
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 1, �o. 1, 2010

Page | 16

http://ijacsa.thesai.org/

Algebraic Specifications:Organised and focussed approach

in software development

Rakesh.L

Research Scholar

Magadh University, Bodhgaya

Gaya, Bihar, India-824234

rakeshsct@yahoo.co.in

Dr. Manoranjan Kumar singh

PG Department of Mathematics

Magadh University, Bodhgaya

Gaya, Bihar, India-824234

drmksingh_gaya@yahoo.com

Abstract — Algebraic specification is a formal

specification approach to deal with data structures in an

implementation independent way. Algebraic specification

is a technique whereby an object is specified in terms of

the relationships between the operations that act on that

object. In this paper we are interested in proving facts

about specifications, in general, equations of the form t1 =

t2 , where t1 and t2 are members of term (∑), being the

signature of the specification. One way of executing the

specification would be to compute the first algebra for the

specification and then to check whether t1 and t2 belong in

the same equivalence class. The use of formal specification

techniques for software engineering has the advantage that

we can reason about the correctness of the software before

its construction. Algebraic specification methods can be

used for software development to support verifiability,

reliability, and usability. The main aim of this research

work is to put such intuitive ideas into concrete

setting in order for better quality product.

 Keywords- Abstract data types (ADTs), Formal-Methods,

Abstraction, Equational reasoning, Symbolic computation.

I. INTRODUCTION

 A specification can be considered as a kind of contract

between the designers of the software and its customers. It

describes the obligations and rights of both parties. A

specification binds customers and designers by expressing the

conditions under which services of a product are legitimate

and by defining the results when calling these services.

Specifications serve as a mechanism for generating questions.

The construction of specifications forces the designers to think

about the requirements definition and the intrinsic properties

and functionalities of the software system to be designed. In

this way the development of specifications helps the designers

to better understand these requirements and to detect design

inconsistencies, incompleteness and ambiguities in an early

stage of software development. Specifications are obviously

used for software documentation they describe the abstractions

being made. Specifications are a powerful tool in the

development of a program module during its software

lifecycle. The presence of a good specification helps not only

designers but also developers and maintainers. The modularity

of the specification serves as a blueprint for the

implementation phase, where a program is written in some

executable language. In most software projects, the language

used is an imperative nature. Unlike specifications, programs

deal with implementational details as memory representation,

memory management and coding of the system services.

Writing a specification must not be seen as a separate phase in

the development of software. Also, specification must be

adapted each time modifications are introduced in any other

phases of the software life cycle. Especially, specifications

have to be adapted each time modifications are introduced in

any of the other phases of the software life cycle. Especially,

specifications have to be updated during the maintenance

phase taking into account the evolution of the software system.

With regard to the program validation, specifications may be

very helpful to collect test cases to form a validation suite for

the software system.

 Specification must be at the same time compact, complete,

consistent, precise and unambiguous. It has turned out that a

natural language is not a good candidate as a specification

language. In industry a lot of effort has been devoted to

writing informal specifications for software systems, but little

or no attention is paid to these specifications when they are

badly needed during maintenance phase of the software life

cycle [1].Specification in natural language rapidly become

bulky, even to such extent that nobody has the courage to dig

into them. Moreover, such specifications are at many places

inaccurate, incomplete and ambiguous. It is very discouraging

to discover after a long search that the answer can only be

obtained by running the system with the appropriate input

data. The tragedy in software development is that once a

program modification is made without adapting the

corresponding specification, the whole specification effort is

lost. Having a non-existent or an obsolete specification is the

reason why there exist so many software systems the behavior

of which nobody can exactly derive in a reasonable lapse of

time. Notice that running the program with the appropriate

input can only give partial answers to questions about the

system behavior. The entire idea is not to prove informal

specification is useless. They are very useful as first hand

information about the software product and as a comment to

enhance the readability of the formal specifications.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 1, �o. 1, 2010

Page | 17

http://ijacsa.thesai.org/

 II. RELATED WORK

 Formal specifications, unlike the informal ones, enable

designer to use rigorous mathematical reasoning. Properties of

the specification can be proved to be true just as theorems can

be proved in mathematics. In this way design errors,

inconsistencies and incompleteness can be detected in an early

stage of the software development [2]. Algebraic specification

enables the designer to prove certain properties of the design

and to prove that implementation meets its specification.

Hence algebraic specification is used in a process called rapid

prototyping. In a design strategy algebraic specification can be

used as top down approach. The notion of top-down means

here that specification is treated before any instruction of the

implementation is written. The benefit of making constructive

formal specification will certainly interest the practitioner, by

rapid prototyping designers and customers will get user

feedback and hands on experience with the software system

before the implementation already gets started. In this way

design errors due to misunderstandings between developers

and customers, and lack of understanding of the services

provided the product can be detected and corrected at an early

stage. With the concept of constructive formal specifications

and direct implementation, the boundaries between

specifications and implementation are not very sharp. Both

specifications and implementation are in fact programs, but

the former are of a more abstract level than the latter. More

over in the life cycle of a software product there may be more

than two levels of abstraction [3]. A module may serve as a

specification for the lower level and at the same time as an

implementation for the higher one.

The following literature reveals the historical review on

Algebraic specifications development and its significance.

In the Axiomatic method the behavior of the program is

characterized by pre and post conditions. Its pioneers are

Floyd, Hoare and Dijkstra.

Another well-known formalism is denotational semantics,

especially the use of high order functions is very useful to

describe the powerful control structures of programming

languages its pioneers are Stoy and Gordon.

The new formalism based on the concept abstract data types

has been developed as many sorted algebras and underlying

mathematical model, such specifications are called algebraic

specifications.

The pioneers of algebraic specifications are Zilles, Guttag,

and the ADJ group consisting of Gougen, Thatcher, Wagner

and Wright. They all consider a software module representing

an ADT as many sorted algebra. The basic argument for the

algebraic approach is that software module has exactly the

same structure as algebra. The various sorts of data involved

form sets and the operations of interest are functions among

these sets.

The idea of behavioral equivalence was introduced by

Giarratana.Gougen of ADJ research group presented the

theory of many sorted algebra. Final algebra semantics were

discovered by Wand.

The central idea of Sannella and Tarlecki is based on the

fact that much work on algebraic specifications can be done

independently of the particular logical system on which the

specification formalism is based. The Munich CIP- group

represented by Partsch took the class of all algebra fitting to a

given specification as its semantics under one category.

The first specification language based on algebraic

specifications was CLEAR invented by Burstall, where it was

used to serve the needs of few product features.

Later on the concept of parameterized specifications in

algebraic specification languages was encouraged the most

popular one are ACT ONE founded by Ehrig and OBJ family

by Goguen and Futatsugi, both based on many sorted algebra.

Algebraic specification languages may be considered as

strongly typed functional languages like HOPE or as rewrite

rule by Burstall and Huet. A combination of initial algebra

semantics with Horn clause logic resulted in EQLOG and

LPG.

 The literature related to algebraic specifications discussed

here includes topics like correctness, theorem proving,

parameter zing, error handling and abstract implementations.

Algebraic specification techniques and languages have been

successfully applied to the specification of systems ranging

from basic data types as stacks and natural numbers to highly

sophisticated software systems as graphical programming

language and the Unix file system. Algebraic specification

techniques are used in wide spectrum of applications which

allows the derivation of correct software from formal

requirements through design specifications down to machine

oriented level using jumps and pointers.

 At the moment, many researchers all over the world are

involved in research in the field of Algebraic specifications.

Algebraic methods in software engineering are one of the

fertile areas of research under one popular name Formal

methods. Conceptually, algebraic specification provides a

framework to formally describe software design. This

framework allows for a better understanding of the software

development process providing methodological insight

concerning different issues. Algebraic specification is a formal

specification approach that deals with data structures in an

implementation-independent manner.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 1, �o. 1, 2010

Page | 18

http://ijacsa.thesai.org/

III. INTUITIVE APPROACH USING ADTS

 The aim of the software engineering is to develop software of
high quality. By software we mean large programs. Quality
sometimes called software engineering criteria are divided into
two categories external and internal qualities. The external
qualities we are particularly interested in are correctness,
robustness, extendibility, reusability and efficiency. The
internal qualities are modularity and continuity.

• Correctness and reliability: is the ability of the

software system to perform its services as defined by

its requirements definition and specification.

• Robustness: is the ability of a software system to

continue to behave reasonably even in abnormal

situations.

• Efficiency: is the ability of software to make good use

of hardware resources and operating system services.

• Modularity: is the property of software to be divided

into more or less autonomous components connected

with a coherent and simple interface. Modularity is

not only important at implementation level but also at

specification level.

• Continuity: is a quality criterion that yields software

systems that won’t need drastic modifications

because of small changes in the requirements

definition.

 Abstract data type is a class of data structures described by

an external view, i.e. available services and properties of these

services [4].

The notion of an abstract data type is quite simple. It is a set

of objects and the operations on those objects. The

specification of those operations defines an interface between

the abstract data type and the rest of the program. The

interface defines the behavior of the operations – what they

do, but not how they do it. The specification thus defines an

abstraction barrier that isolates the rest of the program from

the data structures, algorithms, and code involved in providing

a realization of the type abstraction[5].Most of the software

engineering methodology has one aspect in common, software

is structured around data rather than around functions. The

reason for this choice is that functions are not the most stable

part of a system.Structuring around data yields systems with a

higher degree of continuity and reusability. The key point in

structured design of software systems is to look for abstract

data types, abbreviated as ADTs. Roughly speaking, a

specification of an ADT describes a class of data structures by

listing the services available on the data structures, together

with the intrinsic properties of these services. By specifying

ADT, we do not care how a data structure is actually

represented or how each operation is implemented [7]. What

matters is what the data structure signifies at the level of a

customer who wants to make instantiations of the data type for

further use in his program.

 To illustrate the concept of ADT, let us take the class of

stacks of natural numbers, called stack. The specification of

the stack will list the services newstack, push, isnewstack, pop

and top. Furthermore, given an object of type stack, it

describes how these services must be called for that object and

it describes the intrinsic properties of these services. An

example of such a property of stack is,

pop (push(s, n)) = = s; (1)

where s is any stack object and n is any natural number.

This property simply expresses that pushing a natural number

on a stack s. The identifiers s and n are variables ranging over

instantiations that is objects of types stack and Nat

respectively.

Writing specification of ADTs is an activity that is located

in the design phase of the software life cycle [8].

Specifications are designed in a modular way. Roughly

speaking, with each specification module in the design phase

corresponds a program module in the implementation phase.

Specification modules, unlike program modules, make

abstraction of all irrelevant details of data representation and

procedure implementation. An important remark is that

finding the appropriate set of specification modules is not an

easy job. The choice of the modules must be such that

complexity of the module interfaces is minimal and that

continuity of the software system is maximal. Mostly a trade-

off between these criteria has to be strived for. The main

reason why we are so interested in modeling ADTs by

mathematical objects is that we can profit from rigorous

reasoning as defined for these objects. Rigorous reasoning on

algebraic specification is based on two important techniques

called equational reasoning and induction. Both techniques

enable the designer to derive theorems from algebraic

specification. These theorems then represent properties of the

algebraic specification and of the software system described

by it. The fact that such a theorem has been derived implies

Figure. 1

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 1, �o. 1, 2010

Page | 19

http://ijacsa.thesai.org/

that the property it represents has been proved to be true. Due

to the mathematical foundation of the chosen model, namely

many sorted algebras, designers are able to give well defined

and implementation independent meanings to ADTs [6]. A

many sorted algebra is an abstract structure consisting of a

family of sets of objects and a number of functions whose

arguments and results belong to these sets. Due to this

mathematical frame work, algebraic specifications can be

made accurate and unambiguous. Initial algebras are often

characterized by their properties of having no junk and having

no confusion. Having no junk means that each object of the

algebra can be denoted by at least one variable free term.

Having no confusion means that two variable free terms

denote the same object if they can be proved to be equal by

equational reasoning from the given axioms [9]. The general

and typical algebra is always initial. In literature, axioms are

also called equations, laws or identities, and the terms are

sometimes called expressions or formulas.

IV. RESULTS AND DISCUSSIONS

 An algebraic specification is a mathematical description of

an Abstract data type. Reasoning about the correctness of

programs is made possible only by having a way to express

their intended behavior. This is the object of algebraic

specification -- programs are regarded as algebras consisting

of data types and operations, and the intended behavior of a

program is specified by means of formulas (say, equations)

concerning these operations.

A. Algebraic specification in Rapid prototyping

Let us consider a abstract data type stack formally described
by algebraic specification:

The sort(s) part lists the names of the abstract data types
being described. In this example there is only one type, namely
stack. The operations part lists the services available on
instances of the type stack and syntactically describes how they
have to be called. These parts are called the signature of the
algebraic specification. For instance,

Push: stack * Nat → stack; (2)

means that push is a function with two arguments, with
respective types Stack and Nat, and yields a result of type
stack. It is also called constant. The term function here is used
in the mathematical sense, not in the context of programming.
So functions in the algebraic specification have no side effects.
 The axioms part formally describes the semantic properties of
the algebraic specification. The specification can be applied to
any data structure with the services described by functions with
the same signature. The algebraic specification of stack
expresses only the essential properties of the stack services
without over specifying. It makes abstraction from any stack
representation and service implementation details. It is the over
specification that makes verification and rigorous reasoning
difficult. Algebraic specifications provide a computational
model with ADTs. As an example of such computations,
consider the following expressions,

declare s1, s2 : stack ; n:Nat;

s1: pop(push(push(newstack,5),7));

s2: push(push(push(newstack,0),top(s1)),4);

n:top(pop(pop(s2))); (3)

By applying the axioms, successive simplications may be
performed. These algebraic simplifications can be carried out
mechanically. After these simplifications are carried out, the
above expression becomes:

s1:= push(newstack,5);

Top(s1):= 5;

s2:= push(push(push(newstack,0),5),4);

n:= 0; (4)

This kind of symbolic computation is heavily related to
concepts such as constructivity, term rewriting and rapid
prototyping.

B. Maintaining the Integrity of the Specifications by

Equational reasoning

Equational reasoning is one of the techniques that enable the
software developer to use so called rigorous mathematical
reasoning. Properties of the specification of the software can be
proved to be true, even before the implementation has been
started. Such proofs of properties are very similar to proofs of
theorems in mathematics. Proofs about specifications of
programs serve two purposes. They constitute the program
documentation by excellence and they enhance software
correctness and reliability. Given a presentation, equational
reasoning is the process of deriving new axioms by applying
the following rules.

i) Reflexivity : If t is a term of the presentation,

declare <declaration part>

axiom

t= = t;

 Sort stack;

 operations

 newstack:→ stack;

push:stack � Nat→stack;

isnewstack:stack→Bool;

pop:stack→stack;

 top:stack→Nat;

 declare s:stack; n:Nat;

 axioms

 isnewstack(newstack)= =true;

 isnewstack(push(s,n) = = False;

 pop(newstack)= = newstack;

 pop(push(s,n) = = s;

 top(newstack) = = zero;

 top(push(s,n) = = n;

Figure.2

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 1, �o. 1, 2010

Page | 20

http://ijacsa.thesai.org/

is derivable by reflexivity if the variables used in the term t
are listed in the declaration part.

ii) Symmetry : if the axiom

declare <declaration part>

axiom

t1= = t2;

if given or derivable, then

declare <declaration part>

axiom

t2= = t1;

is derivable.

iii) Transitivity: if the axioms

declare <declaration part>

axiom

t1= = t2;

t2= = t3;

are given or derivable, then

declare <declaration part>

axiom

t1= = t3;

is derivable.

iv). Abstraction:

declare <declaration part>

axiom

t1= = t2;

is given or derivable, x is a variable of sort Sj and x is not
declared in the declaration part, then

declare x : Sj; <declaration part>

axiom

t1= = t2;

is derivable.

v) Concretion: if the axiom

declare x : Sj; <declaration part>

 axiom

 t1= = t2;

is given or derivable, the set of variable- free terms of sort Sj is
not empty and x does not appear in t1 nor t2, then

declare <declaration part>

 axiom

 t1= = t2;

is derivable.

Given a presentation, deriving new axioms by equational
reasoning always yields axioms that are satisfied by all
algebras of the variety over the presentation. A second
important property is that every axiom satisfied by all algebras
of the variety over the presentation can be deduced using these
rules. This above is a generic discussion that can be applied to
any data structure in a software specification to check for
consistency and soundness depending on the functionality and
applicability.

C. Proof by Induction for technical soundness

Like equational reasoning, induction is a mathematical

technique that can be used to derive new axioms from a given

presentation. Axioms derivable by equational reasoning are

satisfied by every algebra of the variety over the presentation.

Axioms derivable by induction will be satisfied by every term

algebra of the variety over the given presentation. As

equational reasoning, induction is a very important technique

to prove theorems of abstract data types. The main idea behind

Induction is that one assumes instances of property being

proved during its own proof. One of the hardest problems in

discovering an inductive proof is finding an appropriate

induction scheme that is complete and sound. Let us consider

a classical example:

Sort Z

Operations

Zero: Z→ Z;

Succ : Z→ Z;

Pre : Z→ Z;

Add : Z* Z→ Z;

declare i, j : Z;

axioms

pre(succ(i) = = i; - 1 -

 succ(pre(i) = = i; - 2-

add(zero,i) = = i; -3-

add(succ(i),j) = = succ(add(i,j)); -4-

add(pre(i),j) = = pre(add(i,j); -5-

The presentation in Fig.3 defines the abstract data type of

the integers including the successor, predecessor and addition

functions. An axiom derivable by induction is the

commutativity of the addition:

declare i,j:Z;

axiom

 Figure.3

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 1, �o. 1, 2010

Page | 21

http://ijacsa.thesai.org/

add(j , i) = = add(i, j);

It is provable by induction over j as well as over i.

These are some of the algebraic techniques that are useful in

software engineering for verification and validation of

specification and enhance confidence early in the lifecycle.

 V. CONCLUSION

 In this paper a novel concept of abstract data types is

proposed through sensible use of mathematics to assist in the

process of software development. The algebraic specifications

of abstract data types are defined separately on the syntactic

level of specifications and on the semantic level of algebras.

The main results of the paper are different kinds of correctness

criteria which are applied to a number of illustrating examples.

Algebraic specification are used here to model prototypes,

techniques like Equational reasoning and proof by Induction

serve as uniqueness and completeness criteria and provides

technical soundness for the specification. Properties of the

specification of the software can be proved to be true, even

before the implementation of software. Such proofs of

properties are very similar to proofs of theorems in

mathematics.

 REFERENCES

[1] F. Brooks, The Mythical-Man Month, Anniversary Edition: Essays on
 Software Engineering, Addison-Wesley (2000).

[2] O-J., Dahl, K. Nygaard, and B. Myhrhaug, “The SIMULA 67 Common

 Base Language,” Norwegian Computing Centre, Forskningsveien 1B, Oslo
 (1999).

[3] R.W. Floyd, “Assigning Meaning to Programs,” Proceedings of

 Symposium in Applied Mathematics, vol. IX, International symposium
 at New York (2002), pp-20-30.

[4] J.V. Guttag, The Specification and Application to Programming of
 Abstract Data Types, Ph.D. Thesis, Dept. of Computer Science, University
 of Toronto (1975).

[5] J.V. Guttag and J.J. Horning, “Formal Specification as a Design Tool,”

 Seventh ACM Symposium on Principles of Programming Languages, Las
 Vegas (1998), pp-2-9.

[6] J.V. Guttag, “Notes on Type Abstraction, Version 2,’’ IEEE Transactions

 on Software Engineering,pp-46-49, vol. SE-6, no. 1 (1980).
[7] C.A.R. Hoare, “An Axiomatic Basis for Computer Programming,”

 Communications of the ACM, vol. 12, no. 10 (1985).
[8] A.Igelais, “Proofs of Correctness of Data Representations,” Acta

 Informatica, pp- 56,vol. 1, no. 4 (2006).

[9] C.James, “Monitors: An Operating System Structuring Concept,”
 Communications of Information system,pp-193,vol. 5, no7, 2005.

 AUTHORS PROFILE

L.Rakesh received his M.Tech in Software

Engineering from Sri Jayachamarajendra College of
Engineering, Mysore, India in 2001 as an honour
student. He is a member of International Association

of Computer Science and Information Technology,

Singapore. He is also a member of International
Association of Engineers, Hong Kong. He is pursuing

his Ph.D degree from Magadh University, India.

Presently he is working as a Assistant professor and
Head of the Department in Computer Science &

Engineering, SCT Institute of Technology, Bangalore, India. He has presented

and published research papers in various National, International conferences

and Journals. His research interests are Formal Methods in Software
Engineering, 3G-Wireless Communication, Mobile Computing, Fuzzy Logic

and Artificial agents.

Dr.Manoranjan Kumar Singh received his Ph.D

degree from Magadh University, India in 1986. This
author is Young Scientist awardee from Indian

Science Congress Association in 1989. A life

member of Indian Mathematical society, Indian
Science congress and Bihar Mathematical society. He

is also the member of Society of Fuzzy Mathematics

and Information Science, I.S.I. Kolkata. He was
awarded best lecturer award in 2005. He is currently

working as a Senior Reader in post graduation Department of Mathematics,

Magadh University. He is having overall teaching experience of 26 years
including professional colleges. His major research Interests are in Fuzzy

logic, Expert systems, Artificial Intelligence and Computer-Engineering. He

has completed successfully Research Project entitled, Some contribution to
the theory of Fuzzy Algebraic Structure funded by University Grants

Commission, Kolkata region, India. His seminal work contribution to

Fuzzification of various Mathematical concepts was awarded prestigious
Doctor in Science degree.

