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Radon transform was employed for estimating angle of rotated 

texture by Kourosh et al [12]. Image object recognition based 

Radon transform was proposed by Jun Zhang et al. [13], the 

results of this method were robust in rotation, scale and 

translation invariant of image object. In the context of inclined 

license plates, license characters were also extracted in 

distorted manner.  Thus, a hypothesis was formed according to 

the rotation alignments of the plates.  Therefore, various 

inclined templates for different kinds of angles (from °− 50   

to °+ 50 ) were preserved for making rotation invariant 

character recognition [14]. We propose a technique for 

orientation detection, which is based on projection features of 

fan-beam, and Radon transforms. Parameter optimized Gabor 

filters are used to extract features from the rotation invariance 

image. 
The remainder of the paper is organized as follows: Section 

II emphasizes on rotation estimation and correction of the 
objects using single and multi point sources.  Extraction and 
classification of rotation invariant object by using parameter 
optimized Gabor filter and common classifiers are discussed in 
section III. Experimental results of the proposed algorithm on 
applying to the real-time vehicles’ number plate images and 
check images are illustrated in section IV. Concluding remarks 
of this paper are given in the section V.  

II. ROTATION-INVARIANCE USING LINE INTEGRALS 

A vector is a quantity including both magnitude and 

direction, such as force, velocity, displacement and 

acceleration. In vector algebra, two vectors A and B are equal, 

if two vectors have the same direction and magnitude 

regardless of the position of their initial points (A=B). The 

ordinary integrals of vectors can be defined by  

 

juRiuRuR )()()( 21 +=  ,                          (1) 

where )(),( 21 uRuR are  specified intervals and u is a single 

scalar variables. Eq. (2) represents an indefinite integral of 
R(u). 

∫∫ ∫ += duuRjduuRiduuR )()()( 21
.                        (2) 

Let juyiuxur )()()( +=  where r(u) is the position 

vector of (x,y) and  defines a curve C joining points 
1P  and 

2P , 

where 1uu =  and 2uu = , respectively [14]. Assume that C 

is balanced of a finite number of curves. For each of its curve 
position, vector R(u) has a continuous derivative. Let 

jFiFyxF 21),( +=  be a vector function defined for the 

position. It is continuous along C. Line integral of F along C 
from 

1P  to 
2P is defined as  

dyFdxFdrFdrF
p

p C C 21
2

1
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In 2D plane, a force can be defined by a vector whose 

magnitude is strength of the force and direction is the path in 

which the force is pushed. Fig. 1 shows that force is from left 

to right, an object moves under the control of force and its 

motion is represented by the vector (S). However, force is not 

constant one, at different points the force may peak in 

different directions with strength. In accordance with these 

basic studies, a projection of a 2D function f(x,y) is a set of 

line integrals, from which data can be produced by radiating 

from single and multiple sources. These two sources are 

employed to estimate the rotation angle of the objects. 
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Fig. 1 Representation of force and motion in line integrals. 

A 2D rotation is applied to an object by repositioning it 

along a circular path. A rotation angle (θ) and pivot point about 

which the object to be rotated are specified for generating 

rotation. In counterclockwise, positive angle values are used for 

rotation about the pivot point and in contrast clockwise rotation 

requires negative angle values. The rotation transformation is 

also described as a rotation about an axis that is perpendicular 

to the xy plane and passes through the pivot point. The rotation 

transformation equations are determined from position ),( 11 yx  

to position ),( 22 yx through an angle (B) relative to the 

coordinate origin. The original displacement of the point from 

the x-axis is (A). This is illustrated in Fig.2.  
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Fig. 2 Rotation of LP in counterclockwise with double angles (A, B). 

The rotation can be obtained as 

ryA /)sin( 1= , 

ryBA /)sin( 2=+ , 

 

rxBA /)cos( 2=+  and  rxA /)cos( 1=  ,                        (4) 

 

)cos()sin( 112 ByBxy += ,                          (5) 

)sin()cos( 112 ByBxx −= ,                                         (6) 
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With the basics of rotation transformation and line 

integrals, we can introduce new ray sampling coordinates 'x  

and 'y  and Jacobian (J) is described as 
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The fan beam projection with Radon’s integral is defined as 
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where ),( φrfb is the density at the point with polar 

coordinates ),( φr  in the region, while   ))cos(( φθ −− rd  is 

the perpendicular distance between the ray and this point. 

A.  Fan Beam Arc and Line 

In this phase, projection of an image can be computed along 

any angle (θ). It computes the line integrals along paths that 

radiate from a single source.  To represent an image, it 

performs multiple projections of the image from different 

angles by rotating the source around the centre of the image. 

Fig. 3 shows a single point source at a specified angle. This is a 

fan beam projection and computes the projection data as 

sinogram. A sinogram is an x-ray procedure that is done with 

contrast media to visualize any abnormal opening such as sinus 

in the body of the image. In the fan-beam calculation, the 

centre of rotation is the centre of the image and defined as 

 2/)1),(( +yxfsize ,                           (9) 

where size(.) returns size of the rotated image f(x,y) and its 
lower precision value is taken for centre of rotation calculation. 
D is the distance in pixels from the single source point to the 
centre of rotation. It must be large enough to ensure that the 
single source point is outside the image at entire rotation 
angles, which is ranged from °0  to °359 . The distance (D) 

should be larger than half the image diagonal dimension. This 
is described as 

22 )),(()),(( yxfheightyxfwidthD += .                      (10) 

After applying the fan beam projection the resultant data 

contains row and column of sinogram from the image f(x,y). 

The row data contains the number of sensor points by 

calculating how many beams are needed to wrap the entire 

image for any rotation angle. The number of column of fan 

data is determined by incrementing the fan rotation. It may be 

one degree and fan data can have 360 columns. In order to 

estimate the angle sensor either line-based sensor or an arc-

based sensor can be used. The estimations of these two sensors 

are analyzed. Fan beam can be controlled by various 

parameters such as rotation increment, sensor geometry and 

sensor spacing. The rotation increment has a positive real 

scalar, measured in degrees, sensor geometry defines either 

line sensors or arc sensors and sensor spacing is used to define 

the spacing of the fan beam projections. If sensor geometry is 

‘arc’ then sensor spacing has the angular spacing in degrees 

else linear spacing in pixel. 
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Fig. 3 Rotation estimation of segmented iris image by using arc-based sensors. 

 

The algorithm of single source projection to estimate the 
angle of rotated image is as follows: 

Step 1: The input image is rotated to a specific angle such 
as °90  in counterclockwise. Rotation of the image is performed 

using bi-cubic interpolation method.  

Step 2: Specify the parameters such as distance parameter 
(D), rotation increment, sensor geometry and sensor spacing. In 
the experimentation, the rotation angles equally change from 

°0  to °359 , D=274.8545, rotation increment = 0.1 and sensor 

spacing = 0.25. These values produced robust results in the 
estimation. The parameters of sensor geometry have not 
provided different estimation in all aspects. But due to 
sampling and numeric approximations, angle estimation may 
slightly be varied.  

Step 3: After performing fan beam projection, fan beam 
projection data have been extracted from the image. In the 
experimentation, 92*259-size image was given and resultant 
fan projection data size were 1113*180. It means that fan 
projection provides 1113 sensors and °180  rotation angles. The 

number of sensors is determined by the fan sensor spacing. 
However, these size variations depend on the size of the 
segmented ROI of the acquired image. 

Step 4: The standard deviation of fan projection data is 

computed to estimate the local maximum deviation of sensor 

data. This data set is used to calculate the maximum rotation 

angle of the given image that is taken as an estimated angle of 

the rotated image.   

 

Step 5: The estimated angle (Φ ) is used to correct the 

rotated image to its principal direction, which is carried out by 

bi-cubic interpolation method, i.e., if Φ  is positive and less 

than °90  then clockwise correction is -(Φ + °90 ) otherwise 

if Φ  is negative and greater than °90  then clockwise 

correction is -(Φ - °90 ). 
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Fig. 4 shows the step of estimation process. It illustrates the 
plot for estimating maximum standard deviation of °9  for the 

input of LP image. It also shows that prediction of angle after 

°90  is °99  which inferences rotation angle can also be 

estimated in every °90  rotation in projection of the image from 

single source point. 
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Fig. 4 Illustration of rotation correction process based on fan beam projection. 

 

B. Estimation using Radon Transform 

The basic property of Radon transform is to determine an 

internal constitution of an object without bodily snooping the 

interior structure. For this reason, It is adopted to tomography, 

x-ray, ultrasound, electron magnetic resonance (EMR) 

imaging, optics, stress analysis, geophysics and many others 

applications. We use multipoint sources to compute the line 

integrals along parallel beams in a specific direction. A 

projection of image f(x,y) is a set of line integrals to represent 

an image, this phase takes multiple parallel-beams from 

different angles by rotating the source around the centre of the 

image. This method is based on Radon transform, which 

estimates the angle of rotation using the projection data in 

different orientations. Multipoint projection computes with any 

angle (θ), the Radon transform of f(x,y) is the line integral of 

parallel paths to the y axis. The multipoint projection is defined 

as 

,'))cos(')sin('),sin(')cos('(),'( ∫
∞

∞−

+−= dyyxyxfxR θθθθθ
            (11) 

where ),'( θxR  is a Radon transform, x’ is the smallest 

distance to the origin of the coordinate system, θ is the angle of 

rotation( π−0 ), 'x  and 'y  are determined from the Eqs. (5-6). 

Radon projection data of the rotated images are used to 

estimate the rotation angle of the images. It uses the same 

algorithm of fan beam projection as given above except that it 

is projected angle from °0  to °179  in multi point sources. Fig. 

5 depicts the process of rotation estimation of negative ( °−10 ) 

angle rotated image.  
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Fig. 5 Illustration of Radon multipoint source ),'( θxR  and its standard 

deviations. 

The algorithm for applying multipoint source projection to 

estimate the angle of rotated image is as follows: 

 

Step 1:  The given image is rotated to a specific angle 

such as   in counterclockwise because in the real time 

acquisition, system can predict the initial angle of rotation. 

Rotation of the image is performed using bi-cubic 

interpolation method.   

 

Step 2: Set the rotation angle from   to   and apply 

Eq. (11) to generate peak area of rotation angles.  

 

Step 3: After applying the multipoint sources, for 

example, if the rotated image size is 99 by 277, the resultant 

array has 297 by 180 projection data, i.e., 297 Radon 

transform coefficients have been generated for each angle. The 

standard deviation of radon transform coefficients is 

calculated to find the maximum deviation of rotation angle.  

 

Step 4: After estimating an exact angle of object rotation, it 

is rotated to its original principal angle by bi-cubic 
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interpolation method. If the estimated angle (Φ ) is positive 

then rotate the image as -(Φ + °90 ) in clockwise direction else 

if the estimated angle is negative or above °90 then rotate the 

image as  -(Φ - °90 ) in clockwise direction.    

Radon projection data of the rotated images are used to 

estimate the rotation angle of the LP and iris images. The 

maximum standard deviation of Radon projection data in the 

range °0  to °180  from multipoint sources is 73.614521. It is 

treated as the maximum ( °+10 ) rotation of the given image.  

III. PARAMETER OPTIMIZED GABOR FILTERS  

In the current literature Gabor filters and its respective 

feature selections have been done on a trial and error basis. 

These techniques are either suitable for a simple problem 

oriented or chosen of filter parameters in a data independent 

manner. Gabor filters have been calculated for feature selection 

in two different methods one is called filter bank and another 

one is filter design approach. In the former methods [15][16], 

parameters are chosen in an improvised manner but it did not 

provide optimal solution for a particular task.  Another problem 

with these filters is the redundancy of convolutions, which 

demands more operations in the feature extraction. A few set of 

filters are designed to classify the given patterns efficiently 

using filter design approach which provide an optimum set of 

Gabor filters and reduces the computational complexity than 

the former one. In [17], evolutionary Gabor filter optimization 

method was suggested for on-road vehicle detection process. In 

that genetic algorithm based chromosomes were used along 

with incremental clustering approaches to find the optimum 

parameters of Gabor filters. The problem of handwritten 

recognition had been performed by optimized Gabor filters 

[18]. Those methods had used an optimum response of surface 

method and a puddle of predefined filters with minimum error 

rates operated for feature selection process. We have used the 

combination of Boltzmann machine with K-means clustering 

for choosing the best values related with frequency, orientation 

and scale parameters of Gabor filters. Initially, Boltzmann 

machine with annealing process produces optimal set of Gabor 

parameters. Next, K-means clustering approach is used to 

group the redundant response of filters generated in the 

optimization. Finally, according to the result of classifier 

design, optimum filters are collected for a particular application 

domain. The global optimization approach is performed to 

optimize the parameters of Gabor filters. The filter selection is 

another essential process to collect similar kind of filter 

parameters together, in order to collect as a single group. This 

is performed by taking the mean value of parameters, which 

provide the same type of responses. Thus, the proposed 

algorithm senses to remove redundant filters, reduce 

unnecessary convolution operations and increase the efficacy 

of feature extraction with a compact set of filters. 
The 1-D Gabor transform was initiated by Gabor and it was 

extended to 2D by Daugman [19]. A 2D Gabor function is an 
oriented sinusoidal jarring modulated by 2D Gaussian function 
[22]. This is described as 
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where ),(, yxg
yx σσ

is the Gaussian with scale parameter 

parameters ),( yx σσ , these parameters determine the effective 

size of the neighbourhood operation of a pixel in which the 

weight convolution is carried out, f is the centre frequency 

which is a span-limited sinusoidal grating. θ  specifies the 

orientation of the normal to the parallel stripes of a Gabor 

function. Its value is specified in degrees ranging from °0 to 

°360 .  However, θ  is considered in between 0 degrees and 

180 degrees because symmetry makes the other orientation 

redundant. In the specific application orientation θ  can be 

computed as noo /)1( −=πθ , no ...3,2,1=  where π  radians = 

180 degrees, 1 radian = )/180( π° and n represents number of 

orientations maintained in the system. The Gabor filter 

),(,,, yxfyx
G θσσ

forms complex valued function and it is composed 

into real and imaginary parts as 
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A. Parameter Selection and Conditions  

In this phase, parameter selection for Gabor filters is 

discussed. It determines the best way to find the parameters set 

for the given problem domain. A best parameter set 

},,,{ yxP fG σσθ=  is determined by the proposed approach. 

Initially, the parameters should satisfy the Eq. (16). 

yyyxxxfff maxminmaxminmax,min ,,1800 σσσσσσθ ≤≤≤≤≤≤≤≤° ,   (16) 

where ,,...,2,1,/)1( nonoo =−= πθ  
maxmin , ff denote minimum 

and maximum frequency wave length assigned by the system, 

xx maxmin ,σσ  represent minimum and maximum standard 

deviation of Gaussian envelope which is used for assigning 

scale parameters, 
yy maxmin ,σσ  signify minimum and maximum 

of y-direction scale factor. 

The four parameters },,,{ yxf σσθΡ =  are selected for 

determining each Gabor filter. Thus, selecting a set of Gabor 

filter for a problem specific domain is related with optimizing 

these four parameters efficiently. Perhaps, a pattern recognition 

application needs G filters then 4*G parameters involve to be 

optimized. For example, if 20 filters are required by the 

application then 80 parameters are to be optimized. In general, 

optimizing such a large dimensional problem is more difficult 

and consequently it demands more time complexity to achieve 

the optimal states. The Boltzmann optimization method is used 
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for optimizing the parameter space of the Gabor filters. This 

network accepts bipolar features as set of input units and the 

output units represent the output categories. It is nothing but a 

recurrent network consisting of N two state units. These states 

can be chosen from bipolar space, that is, each Gabor filter 

parameters are converted to bipolar string as it looks 

like �
}1,1{ −=Ρ . If G filters are necessary for the filter design and 

parameters required M bipolar string then G*M length of 

patterns are needed. Each of the four parameters in P is a 

determined using M/4 bipolar pattern. The energy function of 

the Boltzmann machine is defined as 

∑
=

−=
�

ji

jiij ppwPE
1,

2/1)( ,                  (17) 

where the 
ijw is set of weight vector, and can be either 

positive or negative, 0=iiw is a prerequisite for converging the 

network. The main objective of Boltzmann machine is to reach 

the global minimum of its energy function, which is the 

minimum energy of the state.  Thus it uses a stochastic 

acceptance criterion, thus allowing it to escape from its local 

minima. Let P denote the state space of the machine that is the 

set of all possible states. Among these, the state vectors 

differing by one bit are called neighbouring states. The 

neighborhood P� p ⊂  is defined as the set of all neighboring 

states of p. Let jp , the neighboring state obtained from p by 

changing the state of neuron j be defined as 









=
≠+

=−

jiifip

jiifip

j
iΡ

�)1,1( −∈Ρ , 
p

j �∈Ρ   ,              (18) 

The difference in energy when the global state of the machine 

is changed from P to j
p  is denoted as 

)()()|( pEpEppE
jj −=∆ .                         (19) 

Note that the contribution of the connections 

jmjkWkm ≠≠ ,,  to E(P) and )( jPE is identical if 

ijij WW = , this described as 
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Therefore, the change in the energy can be computed by 

considering only local information. The Boltzmann machine 

can escape from the local minima because of its probabilistic 

nature. Two phases involve in the optimization using 

Boltzmann machine, in the first phase, an energy function for 

the given application is decided. In the constrained 

optimization, the energy function must be derived using both 

the original cost function and constrains. In contrast, the energy 

function can be directly obtained by using the cost function in 

the non-constrained applications. Next in the second phase, 

machine searches global minimum through the annealing 

procedure. The algorithm runs for a certain number of 

iterations controlled by the temperature and in each state try to 

find equilibrium. The temperature is reduced or increased in a 

controlled manner by the parameters Aα  or Aβ , respectively. 

The annealing is terminated when the time exceeds the 

permitted time. 

K-means partitions the observations of optimized Gabor 

parameters into k mutually exclusive clusters and returns a 

vector of indices indicating to which of the k clusters it has 

assigned each observation. K-means is more suitable for 

clustering large amounts of data because it groups the Gabor 

parameters using their local-maximum-likelihood estimations. 

It takes each observation of parameter data as an object having 

a location in space and seeks a partition in which objects within 

each cluster are as close to each other cluster as feasible, and as 

far away from objects in other clusters as feasible. If the 

application needs twelve diverse distance measures then 

depending on the kind of optimized parameters the cluster can 

be grouped. The algorithm of K-means clustering as follows: 

Step 1: Assign the number of optimized Gabor filters 

parameters that are provided indistinguishable responses. 

Step 2: Initialize the number of clusters needed for the 

application domain. That is, according to these parameters 

such as orientation, frequency, scaling factor of x and y 

directions the cluster can be formed. 

Step 3: Compute 
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µ

 for K different clusters. 

Step 4: Classify the number of optimized Gabor parameters 

according to the nearest iµ̂  

Step 5: Compute the next mean vector 
1ˆ +iµ  for the same 

cluster. 

 

Step 6: Repeat the step 4 and step 5 until 
1ˆˆ +− ii µµ  = 

Threshold. 
 

Step 7: Compute the mean vector for the remaining number of 
clusters. Finally, groups of K divergent clusters are formed. 
From these clusters the mean values of single filter parameters 
are chosen as a Gabor filter. Thus K numbers of Gabor filters 
are selected for the convolution process. 

However, Gabor filter produces local band pass frequency 

for rotation-invariant recognition. Its accuracy is limited to 

local orientation of shifting of pixels alone. In large extent 

orientations, Gabor filter produces more false positives for 

intra-class.  Therefore, we overcome the problem of making 

features as rotation invariant by estimating and correcting 

orientations before applying rotation invariant Gabor filters. 

Hence, it provides a complete set of features, which are 

invariant to large variations of orientations in real-time 

acquisitions. In addition, it assists the classifiers not to settle in 

converging state of local orientation features for intra-classes 

patterns and tends to get global rotation-invariants [23]. 
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IV. PERFORMANCE ANALYSIS AND EXPERIMENTS 

In order to evaluate the efficacy of the estimation process, 

comparison of rotation estimation of projection data of fan 

beam arc, fan beam line and Radon transform have been 

carried out. These methods respond a bit different response of 

peak projection data at a particular angle. These variations 

occur due to high frequency of the components present in the 

images. Among these methods Radon and fan beam line 

provide narrow peak estimation than the fan arc method 

because it produces little bit wide angle in all the angles like 0, 

45 and 90 degrees as shown in Fig 6. However, due to 

illumination changes in twilight and nighttime, LP image 

rotation estimation is crucial factor and its illumination level 

should be estimated before estimating the rotation angle for 

binarization. After rotation correction, optimized Gabor filters 

are applied to extract rotation-invariant features, which give 

more accuracy than the traditional Gabor filters because, the 

optimized approach searches filter parameters which are 

provided high separability in the classification.  Moreover, 

before feature extraction, real-time images’ orientation are 

corrected its principal direction that afford more positive intra-

class classifications. Thus incorporation of optimizing Gabor 

filters with real-time orientation correction produces higher 

interclass separability than other existing approach. 
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Fig. 6 Comparison of projection data in the particular angles. 

 

Two phases of experiments were conducted for evaluating 

the efficacy of the proposed system. In the first phase, image 

orientation estimation was analyzed and results are studied. 

Classification rate of the rotation-invariant features based on 

classifiers were studied in the second phase. Our database has 

535 images, which are acquired in different illuminations. It 

consists of 237 license plates and 298 eye images. In the real-

time, license plate images were captured in 45 different angles 

of rotation varying from °4  onwards. 9 different angles of iris 

images were captured by changing its orientation. 

Experimental results reveal that fan-arc (FA) method causes 

more errors in the estimation process than the rest of the 

methods such as fan-line (FL) and Radon transform (RD). This 

was mainly due to approximation of numeric value of 

projection data and selection of sensor sources. However, these 

errors may not produce more false positives in the recognition 

process because error differences are very smaller than the 

actual capturing orientations. Furthermore, vehicle images are 

also captured from °−1  to °− 90  in clockwise directions to 

test the estimation algorithm. In addition to that, acquired 

images are added Gaussian noise with local variance to check 

the efficiency of the proposed method. The average estimation 

of rotation angle variation was slightly diverged between noise 

and clear images. However, estimation angle was not widely 

varied for noisy images. Fig 7 shows the result of projection 

data of these methods at 0, 45 and 90 degrees.  

Due to factor of high gray level magnitude in iris patterns 

all the three estimation methods have produced the slight 

variation in the estimation process.  
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Fig. 7 Iris image orientation estimation with FA, FL and RD methods. 

The rotation estimation of license plate images is also 

carried out with FA and FL and RD methods. These methods 

respond a bit different from peak projection data at a particular 

angle. These variations occur due to high frequency of the 

components present in the LP images. Among these methods 

Radon and fan beam line provide narrow peak estimation than 

the fan arc method because it produces little bit wide angle in 

all the angles like 0, 45 and 90 degrees as shown in Fig 8. 

However, due to illumination changes in twilight and 

nighttime, LP image rotation estimation is a crucial factor and 

its illumination level should be estimated before estimating the 

rotation angle for binarization.  
In order to evaluate the robustness of the method, Zero-

mean Gaussian white noise with an intensity dependent 

variance and Poisson noises are added to the segmented image. 

After estimating the expected rotation angle of the image, it can 

be skewed to its principal angle using bi-cubic interpolation 

method. These algorithms are tested with diverse eye images in 

real time conditions. In the capturing process, subjects’ head 
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moments are directed to acquire the eye images by different 

rotation angles. 
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Fig. 8 License plate image orientation estimation with FA, FL and RD methods. 

Hence, eye images were captured in °0  to °90  in both 

clock and anticlockwise directions. However, as far as iris 

recognition is concerned, head moments are in left, right, 

bottom and top directions only. Thus, the maximum rotation of 

angles was from °0 to °45  for the estimation process. 

Moreover, in the experimentation Gaussian white noise, 

Poisson noises and eye wears noises were added up to verify 

the robustness of the proposed approaches. Fig. 9 shows the 

rotation estimation with noisy iris patterns.  
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Fig. 9 Rotation estimation in noisy iris images. 

After generating Poisson noises, iris pattern’s pixel 

intensity is altered based on the number of photons of pixel 

information and the mean square signal-to-noise ratio (SNR) of 

the resultant image which was 31.6048. However, noisy data 

occur in the iris pattern that may not affect the estimation 

process because projection data of the estimation process were 

approximately equivalent to the clear images, i.e., it was 

produced as maximum of standard deviation magnitude. 

Hence, noisy iris pattern acquired due to eyewear and 

environment illuminations may slightly affect the estimation 

process. The result comparison of these methods has been 

shown in Table I.  

TABLE I.  RESULTS OF IRIS IMAGES ROTATION ESTIMATION  

Actual 

orientation 

in degree 

3o. of 

sample 

rotated 

images 

Rotation 

Estimation in 

degree 

Average 

Rotation 

correction in 

degree 

Average error 

rate in degree 

FA FL RD FA FL RD FA FL RD 

3 47 3.4 3.3 3.2 3.3 3.3 3.2 0.3 0.3 0.2 

9 56 9.5 9.4 9.4 9.5 9.4 9.4 0.5 0.4 0.4 

15 68 15.7 15.4 15.3 15.6 15.5 15.4 0.6 0.5 0.4 

20 40 20.8 20.6 20.5 20.7 20.6 20.5 0.7 0.6 0.5 

30 72 31 30.7 30.8 31 30.8 30.8 1 0.8 0.8 

45 64 46.6 46 46 46.5 46 46 1.5 1 1 

-5 42 -4.5 -4.6 -4.8 -4.4 -4.6 -4.7 -0.6 -0.4 -0.3 

-15 32 
14.3 

(-) 

14.5 

(-) 

14.8 

(-) 

14.3 

(-) 

14.4 

(-) 

14.7 

(-) 
-0.7 -0.6 -0.3 

-20 46 
19.1 

(-) 

19.4 

(-) 

19.5 

(-) 

19 

(-) 

19.5 

(-) 

19.5 

(-) 
-1 -0.5 -0.5 

 
 

TABLE II.  INCORPORATION OF NOISY MEASURE IN ROTATION 

ESTIMATION OF  IRIS IMAGES  
 

3oise type 
Mean 

square 

Error 

Square 
S3Rms 

Root Mean 

square 

error 

Poisson 606198 23036 26.315246 2.470928 

Zero-mean Gaussian 564368 194464 2.902172 7.179203 

Gaussian 

Mean=0,variance=0.01 
605038 75772 7.984981 4.481372 

Eye wears 261258 62934 4.151301 4.927483 
 

 

From further investigation, we can understand that in worst-

case rotation estimation the average error rate between actual 

orientation and correction angles were reported by FA method. 

It produced 1.5-degree error, while estimating 45-degree iris 

rotation patterns, whereas RD and FL produced better result 

than FA and it’s worst-case estimation error is reported °1 . 

This is shown in Fig 10. However, the minimum errors in 

rotation estimation may not affect the recognition process. It 

outperforms the other methods as maintained by the template 

matching of iris patterns in different angles and a bit shifting in 

left or right while matching the iris patterns. Hence this method 

removes the overburden of storing additional iris patterns for 

compensating rotation invariants and it eliminates shifting of 

iris bits in the recognition. Thus computational complexity is 

considerably reduced by the proposed approach. Table II shows 

the noise measures incorporated in the iris rotation estimation 

process. 
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Fig. 10 Estimation result of rotation estimation of real-time iris images. 

 

In order to evaluate parameter optimized Gabor features we 

have conducted experiments with different measures of 

classifiers. In the recognition phase, correct accept rate (CAR) 

and false positive rate (FAR) of the training sets were evaluated 

for the different classifiers. Training set consists of 142 and 

154 samples of license plates and iris images, respectively. The 

reminder samples were treated as test samples. The CAR of the 

diverse classifiers was observed, it was: Hamming neural 

network 98.37%, back propagation network 97.02%, 

Euclidean-norm distance 94.86% and k-nearest neighbor- 

94.32%. Fig.11 shows receiver operating characteristics curve 

(ROC) of the recognition process of different classifies using 

parameter optimized Gabor features.  
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Fig. 11. ROC of Rotation invariant recognition with diverse classifiers. 

V. CONCLUSION 

In view of the fact that there is no an appropriate set of 

signal present in the image, it is a difficult process to estimate 

its orientation while capturing image at diverse angles. In this 

paper, we proposed a method which is based on line integrals. 

It projected the captured data using fan-arc, fan-line and Radon 

transform methods to estimate the maximum angle variations. 

The suggested algorithms will be further extended to estimate 

the orientation angle of face, fingerprints, palm, electron 

magnetic resonance and other kind of images with minimum 

estimation error. In the context of invariant recognition, the 

estimation process is possibly incorporate with parameter 

optimized Gabor filter. It achieved the sufficient rotation 

invariance of features and produced better accuracy for the 

real-time patterns with a compact set of characteristics.  This 

paper opens a new direction of research in the computer vision 

committee to acknowledge the rotation estimation and invariant 

problems with relative simplicity, accuracy and robust to noise.   
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