
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 1, �o. 2, 2010

Page | 51

http://ijacsa.thesai.org/

RSS-Crawler Enhancement

for Blogosphere-Mapping

Justus Bross, Patrick Hennig, Philipp Berger, Christoph Meinel

Hasso-Plattner Institute, University of Potsdam

Prof.-Dr.-Helmert-Str. 2-3, 14482 Potsdam, Germany

{justus.bross, office-meinel}@hpi.uni-potsdam.de

{philipp.berger, patrick.hennig}@student.hpi.uni-potsdam.de

Abstract— The massive adoption of social media has provided

new ways for individuals to express their opinions online. The

blogosphere, an inherent part of this trend, contains a vast

array of information about a variety of topics. It is a huge

think tank that creates an enormous and ever-changing

archive of open source intelligence. Mining and modeling this

vast pool of data to extract, exploit and describe meaningful

knowledge in order to leverage structures and dynamics of

emerging networks within the blogosphere is the higher-level

aim of the research presented here. Our proprieteary

development of a tailor-made feed-crawler-framework meets

exactly this need. While the main concept, as well as the basic

techniques and implementation details of the crawler have

already been dealt with in earlier publications, this paper

focuses on several recent optimization efforts made on the

crawler framework that proved to be crucial for the

performance of the overall framework.

Keywords – weblogs, rss-feeds, data mining, knowledge

discovery, blogosphere, crawler, information extraction

I. INTRODUCTION

Since the end of the 90s, weblogs have evolved to an

inherent part of the worldwide cyber culture [9]. In the year

2008, the worldwide number of weblogs has increased to a

total in excess of 133 million [14]. Compared to around 60

million blogs in the year 2006, this constitutes the increasing

importance of weblogs in today’s internet society on a global

scale [13].
One single weblog is embedded into a much bigger

picture: a segmented and independent public that
dynamically evolves and functions according to its own rules
and with ever-changing protagonists, a network also known
as the “blogosphere” [16]. A single weblog is embedded into
this network through its trackbacks, the usage of hyperlinks
as well as its so-called “blogroll” – a blogosphere-internal
referencing system.

This interconnected think tank thus creates an enormous

and ever-changing archive of open source intelligence [12].

Modeling and mining the vast pool of data generated by the

blogosphere to extract, exploit and represent meaningful

knowledge in order to leverage (content-related) structures of

emerging social networks residing in the blogosphere were

the main objective of the projects initial phase [4].

Facing this unique challenge we initiated a project with

the objective to map, and ultimately reveal, content-, topic-

or network-related structures of the blogosphere by

employing an intelligent RSS-feed-crawler. To allow the

processing of the enormous amount of content in the

blogosphere, it was necessary to make that content available

offline for further analysis. The first prototype of our feed-

crawler completed this assignment along the milestones

specified in the initial project phase [4]. However, it soon

became apparent that a considerable amount of optimization

would be necessary to fully account for the strong distinction

between crawling regular web pages and mining the highly

dynamic environment of the blogosphere.
Section II is dedicated to related academic work that

describes distinct approaches of how and for what purpose
the blogosphere’s content and network characteristics can be
mapped. While section III focuses on the crawler’s original
setup, functionality and its corresponding workflows, the
following section IV is digging deeper into the optimization
efforts and additional features that were realized since then
and that ultimately proved to be crucial for the overall
performance. Recommendations for further research are
dealt with in section V. A conclusion is given in section VI,
followed by the list of references.

II. RELATED WORK

Certainly, the idea of crawling the blogosphere is not a
novelty. But the ultimate objectives and methods behind the
different research projects regarding automated and
methodical data collection and mining differ greatly as the
following examples suggest:

While Glance et. al. employ a similar data collection

method as we do, their subset of data is limited to 100.000

weblogs and their aim is to develop an automated trend

discovery method in order to tap into the collective

consciousness of the blogosphere [7]. Song et al. in turn try

to identify opinion leaders in the blogosphere by employing

a special algorithm that ranks blogs according to not only

how important they are to other blogs, but also how novel

the information is they contribute [15]. Bansal and Koudas

are employing a similar but more general approach than

Song et al. by extracting useful and actionable insights with

their BlogScope-Crawler about the ‘public opinion’ of all

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 1, �o. 2, 2010

Page | 52

http://ijacsa.thesai.org/

blogs programmed with the blogging

software blogspot.com [2]. Bruns tries

to map interconnections of individual

blogs with his IssueCrawler research

tool [5]. His approach comes closest to

our own project’s objective of

leveraging (content-related) structures

and dynamics of emerging networks

within the blogosphere.
Overall, it is striking that many

respectable research projects regarding
knowledge discovery in the
blogosphere [1] [10] hardly make an
attempt in explaining where the data -
necessary for their ongoing research -
comes from and how it is ultimately
obtained. We perceive it as
nearsighted to base research like the
ones mentioned before on data of
external services like Technorati,
BlogPulse or Spinn3r [6]. We also
have ambitious plans of how to
ultimately use blog data [3] - we at
least make the effort of setting up our
own crawling framework to ensure
and prove that the data employed in our research has the
quantity, structure, format and quality required and necessary
[4].

III. ORIGINAL CRAWLER SETUP

The feed crawler is implemented in Groovy
1
, a dynamic

programming language for the Java Virtual Machine (JVM)

[8]. Built on top of the Java programming language, Groovy

provides excellent support for accessing resources over

HTTP, parsing XML documents, and storing information to

relational databases. Features like inheritance of the object-

oriented programming language are used to model the

specifics of different weblog systems. Both the specific

implementation of the feed crawler on top of the JVM, as

well its general architecture separating the crawling process

into retrieval, scheduling and retrieval, allow for a distributed

operation of the crawler in the future. Such distribution will

become inevitable once the crawler is operated in long-term

production mode. These fundamental programming

characteristics were taken over for the ongoing development

of the crawler framework.

The crawler starts his assignment with a predefined and

arbitrary list of blog-URLs (see figure 1). It downloads all

available post- and comment-feeds of that blog and stores

them in a database. It than scans the feed’s content for links

to other resources in the web, which are then also crawled

and equally downloaded in case these links point to another

blog. Again, the crawler starts scanning the content of the

additional blog feed for links to additional weblogs.

1
 http://groovy.codehaus.org/

Whenever a link is analyzed, we first of all need to assess

whether it is a link that points to a weblog, and also with

which software the blog is created. Usually this information

can be obtained via attributes in the metadata of a weblogs

header. It can however not be guaranteed that every blog

provides this vital information for us as described before.

There is a multitude of archetypes across the whole HTML

page of a blog that can ultimately be used to identify a

certain class of weblog software. By classifying different

blog-archetypes beforehand on the basis of predefined

patterns, the crawler is than able to identify at which

locations of a webpage the required identification patterns

can be obtained and how this information needs to be

processed in the following. Originally the crawler knew how

to process the identification patterns of three of the most

prevalent weblog systems around [11]. In the course of the

project, identifications patterns of other blog systems

followed. In a nutshell, the crawler is able to identify any

blog software, whose identification patterns were provided

beforehand.

The recognition of feeds can similarly to any other

recognition-mechanism be configured individually for any

blog-software there is. Usually, a web service provider that

likes to offer his content information in form of feeds,

provides an alternative view in the header of its HTML

pages, defined with a link tag. This link tag carries an

attribute (rel) specifying the role of the link (usually

“alternate”, i.e. an alternate view of the page). Additionally,

the link tag contains attributes specifying the location of the

alternate view and its content type. The feed crawler checks

the whole HTML page for exactly that type of information.

In doing so, the diversity of feed-formats employed in the

Figure 1. Action Sequence of RSS-Feed Crawler

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 1, �o. 2, 2010

Page | 53

http://ijacsa.thesai.org/

web is a particular challenge for our crawler, since on top of

the current RSS 2.0 version, RSS 0.9, RSS 1.0 and the

ATOM format among others are also still used by some web

service providers. Some weblogs above all code lots of

additional information into the standard feed. The original

version of the crawler only supported standard and well-

formed RSS 2.0 formats, of which all the information of our

currently employed object-model is readout.

Whenever the crawler identifies an adequate (valid) RSS-

feed, it downloads the entire corresponding data set. The

content of a feed incorporates all the information necessary,

to give a meaningful summary of a post or comment – thus a

whole weblog and ultimately the entire blogosphere. General

information like title, description, categories as well as the

timestamp indicating when the crawler accessed a certain

resource, is downloaded first. Single items inside the feed

represent diverse posts of a weblog. These items are also

downloaded and stored in our database using object-

relational mapping
2
 (refer to figure 2). The corresponding

attributes are unambiguously defined by the standardized

feed formats and by the patterns that define a certain blog-

software. On top of the general information of a post, a link

to the corresponding HTML representation is downloaded

and stored as well. In case this information is not provided in

the feed information of a blog provider, we are thus still able

to use this link information at a later point for extended

analyses that would otherwise not be possible. Comments are

the most important form of content in blogs next to posts,

and they are usually provided in form of feeds as well.

However, we do need to take into account that a

comment’s feed-information is not always provided in the

2
 https://www.hibernate.org/

same form by all blog software systems. This again explains

why we pre-defined distinct blog-software classes in order to

provide the crawler with the necessary identification patterns

of a blog system. Comments can either be found in the

HTML header representation or in an additional XML

attribute within a post feed. Comment feeds are also not

provided by every blogging system. With the predefined

identification patterns, our crawler is however able to

download the essential information of the comment and store

it in our database. Another important issue is the handling of

links that are usually provided within posts and comments of

weblogs. In order to identify network characteristics and

interrelations of blogs within the whole of the blogosphere, it

is not only essential to store this information in the database,

but to save the information in which post or comment this

link was embedded.

How often a single blog is scanned by our crawler

depends on its cross-linking and networking with other

blogs. Blogs that are referenced by other blogs via

trackbacks, links, pingbacks or referrers are thus visited with

a higher priority than others by the crawler. Well-known

blogs that are referenced often within the blogosphere are

also revisited and consequently updated more often with our

original algorithm. It can be considered possible that with

this algorithm blogs of minor importance are visited rarely –

a side-effect that we do not consider to be limiting at this

time. Implementing a different algorithm could at all times

be realized by substituting the so-called “scheduler” of our

crawler. As we will see in the following (section IV.f), this

proved to be fundamentally important.

IV. ONGOING OPTIMIZATION EFFORTS

A. Identification of blogrolls

A ‘blogroll’ is a list of links in a blog that
a blogger defines irrespectively of the usual
posting activities in his weblog. Usually,
weblogs of friends or colleagues, with similar
interest and topics or personal favorites are
listed in such a blogroll. It is usually
positioned in the sidebar of the starting page
and represents one of the solely static parts of
a weblog.

Since the original implementation of the
crawler was determined to only analyze the
RSS-feeds of weblogs, the information
incorporated within blogrolls was entirely
ignored. We did however come to the
conclusion that blogrolls do represent an
exclusive set of links to other weblogs due to
the fact that their graphical positioning in the
blog is visible to nearly every visitor of a
weblog. To adhere to the distinct importance
of interlinkages between weblogs, blogroll-

linkages therefore had to be considered as well.
Identifying links within the listing of a blogroll is

however not as easy as automatically identifying links within

Figure 2. Intern Data Representation

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 1, �o. 2, 2010

Page | 54

http://ijacsa.thesai.org/

the standardized format of RSS-feeds. An analysis of the

entire HTML-page of a weblog is necessary to identify a

blogroll due to the fact that HTML-structure of blog-pages

can fundamentally differ between bloggers and the blog

software they employ. This is why blogrolls cannot be found

at a particular position within the HTML-tree – also because

they are often not embedded with an explicit tag.

Via a random analysis of the 100 biggest weblogs, we

managed to identify patterns within their respective HTML-

Content with which we are now able to identify blogrolls for

the majority of blogging software systems around. These

patterns are based upon the following two characteristics of

blogrolls:

First, additional features such as a blogroll is often

embedded into blog software systems via so-called ‘plug-ins’

– small software packages that can be modularly added to

the main blogging system. Hereby, blogrolls can ultimately

be identified via particular CSS-classes or Tag-IDS.

Secondly, the boxes on web pages that incorporate

blogrolls are usually labeled with a common title (‚blogroll‘,

’bloglisting‘, or ‚blogrolle‘ in German language), after which

the listing of referenced external weblogs follows within the

HTML-code. This identification pattern was also used to

track referencing links to other weblogs within the HTML

code.

On the basis of the first identification pattern, blogrolls

are identified and saved as links in the database. If this

criterion will be sufficient to identify blogrolls within the

majority of weblogs crawled remains to be seen and should

be subject to further analyses. First results however indicate

that this routine might be sufficient. The appliance of the

second identification method requires the identification of

specific titles and corresponding content within an HTML-

document. This second method was not implemented yet,

since we believe that the first method is sufficient for the

crawler framework.

B. Identification von trackbacks

The identification of ‘trackbacks’ underlies similar

particularities as the identification of blogrolls. ‘Trackbacks’

are referencing links to single posts, through which a blogger

can explicitly state that a post of another weblog is of interest

for himself and his own weblog. Regrettably, these special

interlinkages are not represented in a common and

standardized way throughout the blogosphere. This is why

trackbacks generated within a weblog made of one blog

software system might not be recognized as such in a weblog

of another system. The rationale of identifying trackbacks is

similar to the one of blogrolls: trackbacks are exclusive links

that represent interdependencies of special interest between

weblogs. They should therefore be tracked as well.

Trackbacks can usually be identified as follows:

Trackbacks can – similar to blogrolls – be represented in

an extra box within the HTML representation of a post.

These areas can therefore also be identified via particular IDs

or CSS-classes, but also through the recognition of the plain

title ‘trackback’.

Trackbacks are usually depicted as a citation of the

referencing post in the commenting-section of a post (extract

of the post’s content) which is furthermore referenced via a

hyperlink. This appearance of trackbacks can solely be

identified via its unique citation form (usually like follows:

“[…]extract[…]”).

Manual trackbacks can also be found in the commenting

section of a post. Manual trackbacks are referencing links

that bloggers can enter in blog systems that do not support

automated trackbacks - meaning that a blogger cannot add a

trackback via an automated pingback or via a manual entry.

Comparable with cross references to special news channels

in services like Twitter, bloggers can than as alternativly

enter comments in a format comparable to „@Trackback

myblog.de/p=12“.
To extract manual trackbacks with an automated

crawling system, you should thus be able to identify the
word “trackback” and an immediately following link within
a comment. Due to this rather general pattern we ultimately
abdicated it from our analysis.

C. Reliability of the Feedparsing

The original crawler implementation processed feeds by

making use of an XMLSluper API of Groovy that

incorporates a LazyXMLDOM Parser. An HTML document

was hereby converted in a valid DOM object by the

XMLSluper API that was then analyzed for ATOM or

RSS2.0 feed tags. This mechanism was however not

perfectly applicable to map the entire blogosphere, since

there are still many predecessor versions of RSS around

(RSS0.9 or RSS1.0). We originally tried to embrace all feed

formats by making use of the ROME framework of Apache

in our original implementation [4]. Since the ROME API

works on top of the Java SAXParser that in turn collapses

every time it comes across invalid XML structures like

unclosed tags (e.g. content in posts), special characters and

other XML non -conform constructs, we had to come up

with another solution. It was thus necessary to clean all feeds

before the parsing process. Due to an enormous amount of

characteristics that needed be adhered to in this regard, a

manual implementation was not feasible. We therefore make

use of the HTMLCLeaner, a library developed with the

objective to clean XHTML pages. This cleaner successfully

corrects any impurities in the feed format: it not only

automatically adds valid namespaces, it also correctly closes

HTML tags that were left open and therefore invalid and

sources out all XML-reserved constructs in a corresponding

CDATA tag. The subsequent result can then successfully be

processed by the ROME framework.

D. Language Detection

In the course of the crawler project we came to the

conclusion that language detection of those blogs crawled

might be an interesting value-add when it comes to the

analyses of the data crawled. However, the attribute

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 1, �o. 2, 2010

Page | 55

http://ijacsa.thesai.org/

‚language‘ is only used in very rare occasions in the

structure of a feed.

This is why the language detection module

„JLangDetect“
3
was recently implemented on top of the

original implementation. This library is written entirely in

C-code and published under the Apache2 license. It requires

so called ‘gam-trees’. By making use of the European

Parliament Parallel Orpus, we are now able to identify the

following languages: danish (da), german (de), greek (el),

english (en), spanish (es), finnish (fi), french (fr), italian (it),

dutch (nl), portuguese (pt), and swedish (sv). The crawler

analyzes the content’s language of every post. This

information is furthermore saved in our database (see figure

2). Since posts with different languages may have been

published within one single weblog, language parameter of

an entire blog is set according to the majority of posts with

common language.

E. Postlinks

We soon had to discover that downloaded feeds in our

original crawler implementation often incorporated only a

short extract of the corresponding post content. This is due

to a configurable setting in the backend of blog software

systems. Since we are especially interested in content

analyses of single weblogs at a later project phase, the entire

HTML page of the posts therefore needed to be downloaded

via the permalink address. Since there is a permalink

address within every feed, this could be realized fairly easy.

Overall network analysis of the blogosphere is of major

interest for us as well. It is therefore imperative that link

information extracted from feed-crawling or parsing

activities can be perfectly allocated to the corresponding

posts, comments or weblogs. We therefore adapted the

original crawling algorithm to ensure that not just feed-

content is analyzed for link information, but HTML-pages

of posts as well.

F. Priorization

How often a single blog is scanned by our crawler should

depend on its cross- linkages with other blogs. Blogs that

are referenced by other blogs via trackbacks, links,

pingbacks or referrers are thus visited with a higher priority

than others by the crawler. Well-known blogs that are

referenced often within the blogosphere are also revisited

and consequently updated more often with our original

algorithm. It can be considered possible that with this

algorithm blogs of minor importance are visited rarely - a

side-effect that we do not consider to be limiting at this

time. Since the blogosphere is constantly changing with new

blogs being setup and other blogs disappearing, it is of

crucial importance that the crawler preferable also finds new

blogs and not only refreshes existing ones. We realized this

3

http://www.jroller.com/melix/entry/nlp_in_java_a_language

requirement during our ongoing enhancement efforts on the

basis of “priorities” - hereafter referred to as “Prio”. A Prio

is the number of hops necessary to get from the initial URL

starting page to a particular blog, whereas all blogs within

the starting list do have a Prio-value of 0. All those links

that are collected on the front pages of one of the starting

list blogs thus have a Prio-value of 1.

To guarantee that the crawler neither only updates

those blogs it already found, nor merely tries to find new

blogs without updating the information of the existing ones,

new jobs to be crawled are scheduled as follows: There are

several parallel working analyzers and a scheduler that

determines which job will be processed next by the

analyzers. The scheduler processes all jobs with Prio=0 on a

daily basis. After that, all those links with Prio=1 that point

to other blogs are also processed on a daily basis. At the

time the analysis of blogs with Prio=1 is completed, the

scheduler assigns two thirds of those analyz- ers available to

analyze blogs with Prio = 2 that were not analyzed for more

than a week. The remaining third of analyzers is assigned

with new jobs. At the time these jobs are completed as well,

one third of those analyzers available are assigned with jobs

that point to blogs of Prio > 3 that were not processed for

more than a week. The remaining analyzers are than equally

filled up with new jobs. When all blogs in the database are

updated, the scheduler assigns all analyzers with new jobs

that were not visited so far.

Since the amount of collected jobs grew

continuously since the start of the crawler project, it soon

became necessary to optimize the queries on the database.

Since blogs with Prio “>1” are revisited, it was so far

necessary to know which job was pointing on a blog. As a

consequence, both entities (jobs and blogs) needed to be

logically connected – a highly time-consuming task for the

analyzer. The job entity in the database was therefore

extended by another field, indicating if a particular job is a

blog or not. This considerably increased performance of the

crawler.

G. �ews-portals

News-portals are of particular interest when it comes to
the analysis of the blogosphere, since these portals often
represent the virtual subsidiary of traditional news
corporations. These players were traditional the ones to
decide upon the daily headlines worldwide. With the advent
of weblogs the rules of this game fundamentally changed.
Without any central supervision or editorial standards,
weblogs could write about whom and what they wanted –
and they could do so a lot faster than traditional news
corporations – even though this sometimes proved to be at
the expense of journalistic quality. We consider it highly
interesting to understand the interdependence of the
blogosphere and traditional news corporations. The crawling
algorithm therefore needed to be adapted in order to crawl
news portals as well. For a start we only included the biggest
German news portals in our analysis. Since RSS-feeds in
highly respected news portals are greatly standardized and

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 1, �o. 2, 2010

Page | 56

http://ijacsa.thesai.org/

well-formed compared to the feed-quality in the
blogosphere, we include news portals as another “blogtype”
in our framework. In this case, the recognition patterns are
linked to an internal URL-list of the biggest 100 German
news portals.

Similar to the crawling activity in the blogosphere, news

portal pages can then be scanned for links that point to

weblogs. Due to the special annotation of news portals, it is

then possible to analyze jumps between the blogosphere and

“traditional” websites, and to find out what type of medium

covered a particular story first.

It would even be possible to generate a kind of weblog-

ranking, in which those weblogs that have a traceable

influence on traditional media get a higher score than those

without.

V. SUGGESTIONS FOR FURTHER RESEARCH

The feed crawler scans, recognizes and downloads blogs

through their URI. It therefore needed to be ensured that a

blog can only be found once. In the original implementation

it could happen that two different job URLs were pointing

on the same blog, which then was saved twice in the

database. In the enhanced crawling framework, these blog

duplicates can now be easily identified due to their identical

host address. It is in contrast to that still not possible when

the crawler encounters so-called redirects or short-URIs.

Currently, the feed-crawler recognizes feeds through the

official feed link format. It is <link>-tag that has set type=

„application/rss+xml“ or „application/atom+xml“. This

identifies the referenced resource without doubt as a feed. A

tag can additionally be annotated with rel="alternate". This

identifies the feed explicitly as an alternative view of the

currently opened resource (blog). It is therefore ensured that

the feed incorporates the latest posts of a weblog. This

method is quite effective to scan blogs for well-formed feeds.

However, feeds that were identified this way often only

enumerate the most recent posts and misses’ information

about older posts or categorization.

In order to find as much valid links as possible, our

crawler currently scans all links without paying attention to

the rel-attribute with the result that single posts could be

crawled twice. Due to our internal identification of posts via

their links, this is not a disadvantage eat the moment.

Blog-Analysis-Engines such as Spin3r use the so-called

‘Brutal Feed recognition” or “Aggressive RSS discovery”

method to adhere to this particularity. In doing so, they

analyze every single link they come across on a blog page

regarding its feed-characteristics. They hereby do not run the

risk of skipping blog-feeds due to a missing annotation. The

additional analysis however poses substantial additional

expenses since the annotation of feeds is widespread in the

Web – not only for blogs, but also for news-portals and other

websites.

VI. CONCLUSION

Generally, we try to investigate in what patterns, and to

which extent blogs are interconnected. We also have great

interest in analyzing the content of single weblogs. In doing

so we want to face the challenge of mapping the blogosphere

on a global scale, maybe limited to the national boundaries

of the German blogosphere. The visualization of link

patterns, a thorough social network analysis, and a

quantitative as well as qualitative analysis of reciprocally-

linked blogs will to a large extend form the following project

phase of our overall project, which will build upon the

enhanced data collection method and technique described in

this paper. Even though the original implementation

performed well along the milestones defined within the

initial project phase, it soon became apparent that those

enhancements discussed in section IV of this paper were

crucial for the overall performance of the crawling

framework. We conclude that the feed-crawler is now

running on a performance level that satisfies all requirements

for long-term and large-scale data-mining in the blogosphere.

Due to the enormous amount of blogs currently around, as

well as those thousands of blogs and posts that add up to this

amount of data every day, a final performance analysis of the

crawler will follow in a couple of month.

REFERENCES

[1] Agarwal, N., Liu, H., Tang, L., and Yu, P.S. Identifying the influential
bloggers in a community. Proceedings of the international conference
on Web search and web data mining - WSDM '08, ACM Press (2008),
207.

[2] Bansal, N. and Koudas, N. Searching the blogosphere. Proceedings of
the 10 th International Workshop on Web and Databases (WebDB,
WebDB (2007).

[3] Bross, J., Richly, K., Schilf, P., and Meinel, C. Social Physics of the
Blogosphere: Capturing, Analyzing and Presenting Interdependencies
of Partial Blogospheres. In M. Nasrullah and A. Reda, Social �etworks
Analysis and Mining: Foundations and Applications (forthcoming).
Springer Verlag, New York / Wien, 2010, 179-198.

[4] Bross, J.F., Quasthoff, M., Berger, P., Hennig, P., and Meinel, C.
Mapping the blogosphere with rss-feeds. The IEEE 24th International
Conference on Advanced Information �etworking and Application,
IEEE (2010).

[5] Bruns, A. Methodologies for Mapping the Political Blogosphere: An
Exploration Using the IssueCrawler Research Tool. First Monday 12,
5 (2007).

[6] Chau, M., Xu, J., Cao, J., Lam, P., and Shiu, B. A Blog Mining
Framework. IT Professional 11, 1 (2009), 36-41.

[7] Glance, N.S., Hurst, M., and Tomokiyo, T. BlogPulse: Automated
Trend Discovery for Weblogs. WWW 2004 Workshop on the
Weblogging Ecosystem, ACM, �ew York 3rded, (2004).

[8] Gosling, J., Joy, B., Steele, G., and Bracha, G. The Java language
specification. Addison-Wesley, 2000.

[9] Herring, S., Scheidt, L., Bonus, S., and Wright, E. Bridging the gap: A
genre analysis of weblogs. Proceedings of the 37th Hawaii
International Conference on System Sciences (HICSS'04), (2004).

[10] Lakshmanan, G.T. and Oberhofer, M.A. Knowledge Discovery in the
Blogosphere. IEEE Internet Computing 14, 2 (2010), 24-32.

[11] Mintert, S. and Leisegang, C. Liebes Tagebuch ... Sieben frei
verfügbare Weblog-Systeme. iX-Archiv 7, (2008), 42-53.

[12] Schmidt, J. Weblogs: eine kommunikationssoziologische Studie. Uvk,
2006.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 1, �o. 2, 2010

Page | 57

http://ijacsa.thesai.org/

[13] Sifry, D. State of the blogosphere, October, 2006. Sifry.com - Sifry's
Alerts, 2006. http://www.sifry.com/alerts/archives/000443.html.

[14] Smith, T. Power to the People: Social Media Tracker Wave 3.
Retrieved on September 2, 2008.
http://www.goviral.com/articles/wave_3_20080403093750.pdf.

[15] Song, X., Chi, Y., Hino, K., and Tseng, B.L. Identifying Opinion
Leaders in the Blogosphere. Proceedings of the sixteenth ACM

conference on Conference on information and knowledge management
(CIKM ' 07, , pp971-974.

[16] Whelan, D. In A Fog About Blogs. American Demographics July 1,
2003, 2.
http://findarticles.com/p/articles/mi_m4021/is_6_25/ai_105777528/ .

