state at the time t , at is the

agent's action at time t ,  ,t tQ se ae is the state-action operates

at time t , 1tse  is the environment's state at time t + 1,

 ,t tR se ae is the immediate reward of the environment's

feedback from time t to time t + 1, and 'ae is the action that

maximizes value. Q When the agent arrives 1tse  , the learning

rate is  varies from  0,1  the discount factor is 0,1    , and

γ is the discount factor.

Step 5: Proceed by updating the state for the next moment,
setting it as the current state, which is expressed as 1t tse se  . If

the current state (tse) is not the target state, the algorithm loops

back to step 3. This iterative process continues until the target
state is reached, ensuring that the agent refines its decision-
making strategy over multiple cycles.

Step 6: The method ends when the maximum number of
iterations is reached, indicating that the training phase is
complete. At this point, the converged Q-matrix is acquired,
and the optimal action strategy is determined using Eq. (2).
However, if the maximum iterations have not been reached, the
process returns to step 2, initiating the next iteration. This
iterative approach continues until the training process reaches
its defined limit, thereby ensuring the refinement of the optimal
action strategy.

    * argmax * ,a Ase Q se ae 
 (2)

3) Prairie natural swarm optimization (PNS): The prairie

natural swarm optimization (PNS) is developed through the

hybridization of coyote and particle swarm algorithms. In the

coyote algorithm, the velocity and position is not interpreted

so it faces limited capability to explore the search space

effectively and slower convergence to optimal solutions.

Considering this, the particle swarm algorithm velocity is

merged with coyote for faster convergence and balanced the

exploration and exploitation.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 3, 2024

851 | P a g e

www.ijacsa.thesai.org

Motivation Coyote (prairie) Optimization is a novel meta-
heuristic algorithm that draws inspiration from the remarkable
problem-solving and adaptability exhibited by coyotes, an
exceptionally resourceful species. The development of this
optimization technique is driven by several factors. Firstly,
coyotes showcase remarkable problem-solving skills and
adaptability in diverse environments, making them an
intriguing source of inspiration for optimizing complex and
dynamic scenarios. Their intelligence, social behavior, and
efficient foraging strategies offer valuable insights for
algorithm design. Secondly, in addressing complex and
dynamic problems, existing optimization algorithms may not
always be well-suited. Prairie Optimization aims to bridge this
gap by providing a nature-inspired approach capable of
effectively handling real-world complexities. Additionally, as
researchers continue to explore nature-inspired optimization
techniques, drawing inspiration from a wide array of species,
the creation of new algorithms like Prairie Optimization adds
to the expanding toolbox of computational intelligence
methods for solving intricate problems in various domains,
including engineering, logistics, and finance.

Particle Swarm Optimization (Natural swarm) is an
algorithm driven by the emulation of the collective behavior of
birds and fish, drawing inspiration from the flocking patterns of
birds and schooling behaviors of fish in the natural world.
Natural Swarm aims to enhance the optimization of solutions
within complex search spaces. Its motivation lies in harnessing
the potential of swarm intelligence for problem-solving, with
each particle in the swarm representing a potential solution.
These particles interact with one another based on the
principles of exploration and exploitation. They adjust their
positions by learning from both their individual experiences
and those of their neighbors, all with the aim of converging
toward optimal solutions. Natural swarm is particularly well-
suited for tackling optimization problems that challenge
traditional methods, such as those in high-dimensional spaces,
non-convex landscapes, and scenarios with numerous local
optima. Its foundation in nature highlights the strength of
collective decision-making, adaptability, and the synergy
among individual agents. In essence, the motivation behind
natural swarms is to develop a versatile optimization technique
that leverages the collective intelligence of swarms to discover
high-quality solutions across a broad spectrum of applications
in fields like engineering, economics, science, and more.

C. Mathematical Equation of Prairie Natural Swarm

Optimization

This section delves into the mathematical equation that
underpins Prairie Natural Swarm Optimization, which is
presented in the following passage.

In the COA algorithm, the coyote population is partitioned

into *
qM M packs, with each pack comprising *

aM M

coyotes. This initial suggestion assumes that there are the same
number of coyotes in each pack, everywhere. Thus, the
algorithm's total population is determined by multiplying

*
qM M and *

aM M . To simplify matters, this initial version

of the algorithm does not take into account solitary coyotes. In
this formulation, each coyote symbolizes a potential solution to

the optimization issue, and its social condition is expressed in
the cost associated with the objective function. This is crucial
to note for the convenience of the reader.

Inspired by the social dynamics of coyotes, which are

equivalent to the choice variables y


 in a global optimization

problem, the COA mechanism was devised. Therefore, the
social condition, denoted as V (comprising the set of decision

variables), for the tha coyote in the thq pack during the ths time

instance is expressed as follows,

 ,
1 2, ,......q s

a EV y y y y


 
 (3)

The first step in the COA is to establish the coyote
population worldwide. Due to the stochastic nature of the
COA, randomization is used to set the initial social conditions
for every single coyote. To do this, random values are assigned

for the tha coyote in the thq pack and along the thi dimension

within the defined search space, as follows.

 ,
,

q s
i i i ia iV L k U L   

 (4)

Where E denotes the search space's dimension and iL and

iU represent the thi decision variable's lower and upper

bounds, respectively. Furthermore, inside the range [0,1], ik

represents a true random number that is produced from a
uniform probability distribution. Following this randomization
process, the adaptation of the coyotes within their current
social conditions is assessed.

 ,,
,

q sq s
a a if f V

 (5)

Coyotes are randomly assigned to packs at the beginning.
However, there are times when coyotes decide to leave their
existing packs and live alone or decide to join a new pack. A
coyote's eviction from a pack is contingent upon the size of the
pack at that moment and occurs with a probability represented
by the symbol qr. The following is a description of this
process,

20.005r aQ M 
 (6)

Considering the parameter rQ can take values exceeding 1

for 200aM  , causing a maximum quantity of coyotes per

pack to be limited to 14. The goal of this mechanism is to
promote contact and diversity among all of the coyotes in the
population. In essence, it encourages cross-cultural
communication among people everywhere, leading to a more
extensive and dynamic process of information sharing.

In the natural behavior of this species, packs typically
consist of two alpha individuals. However, in the COA, only
one alpha is considered, specifically the one that demonstrates
the highest level of adaptation to the environment. When
dealing with a minimization problem, the following definition

applies to the alpha of the thq pack at the ths time instance,

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 3, 2024

852 | P a g e

www.ijacsa.thesai.org

    , ,,
, ,1,2,...| min

a

q s q sq s
a i a ia MV h f V 

 (7)

The COA operates under the assumption that coyotes
possess a level of organization that allows them to share their
social conditions and aid in the upkeep of their packs, given the
observable signs of swarm intelligence within this species. As
a result, the COA compiles all of the data that came from the
coyotes and treats it as the pack's cultural inclination.

 
,

1

2
,

, ,

, 1 ,
2 2

,

,
2

a

a a

q s
aM

q s
q s q si
M M

i i

G M is odd

T
G G

otherwise



 
 

 






  



 (8)

For each i in the range, ,q sG represents the social

conditions that are ranked for all coyotes in the thq pack

during the ths time occurrence [1, E]. To put it simply, the

median social conditions of all the coyotes in that specific pack
are computed to identify the pack's cultural inclination.

With birth and death as basic biological events in mind, the

COA determines the coyote's age ,q s
ab  in years. A new

coyote's social circumstances are said to be a combination of
its two randomly chosen parents' social circumstances as well
as external factors. This can be stated in the manner shown
below:

,
11,

, ,
22,

,

,

,

q s
i tk i

q s q s
i t di k i

i

V kn Q or i i

g V kn Q Q or i i

B Otherwise

  



   


 (9)

In this case, 1i and 2i stand for two randomly selected

problem dimensions, and 1k and 2k stand for two randomly

chosen coyotes from the thq pack. Furthermore, iB is a

random number inside the boundaries of the thi dimension's

decision variable, ikn is a uniformly produced random number

within the range [0,1], and tQ , dQ , and ikn represent the

scatter and association probabilities, respectively. The scatter
and association probability, tQ and dQ , are important factors

that influence how diverse the coyotes' cultures are within the
pack. Here are the definitions of tQ and dQ in this first edition

of the COA.

1/tQ E
 (10)

 1 / 2d tQ Q 
 (11)

Where, dQ exerts an equivalent influence and impact on

both parents. To capture the cultural dynamics within the
packs, the COA introduces the concepts of the alpha influence

 1 and the pack influence  2 . The alpha influence is the

difference in culture between a randomly picked coyote in the

pack  1ak and the alpha coyote, while the pack influence is

the difference in culture between another randomly selected

coyote  2ak and the group's cultural tendency. The uniform

probability distribution is used to select these random coyotes,
and 1 and 2 are expressed as follows,

1

,,
1

q sq s
ak

V  
 (12)

2

,,
2

q sq s
ak

T V  
 (13)

In the coyote algorithm, the velocity and position is not
interpreted so it faces limited capability to explore the search
space effectively and slower convergence to optimal solutions.
Considering this, the particle swarm algorithm velocity is
merged with a coyote for faster convergence and balanced
exploration and exploitation. Then the new mathematical
equation becomes,

1 1
1 1 2 2

t t tX X k k v     
 (14)

           1
1 1 2 2 1 1 2 2

t t
best bestX X k k v t g u D t y t g u H t y t          

  (15)

Where, the weighing factors for the pack influence and the
alpha influence are represented by the variables 1k and 2k ,

respectively. First, a uniform probability distribution is used to
produce random numbers within the range [0,1] for both 1k

and 2k . Furthermore, the particle swarm optimization's social

and cognitive acceleration coefficients are represented by the
parameters 1g and 2g . In the meantime, two uniformly

distributed random numbers produced within the interval [0, 1]
are 1u and 2u .

Algorithm 1: Pseudo code for the proposed Prairie Natural
Swarm Optimization

S.No Pseudo code for the proposed Prairie Natural Swarm

Optimization

1.
Initialize qM packs with aM coyotes (eqn 4)

2. Coyotes adaptation verification (eqn 5)

3. While do

4. For each q pack do

5. Define alpha coyote (eqn 7)

6. Compute social tendency of the pack (eqn 8)

7. For each a coyote of the pack q do

8. Update the social condition (eqn 12 and 13)

9. Determine best solution (eqn 15)

10. End for

11. Birth and death (eqn 9)

12. End for

13. Transition between packs (eqn 6)

14. Update age of coyotes

15. End while

16. Choose best adapted coyote

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 3, 2024

853 | P a g e

www.ijacsa.thesai.org

In the optimization process, the strategies employed draw
from the adaptability and strategic decision-making observed
in coyote behavior. This entails dynamically adjusting
parameters in response to changes in the penetration testing
environment. Just as coyotes adapt their hunting strategies
based on factors like prey behavior and environmental
conditions, the PNS optimization enables the system to flexibly
modify parameters to optimize the performance as new threats
emerge. Moreover, the PNS optimization leverages the
collaborative optimization capabilities inspired by particle
swarm behavior. Similar to how swarms of particles
collectively explore and converge toward optimal solutions.
This collaborative aspect ensures that the optimization process
explores a diverse range of parameter configurations, allowing
for the discovery of superior settings that enhance the system’s
overall performance.

 The PNS optimization is used to fine-tune the
hyperparameters in Q learning ensemble deep CNN. This fine-
tuning process ensures that the models are configured
optimally for the specific task of penetration testing. By tuning
the parameters such as weight and bias, the optimization
contributes to improved convergence rates, higher accuracy,
and enhanced generalization capability of the models involved
in penetration testing. This leads to more effective
identification of security flaws and vulnerabilities within the IT
applications. Additionally, the dynamic adjustment of
parameters enables the system to adapt rapidly to new threats
or changes in the environment, thereby enhancing operational
efficiency and ensuring robust cyber security measures.
Overall, by combining adaptability, strategic decision-making,
and collaborative optimization, PNS optimization enables the
system to achieve superior performance, effectively mitigating
security risks and safeguarding the organization against cyber
threats.

IV. RESULT

The subsequent section provides a comprehensive account
of the outcomes achieved through the application of Q-learning
ensemble deep CNN with Prairie Natural Swarm Optimization
for the purposes of penetration testing.

A. Experimental Setup

The experiment, which centers on penetration testing and
employs the optimization of Q-learning ensemble deep CNN,
is conducted using Python. The experiment is conducted on a
Windows 10 computer that has 8GB of internal memory.

B. Dataset

CVE dataset [22]: The research utilizes a dataset sourced
from the National Institute of Standards and Technology
(NIST) called Common Vulnerabilities and Exposures (CVE).
The CVE dataset contains information about cyber security
threats, vulnerabilities, and exposures making it a valuable
source for penetration testing. It includes various software
systems, networks, and applications, ensuring the dataset’s
diversity. Furthermore, since CVE entries are meticulously
documented and categorized, the dataset’s representativeness is
enhanced, allowing for a wide range of cyber security threats to
be captured and analyzed.

C. Parameter Metrics

1) Accuracy: Accuracy in penetration testing refers to the

overall correctness of the testing results. It is a measure of

how well the test findings and identified vulnerabilities align

with the actual security weaknesses present in the target

system. High accuracy means that the test results are reliable

and reflect the true security status of the system, while low

accuracy indicates a higher likelihood of false positives or

false negatives.

tn tp

tn tp fn fp

R R
acc

R R R R




  
 (16)

2) Sensitivity: Sensitivity, also known as the true positive

rate or recall, represents the ability of the penetration test to

correctly identify and report actual vulnerabilities or security

issues present in the system. A high sensitivity means that the

test is effective at finding true vulnerabilities and minimizing

the risk of overlooking them.

tp

tp fn

R
sen

R R



 (17)

3) Specificity: Specificity, on the other hand, measures the

ability of the penetration test to avoid false alarms or false

positives. A high specificity indicates that the test is less likely

to report security issues that do not exist. This is important for

minimizing the time and resources required for investigating

and remediating issues, as well as preventing unnecessary

disruption to the target system.

tn

tn fp

R
spec

R R



 (18)

D. Performance Analysis

Two important performance indicators are used to
demonstrate the efficacy of Q-learning ensemble deep CNN
optimization via Prairie Natural Swarm such as training
percentage (TP) and k-fold. To fully evaluate its performance,
this evaluation is carried out throughout several epochs,
namely at intervals of 100, 200, 300, 400, and 500.

1) Performance analysis with TP: Fig. 3 vividly illustrates

the effectiveness of Prairie Natural Swarm (PSN) optimized

Q-learning ensemble deep CNN when applied to penetration

testing within the context of the TP. Fig. 3(a) shows that the

PSN-optimized Q-learning ensemble deep CNN performs

admirably when it comes to evaluating accuracy at TP 90,

with results of 87.55%, 90.65%, 91.84%, 91.86%, and 94.54.

Similarly, when evaluating sensitivity at TP 90 through the

PSN-optimized Q-learning ensemble deep CNN, the results

are notably robust, registering figures of 87.57%, 90.90%,

91.63%, 91.96%, and 94.98 [as illustrated in Fig. 3(b)]. The

PSN-optimized Q-learning ensemble deep CNN consistently

yields high results in the evaluation of specificity for the 90%

training, with values of 87.44%, 90.98%, 91.19%, 91.93%,

and 94.99% [as shown in Fig. 3(c)]. These outcomes highlight

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 3, 2024

854 | P a g e

www.ijacsa.thesai.org

the method's effectiveness over many epochs and show how

proficient it is becoming in penetration testing situations.

a) Accuracy b) Sensitivity

c) Specificity

Fig. 3. Performance with TP.

2) Performance analysis with k-fold: Fig. 4 shows the

effectiveness of the Q-learning ensemble deep CNN optimized

for Prairie Natural Swarm (PSN) in penetration testing,

specifically using the k-fold evaluation framework. In the

context of assessing accuracy at TP 90, the PSN-optimized Q-

learning ensemble deep CNN demonstrates performance

results of 87.29%, 90.86%, 91.00%, 91.67%, and 94.82% ([as

presented in Fig. 4(a)]. Similarly, when considering sensitivity

at TP 90 through the PSN-optimized Q-learning ensemble

deep CNN, the results remain robust, recording figures of

87.97%, 90.58%, 90.60%, 91.68%, and 94.90% [as depicted

in Fig. 4(b)]. The PSN-optimized Q-learning ensemble deep

CNN regularly produces good results in the evaluation of

specificity for the 90% training, with values of 87.83%,

90.70%, 91.76%, 91.99%, and 93.89% [as shown in Fig. 4(c)].

These results illustrate the approach's efficacy in the k-fold

evaluation and point to its possible applications in penetration

testing scenarios.

a) Accuracy b) Sensitivity

c) Specificity

Fig. 4. Performance with k-fold.

E. Analysis based on Q-learning

Fig. 5 provides a visual representation of the effectiveness
of PSN-optimized Q-learning ensemble deep CNN in the
context of penetration testing, specifically within the
framework of loss and rewards evaluation. In the context of
assessing loss at 90% data demonstrates results of
0.007982595, 0.007981617, 0.007982108, 0.007980786, and
0.00798194 for 995, 996, 997, 998, 999 episodes [as presented
in Fig. 5(a)]. Similarly, when considering rewards at 90% data
demonstrates results of 978, 979, 980, 980, and 981 for 995,
996,997, 998, 999 episodes [in Fig. 5(b)].

a) b)

Fig. 5. Analysis based on Q-learning.

F. Comparative Methods

KNN [H1] [16], CatBoost [H2] [17], Xgboost [H3] [18],
Neural Network [H4] [19], LSTM [H5] [20], Deep CNN [H6]
[21] is compared with PSN optimized Q-learning ensemble
deep CNN [H7].

1) Comparative analysis with TP: Fig. 6 provides a visual

representation of the penetration testing methodology

evaluation. Surprisingly, Fig. 6(a) depicts that the H7

outperforms the H6, outperforming by a gradually increasing

margin of 0.93 when it comes to accuracy evaluation inside

the 90% training. This significant improvement is also seen

when sensitivity is assessed in the same training setting which

is presented in Fig. 6(b), where H7 once more demonstrates a

notable increase of 0.89 relative to H6. In addition, when

looking at specificity for the 90% training, the H7 shows a

1.34 gain over the H6, continuing its remarkable performance

trend, and the analysis of specificity is illustrated in Fig. 6(c).

These results highlight the H7's obvious benefits in the field of

penetration testing.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 3, 2024

855 | P a g e

www.ijacsa.thesai.org

2) Comparative analysis with k-fold: Fig. 7 provides a

visual representation of the penetration testing methodology

assessment. Surprisingly, Fig. 7(a) depicts that the H7

outperforms the H6 by a steadily increasing margin of 1.00

when it comes to accuracy assessment inside the nine-fold

framework. This significant improvement is also shown in the

sensitivity analysis in the same training situation which is

presented in Fig. 7(b), where the H7 again demonstrates a

noteworthy rise of 1.01 in comparison to the H6. In addition,

the H7 exhibits a 1.01 improvement over the H6 in terms of

specificity inside the 9-fold, thereby sustaining its remarkable

performance trend, and the analysis of specificity is illustrated

in Fig. 7(c). These outcomes highlight the H7's noteworthy

benefits when it comes to penetration testing.

a) Accuracy b) Sensitivity

c) Specificity

Fig. 6. Comparative with TP.

a) Accuracy b) Sensitivity

c) Specificity

Fig. 7. Comparative with k-fold.

G. Comparative Discussion

Comparisons with other current methods are used to
determine the efficacy of the proposed PSN-optimized Q-

learning ensemble deep CNN method. The PSN-optimized Q-
learning ensemble deep CNN outcomes are 94.54%, 94.40%,
and 94.90% respectively for TP. For the k-fold, the PSN-
optimized Q-learning ensemble deep CNN obtained values are
94.64%, 94.69%, and 94.52% respectively. Table I depicts the
obtained values of the PSN-optimized Q-learning ensemble
deep CNN method with existing methods.

TABLE I. COMPARATIVE DISCUSSION OF PROPOSED METHOD WITH

EXISTING METHODS

Metho

ds

TP(90) k-fold (9)

Accura

cy (%)

Sensitiv

ity (%)

Specific

ity (%)

Accura

cy (%)

Sensitiv

ity (%)

Specific

ity (%)

KNN 67.87 66.53 67.29 66.62 67.13 67.14

Cat

Boost
74.45 73.74 72.00 73.80 73.92 73.26

Xgboo

st
84.36 84.53 84.86 83.52 83.83 84.73

Neural

Netwo

rk

92.64 91.22 92.05 91.47 92.20 92.30

LSTM 92.96 92.77 92.99 92.81 92.54 92.86

Deep

CNN
93.66 93.56 93.63 93.69 93.74 93.56

Propos

ed
94.54 94.40 94.90 94.64 94.69 94.52

V. CONCLUSION

In this research the effective penetration testing framework
is developed using prairie natural swarm (PNS) optimized Q-
learning ensemble deep CNN. Initially, the penetration testing
environment (Shodan search engine) is simulated and along
with that expert knowledge base is also be generated.
Subsequently, the Nmap script engine and Metasploit are
deployed, providing robust tools for network investigation and
vulnerability assessment. The system state is then relayed to
the Q-learning ensemble deep CNN classifier. This unique
ensemble combines the strengths of Q-learning and deep
CNNs, enabling optimal policy learning for decision-making.
The prairie natural swarm optimization algorithm is developed
through the hybridization of coyote and particle swarm
characteristics to fine-tune classifier parameters, enhancing
performance. Additionally, the discriminator is trained to
maximize standard action rewards while minimizing
discounted action rewards, distinguishing valuable from less
valuable information. By evaluating the advantage function,
successful penetration likelihood is determined, informing
situational decision-making through the Q-learning ensemble
deep CNN classifier. PNS-optimized Q-learning ensemble
deep learning is used to measure the output along with
accuracy, sensitivity, and specificity. In comparison to other
current approaches, it achieves higher efficiency, achieving
94.54%, 94.40%, 94.90% for TP and 94.64%, 94.69%, 94.52%
for k-fold. In the future, advanced deep learning techniques,
dynamic environment adaption, integration with security

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 3, 2024

856 | P a g e

www.ijacsa.thesai.org

operations, privacy–preserving techniques will be involved to
address the robustness and resilience challenges.

REFERENCES

[1] A.Mohsen, A. Taghavirashidizadeh, D. Javaheri, A. Masoumian, S.J.
Ghoushchi, and Y. Pourasad. "DQRE-SCnet: a novel hybrid approach
for selecting users in federated learning with deep-Q-reinforcement
learning based on spectral clustering." Journal of King Saud University-
Computer and Information Sciences 34, no. 9 (2022): 7445-7458.

[2] A. Rohit, O. Bills, N. Chilamkurti, and M.J.M. Chowdhury. "Automated
Penetration Testing Framework for Smart-Home-Based IoT Devices."
Future Internet 14, no. 10 (2022): 276.

[3] C. Jihua, Z. Wang, S. Tian, J. Zhao, and S. Wang. "Incorporating
Clustering Modification Directions into Reinforcement Learning Based
Cost Learning Framework." (2022).

[4] M., Soheil, A. Rasouli, Y. Malekshah, A. Ramezani, and A.Malekshah.
"Reliability-driven distribution power network dynamic reconfiguration
in presence of distributed generation by the deep reinforcement learning
method." Alexandria Engineering Journal 61, no. 8 (2022): 6541-6556.

[5] Jinyin Chen, Shulong Hu, Haibin Zheng, Changyou Xing, Guomin
Zhang, "GAIL-PT: An intelligent penetration testing framework with
generative adversarial imitation learning" Computers &
Security,Volume 126,2023,103055,ISSN 0167-4048.

[6] Zhenguo Hu, Razvan Beuran, Yasuo Tan Japan Advanced Institute of
Science and Technology. "Automated Penetration Testing Using Deep
Reinforcement Learning." © 2020, Zhenguo Hu. Under license to IEEE.
DOI 10.1109/EuroS&PW51379.2020.00009.

[7] B.Hafsa, M. Jouhari, K. Ibrahimi, J. B. Othman, and E. M.Amhoud.
"Anomaly Detection in Industrial IoT Using Distributional
Reinforcement Learning and Generative Adversarial Networks." Sensors
22, no. 21 (2022): 8085.

[8] W.Yongjie, Y. Li, X. Xiong, J. Zhang, Q. Yao, and C. Shen. "DQfD-
AIPT: An Intelligent Penetration Testing Framework Incorporating
Expert Demonstration Data." Security and Communication Networks
2023 (2023).

[9] L. Yang, Y. Wang, X. Xiong, J. Zhang, and Q. Yao. "An Intelligent
Penetration Test Simulation Environment Construction Method
Incorporating Social Engineering Factors." Applied Sciences 12, no. 12
(2022): 6186.

[10] K. S. Hussain, T. J. Alahmadi, W. Ullah, J. Iqbal, A. Rahim,
H.K.Alkahtani, W.Alghamdi, and A.O. Almagrabi. "A new deep
boosted CNN and ensemble learning based IoT malware detection."
Computers & Security 133 (2023): 103385.

[11] N.Thanh Thi, and V. J. Reddi. "Deep reinforcement learning for cyber
security." IEEE Transactions on Neural Networks and Learning Systems
(2021).

[12] K.Nickolaos, N. Moustafa, B. Turnbull, F. Schiliro, P.Gauravaram, and
H.Janicke. "A deep learning-based penetration testing framework for
vulnerability identification in internet of things environments." In 2021
IEEE 20th International Conference on Trust, Security and Privacy in
Computing and Communications (TrustCom), pp. 887-894. IEEE, 2021.

[13] S.Wei, X. Li, S. Afroz, D. Garg, D. Kuznetsov, and H. Yin. "Mab-
malware: A reinforcement learning framework for blackbox generation
of adversarial malware." In Proceedings of the 2022 ACM on Asia
conference on computer and communications security, pp. 990-1003.
2022.

[14] M. Xianbo, S. Tan, B. Li, and J. Huang. "MCTSteg: A Monte Carlo tree
search-based reinforcement learning framework for universal non-
additive steganography." IEEE Transactions on Information Forensics
and Security 16 (2021): 4306-4320.

[15] Y.Wei, W.Xiang, Y. Yang, and P. Cheng. "Optimizing federated
learning with deep reinforcement learning for digital twin empowered
industrial IoT." IEEE Transactions on Industrial Informatics 19, no. 2
(2022): 1884-1893.

[16] J. Galupino, and J. Dungca. "Development of a k-Nearest Neighbor
(kNN) Machine Learning Model to Estimate the SPT N-Values of
Valenzuela City, Philippines." In IOP Conference Series: Earth and
Environmental Science, vol. 1091, no. 1, p. 012021. IOP Publishing,
2022.

[17] H. Jiazhi, X. Feng, and M. Lu. "Accurate and Generalizable Soil
Liquefaction Prediction Model Based on the CatBoost Algorithm."
(2023).

[18] A. R. T. E. M., V. Y. A. C. H. E. S. L. A. V. A.Maaz, I. Ahmad, M.
Ahmad, P.Wróblewski, P. Kamiński, and U. Amjad. "Prediction of pile
bearing capacity using XGBoost algorithm: modeling and performance
evaluation." Applied Sciences 12, no. 4 (2022): 2126.

[19] T. Kharchenko, D. M. Y. T. R. O. Uzun, and A. R. T. E. M. Nechausov.
"Architecture and model of neural network based service for choice of
the penetration testing tools." International Journal of Computing 20, no.
4 (2021): 513-518.

[20] K.Nickolaos, N. Moustafa, B. Turnbull, F. Schiliro, P. Gauravaram, and
H. Janicke. "A deep learning-based penetration testing framework for
vulnerability identification in internet of things environments." In 2021
IEEE 20th International Conference on Trust, Security and Privacy in
Computing and Communications (TrustCom), pp. 887-894. IEEE, 2021.

[21] H. Mingming, Z. Zhang, J. Ren, J. Huan, G. Li, Y. Chen, and N. Li.
"Deep convolutional neural network for fast determination of the rock
strength parameters using drilling data." International Journal of Rock
Mechanics and Mining Sciences 123 (2019): 104084.

[22] CVE dataset,https://www.kaggle.com/datasets/andrewkronser/cve-
common-vulnerabilities-and-exposures, on december 2023.

