
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 1, No. 3, September 2010

75 | P a g e
http://ijacsa.thesai.org/

Modelling and Analysing of Software Defect

Prevention Using ODC

Prakriti Trivedi
1

Som Pachori
2

1
HOD, Computer Department,

2
M Tech IV Semester (SE),

Govt Engineering College Ajmer
1hod.ceit@rediffmail.com

2
sompachori@in.com

Abstract— As the time passes the software complexity is

increasing and due to this software reliability and quality will be

affected. And for measuring the software reliability and quality

various defect measurement and defect tracing mechanism will

be used .Software defect prevention work typically focuses on

individual inspection and testing technique. ODC is a mechanism

by which we exploit software defect that occur during the

software development life cycle. Orthogonal defect classification

is a concept which enables developers, quality managers and

project managers to evaluate the effectiveness and correctness of

the software

Keywords— Defect Prevention, ODC, Defect Trigger

I. INTRODUCTION

Software defect prevention is an important part of the

software development. The quality; reliability and the cost of

the software product heavily depend on the software defect

detection and prevention process. In the development of

software product 40% or the more of the project time is spent

on defect detection activities. Software defect prevention

research has proposed new inspection and testing methods and

has studied and compared different inspection and testing

methods.

In the paper the basic idea is to provide implementation of

ODC in real world application. It begins with and overview of

various defect classification schemes followed by ODC

concepts. The latter part will describe how will we adopt ODC

in software development.

The end of this paper describes the Improvement in software

project after implementing ODC.Page Layout

An easy way to comply with the conference paper formatting

requirements is to use this document as a template and simply

type your text into it.

II. DEFECT CLASSIFICATION SCHEME

Since 1975, a number of classification schemes have been

developed by different organizations, such as HP and IBM, to

classify software defects and to identify common causes for

defects in order to determine corrective action

A. Hewlett-Packard - "Company-Wide Software

Metrics[9][10]

It classifies defects from three perspectives in three area

(1) Identifying where the defect occurred (e.g., in the design

or the code).

(2) Finding out what was wrong (e.g., the data definition or

the logic description may be incorrect).

(3) Specifying why it was wrong, missing or incorrect.

B. The IBM Orthogonal Defect Classification

Scheme[1]

The IBM Orthogonal Defect Classification (ODC) was

originally described in the paper by Chillarege et al. in 1992

[1][4]. As described by Chillarege, the goal of ODC is to

provide a scheme to capture the key attributes of defects so

that mathematical analysis is possible. The software

development process is evaluated based on the data analysis.

According to ODC, the defect attributes that need to be

captured include: defect trigger, defect type, and defect

qualifier. The "defect type" attribute describes the actual

correction that was made. For example, if the fix to a defect

involves interactions between two classes or methods, it is an

interface defect. The "defect trigger" attribute represents the

condition that leads the defect to surface. For example, if the

tester found the defect by executing two units of code in

sequence, the defect trigger is "Test sequencing". "The defect

qualifier" indicates whether the defect is caused by a missing

or wrong element

III. ODC CONCEPTS

ODC is a defect classification scheme by which we

characterize and capture defect information. ODC is a

measurement system for software processes based on the

semantic information contained in the defect stream. And it

can help us evaluate the effectiveness and efficiency of testing,

enable error tracking, and evaluate customer satisfaction via

an analysis mechanism behind the scheme

A. Defect Trigger

It provides surface to the fault and results in a failure. It just

provides a measurement for the development process.

It is very hard for the developer to find the fault during testing

Process. For this purpose various verification and testing

activities are conducted to find that fault

http://ijacsa.thesai.org/
mailto:ceit@rediffmail.com
mailto:sompachori@in.com

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 1, No. 3, September 2010

76 | P a g e
http://ijacsa.thesai.org/

DEFECT
TRIGGER

T
Y
P
E

CLASSIFICATION

REVIEW/INSPEC
TION
TRIGGER

DESIGN CONFORMANCE LOGIC/FLOW

BACKWARD COMPATIBILITY LATERAL

COMPATIBILITY CONCURRENCY

INTERNAL DOCUMENT LANGUAGE

DEPENDENCY SIDE EFFECTS RARE

SITUATION

FUNCTION TEST
TRIGGER SIMPLE PATH COMPLEX PATH

COVERAGE VARIATION

SEQUENCING

INTERACTION

SYSTEM TEST TRIGGER WORKLOAD STRESS RECOVERY

STARTUP/RESTART HARDWARE

CONFIGURATION SOFTWARE CONFIGURATION

BLOCKED TEST/NORMAL MODE

B. Defect Type

ODC becomes more understandable when we discuss
the
defect type. The defect types are chosen so as to be
general enough to apply to any software development
independent of a specific product. [2] ODC provides a
framework for identifying defect types and the sources of
errors in a software development effort. Using the feedback
provided by analysis of the defects it inserts in its systems.

• FUNCTION: Affects significant capability,
end-user
interfaces, product interfaces, and interface
with hardware
architecture or global data structure.

• LOGIC: Affects the functionality of a code module
and can be fixed by re-implementing an algorithm
or local data structure without a need for requesting
a
high level design change.

• INTERFACE: Affects the interaction of
components via macros, call statements
and/or parameters.

• CHECKING: Affects program logic that would
properly validate data and values before they
are stored or used in computation.

• ASSIGNMENT: Requires change in a few lines of
code, such as initialization of control blocks or
data structures.

• TIMING/SERIALIZATION: Affects the
proper management of shared and real-time
resources.

• BUILD/PACKAGE/MERGE: Affects
productversion or configuration; requires formal
changes to reconfigure or rebuild the product.

IV. ADOPTING ODC IN SOFTWARE DEVELOPMENT

ODC has its own life cycle, which we can integrate into the

Iterative software development lifecycle .With this integration,

we can monitor software quality status at each development

phase[7]. And if we find some abnormalities in our result we

Figure 1:Relation bet ween SDLC and ODC

Therefore, for any given phase, defect detection measures

should be taken. The measures must be appropriate to the

typical type of defects injected and the information or work

product produced. The goal is to minimize the amount of

defects that propagates to the subsequent phases.

V. IMPROVEMENT AFTER IMPLEMENTING THE

ODC IN SOFTWARE PROJECTS

After implementing ODC in various software project at

college level we see that the defect detection rate will be

reduced. These projects are very different in terms of the

languages (procedure language VB 6 and Object-Oriented

language VB .Net ,Web Application develop through ASP.Net,

Php), the architectures (client-server and multi-tier), the

databases (as simple as SQL and as complicated as Orcale 8i),

the resources the complexity (from one week for a single

person to several months for eight people), and the

characteristics (adding new functionalities to an old system,

fixing the bugs in an old system, and developing a new

system). With only these projects and the large variations, it is

too early to draw a statistical conclusion on what was

improved as experience was gained.

The cost of defect detection has dropped dramatically,

http://ijacsa.thesai.org/

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 1, No. 3, September 2010

77 | P a g e
http://ijacsa.thesai.org/

although there are some fluctuations
Figure .2: Defect Detection Cost Reduction v/s per project

VI. CONCLUSION AND FUTURE WORK

In this paper we have presented an approach for
defining, introducing orthogonal defect
classification.ODC can help improve efficiency and
effectiveness of development and testing. These are
all critical for quality improvement. This paper builds
some fundamental work that demonstrated the
existence of a relationship between the type of
defects and their effect on the software
development. By predicting software defect
introduction and removal rates, ODC is useful
for identifying appropriate defect reduction strategies.
The extension for ODC defect types provides more

granular insight into defect profiles and their impacts to
specific risks. The use of value-neutral software

engineering methods often causes software projects to

expend significant amounts of scarce resources on
activities with negative returns on investment.. The

ODC defect detection efficiency functions are being

evaluated for different domains and operational
scenarios. This research investigated the software

defect detection process to address: how to conduct
the process better, how to evaluate and control the

process better, and how to continuously improve the

process.

REFERENCES

[1] Ram Chillarege (www.chillarege.com)

[2] R. Chillarege, W.-L. Kao, andR. G. Condit, "Defect

Type and its Impact on the Growt h Curve,'' in

Proceedings of The 13th International Conference on

Software Engineering, 1991

[3] Chillarege, R; Bhandari, I; Chaar, J; Halliday, M; Moebus,

D; Ray, B; Wong, M; Orthogonal defect classification

- A concept for in- process measurements, IEEE

Transactions on Software Engineering, vol. 18, pp. 943-

956, Nov. 1992

[4]. IBM Research Center for Software Engineering
(http://www.research.ibm.com/softeng/ODC/ODC.HTM)

[5] "Software Triggers as a function of time -ODC on

field faults", Ram Chillarege and Kathryn A. Bassin,

DCCA-5: Fifth IFIP Working Conference on Dependable

Computing for Critical Applications, Sept 1995.

[6] "Improving software testing via ODC: Three
case studies", M. Butcher, H. Munro, T. Kratschmer,
IBM Systems Journal, Vol 41, No. 1, 2002.

[7]. "Identifying Risk using ODC Based Growt h

Models", R. Chillarege, S. Biyani, Proceedings, 5th

International Symposium on Software Reliability

Engineering, IEEE, Monterey, California, pp 282- 288,

November 1994

[8] Butcher, M., Munro, H., Kratschmer, T., Improving

Software Testing via ODC: Three Case Studies -
Orthogonal Defect Classification, IBM Systems Journal,
March 2002.

[9] Kan, S. H., Parrish, J., Manlove, D., In-process

Metrics for Software Testing, IBM Systems Journal,

40(1), pages 220- 241, 2001.

[10] Grady, Robert B., Caswell, D., L. Software Metrics:

Establishing a Company-Wide Program, Prentice Hall,

Englewood Cliffs, NJ, 1987.

http://ijacsa.thesai.org/
http://www.chillarege.com/
http://www.research.ibm.com/softeng/ODC/ODC.HTM

