
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 1, No. 4, October 2010

1 | P a g e

http://ijacsa.thesai.org/

Improving the Technical Aspects

of Software Testing in Enterprises

Tim A. Majchrzak

Department of Information Systems

University of Münster

Münster, Germany

tima@ercis.de

Abstract—Many software developments projects fail due to quali-

ty problems. Software testing enables the creation of high quality

software products. Since it is a cumbersome and expensive task,

and often hard to manage, both its technical background and its

organizational implementation have to be well founded. We

worked with regional companies that develop software in order

to learn about their distinct weaknesses and strengths with re-

gard to testing. Analyzing and comparing the strengths, we de-

rived best practices. In this paper we explain the project’s back-

ground and sketch the design science research methodology used.

We then introduce a graphical categorization framework that

helps companies in judging the applicability of recommendations.

Eventually, we present details on five recommendations for tech-

nical aspects of testing. For each recommendation we give im-
plementation advice based on the categorization framework.

Keywords: Software testing, testing, software quality, design

science, IT alignment, process optimization, technical aspects

I. INTRODUCTION

Striving for improved software quality is no new emer-
gence. The idea to optimize technical aspects respectively to
use technology to achieve this aim is known for decades. Un-
surprisingly, the term software engineering [28] has been
coined in the 1960s and the software crisis is known—and un-
fortunately still lasting—since the 1970s [8].

Especially large-scale projects that end in disasters nurture
the public's picture of unreliable software. An example is the
NASA Mars Climate Orbiter, which crashed because metric
and imperial units were mixed in a software subsystem [27].
The miscalculation leading to the crash would most likely have
been detected by detailed software testing. Unfortunately, there
are many other examples of failed major projects that have
similar root causes: inscrutable, ill-designed or not exhaustively
tested software [17].

Despite the widely perceived disasters, the main problem is
failure of everyday projects [6][10]. Even after decades of re-
search, no silver bullet has been found and many problems
remain unresolved [4]. Complexity of software obviously in-
creases faster than methods to control it are developed [16]. As
a consequence, problems of varying severity can be found in
projects in any industrial sector and for any kind of software

developed. But not all software development projects fail; in
fact, many companies produce software systems of notable
quality. We propose to study effectual development to discover
best practices for reaching quality especially with regard to
testing. In combination with the processes and techniques for
the development of software, software testing is the foundation
of software quality [17].

To better support businesses with results from academic re-
search, a combination of research in information systems and
software engineering is a feasible approach [21]. We undertook
a project with regional enterprises and tried to learn what
makes software development projects successful. After identi-
fying the companies' status quo [21], we analyzed the myriad
of observations we made and the experiences the project’s par-
ticipants shared with us. Eventually, we derived a set of novel
best practices.

It appears to be easy to say how software development
should be done. But although techniques are described in the
literature and there is knowledge about successful develop-
ment, this knowledge has not necessarily been transferred into
business reality. Some of the best practices we found have been
denoted earlier e.g. in different contexts or with different pre-
requisites. However, adopting them seems to be very challeng-
ing. We thus give details on how to implement the recommen-
dations and which conditions have to be met. We also name
related work for each recommendation rather than discussing
them in a section of their own. Best practices presented in this
work have a technical focus; suggestions for the organizational
embedding of testing can be found in [20].

This paper is organized as follows. Section II introduces the
project's background. We sketch our research methodology in
Section III. A framework for categorization is explained in
Section IV. Five effective technical recommendations are dis-
cussed in Section V. A conclusion is drawn in Section VI and
future work is highlighted in Section VII.

II. BACKGROUND

Münster is located in North Rhine-Westphalia, Germany. In
the city and its surrounding region a lot of IT-based companies
have been sited. Most of them are medium-sized and specialize

This article is an extended and revised version of the paper presented by

Majchrzak [22] at the i-Society 2010 conference in London on 28 June, 2010.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 1, No. 4, October 2010

2 | P a g e

http://ijacsa.thesai.org/

on software development. Some larger companies with far over
1.000 employees do not develop software for customers; as
financial service providers their individually developed soft-
ware enables their business processes. The number of their
developers exceeds the number of employees most of the
smaller companies have in total.

All companies are members of the local chamber of com-
merce which supports the Institut für Angewandte Informatik
(IAI – Institute of Applied Informatics). The IAI is hosted by
the University of Münster and based on the work of both com-
puter scientists and economists. Projects undertaken by the IAI
are run by academics that seek both research progress and
mean to support the local industry.

By frequent exchange with companies the IAI learned
about their dissatisfaction with software testing. While most
companies were ambitious to improve the quality of the soft-
ware they developed and to cut down costs for testing, they did
not know how to achieve this. Additionally, many enterprises
lack the time to try out new technologies or to evaluate changes
to their processes. However, the companies were not economi-
cally endangered and apparently developed software of quality.
Thus, two conclusions could be drawn. Not a single company
has a perfect testing process. All of them face a number of test-
ing related problems. Nevertheless, each company has devel-
oped distinct strengths that help it in creating good software
products.

Based on these observations the IAI project to improve
software testing was initiated. Two main purposes were set:
Firstly, the status quo of software testing in the regional enter-
prises was to be brought to light. Secondly, successful strate-
gies used by the companies were to be identified and aggregat-
ed to best practices. In this work we present five major best
practices that change or influence the technical way of software
testing or the technology used.

From the exchange with the enterprises and due to the di-
versity of software developed as well as the differences in cul-
ture in each company, we expected strengths to be complemen-
tary. Hence, it could be estimated not only to find a few known
methods for successful development but a plethora of promis-
ing attempts to increase software quality and to optimize pro-
cesses.

Diversity is both a blessing and a curse. It helps to identify
best practices that form recommendations unknown to most
companies and therefore highly beneficial to them. At the same
time, prerequisites have to be met so that a recommendation
can be adopted at all. Consequently, a framework is needed to
support companies in choosing which recommendation to im-
plement. The framework is described in Section IV and used
for each recommendation in Section V.

III. RESEARCH METHODOLOGY

The project was meant to combine scientific rigor with rel-
evance and efficiency as demanded by businesses. We decided
for a methodology based on design science which ―addresses
important unsolved problems in unique or innovative ways or
solves problems in more effective or efficient ways‖ [15]. It of

course is impossible to describe the perfect testing process or to
offer a general description on how to test software. However,
we searched for a larger number of satisfactory solutions that
address typical problems. Finding such satisficing [31] solu-
tions helps enterprises even though not all possible problems
can be addressed.

Since we wanted to learn about problems from the point of
view of the participating companies, we decided for a qualita-
tive approach [26]. Best practices can hardly be found with a
simple questionnaire. Thus, we conducted semi-structured ex-
pert interviews. Using only a rough guideline for the interviews
[19], we were able to learn about how testing is done in the
companies. As the interviews developed, distinct weaknesses
and strengths could be identified as well as common problems
and successful strategies discussed with the participants. The
data gained in each interview is far too verbose to be published
as such. But each of it forms a kind of case study [36] which
greatly aids further analysis.

Recommendations derived from the discussion with the in-
terview partners are meant to complement the literature. Even
comprehensive work on software testing processes [2] or quali-
ty improvements [19] does not cover all problems typically
faced by practitioners. Some ideas published also do not seem
to be directly accessible to practitioners. Along with literature,
that promotes result-driven testing [13], we want to help clos-
ing this gap. Technical aspects as depicted in this work should
be given special attention. If conducting IT research, it should
be kept in mind that information technology is studied [25]—
even if organizational aspects are likewise important.

A quantitative analysis would augment the qualitative ap-
proach. Without quantitative data it is hard to prove that a rec-
ommendation is effective and efficient. However, deducing
best practices is a first step and was very laborious; verifying
results was identified as a further step (see Section VII).

The course of action we took can be sketched as follows.
We began by contacting IAI supporting companies and by
identifying staff for the interviews. Both managers and techni-
cally skilled employees were chosen. In a second step we inter-
viewed the participants. While there usually was only one
longer interview done with smaller companies, medium-sized
and larger companies were visited more than once. We were
able to address both organizational and technical issues with
the respective experts. In the interviews we tried to identify
who is responsible for testing, when it is done, what is included
in tests (graphical user interface, interfaces to other systems,
etc.), which methods are used and how testing is generally
done. We also tried to learn about the usage of testing tools
[23].

After discovering the status quo, we discussed general
problems met and successful strategies found. This included
evaluating which improvements the participating companies
desired. Eventually, potential best practices were discussed
with them. This part of the interview was the most open one. A
lot of ideas were exchanged and many interesting approaches
considered.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 1, No. 4, October 2010

3 | P a g e

http://ijacsa.thesai.org/

The third step was to analyze the results and to aggregate
data. As it is of high interest to the regional companies, an
overview of the status quo has been drawn. For reasons of
space and scope it is not included in this paper but can be found
in [21]. By finding interdependencies as well as aligning and
judging best practices identified by the participants, we extract-
ed recommendations. Of course, particularities of the compa-
nies' situations were taken into account. This lead to the con-
struction of a framework (see Section IV) that describes the
conditions under that a recommendation applies.

IV. FRAMEWORK

Recommendations for a topic as complex and intertwined
on various levels as software development require a sophisti-
cated categorization. Their full value can only be accessed if it
is known how to use them and which prerequisites have to be
met. Besides, support on deciding which best practices are
most applicable for the own business is advisable. We thus use
the framework first described in [20] to classify recommenda-
tions.

The level of demand shows how great the organizational
change required to adopt a recommendation is. Basic recom-
mendations should be adopted by any company. If recommen-
dations are not only basic hints but require considerable effort
to be implemented, they are considered to be advanced. Even-
tually, target states are ideals that cannot be reached unlabored.
In fact, they are guidelines on what level of perfection can be
reached and require a process of continuous optimization.
However, the benefits of an actual implementation will be im-
mense in the long run.

It is important to consider the project size. Small-sized pro-
jects commonly have a single team that does development and
testing. For medium-sized projects these tasks are undertaken
by at least two teams. Large projects can comprise hundreds of
employees and include general departments that contribute to
it. If thinking about a recommendation, not just the sole number
of employees that participate in it should be taken into account.
In fact, the typical size of projects as well as their character
should be kept in mind.

Another important determinant is the kind of software de-
veloped. Based on contracts, individual software is developed
for a single customer. Usually, there is close contact to the
principal. Standard or mass market software often is developed
over a long period of time. This makes regression testing im-
portant. Many recommendations can be applied to both kinds
of software.

Similarly, the number of releases of a software product has
to be taken into consideration. It is differentiated between one,
several and regular releases whereas regular means that there
will be releases for some month or years.

The fifth determinant distinguishes between the phases (or
stages) of testing. It is divided into the phases of component
test, integration test, system test and acceptance test that also
can be found in the literature [35].

Component Integration System Acceptance

B
a

s
ic

A
d

v
a

n
c
e

d
T

a
rg

e
t

s
ta

te

Phase of testing

L
e

v
e

l
o

f
d

e
m

a
n

d

Medium LargeSmall

Individual software Mass market

RegularSeveralOne

Releases

Kind of development

Project size

Figure 1. Exemplary use of the framework

As represented in Figure 1, the level of demand and the
phase of development are used to set up a matrix. A tick indi-
cates that a recommendation is meant to be beneficial for the
depicted phase and level. Ticks might be shown in brackets
which indicate that benefits will be observable but might be
less pronounced than for other phases and levels. The three
other determinants are shown as bars. A shade of (dark) gray
means that a recommendation applies under the specified con-
ditions. Fading indicates that adoption of the recommendation
should be considered if the depicted determinant is met. Rec-
ommendations still require more detail so that companies can
judge them. However, the framework can be used to get a
quick overview of the main prerequisites for it.

Please consider Figure 1 for clarification:

 The recommendation requires advanced effort. It
is possible to be extended in order to mark a target
state in which beneficial effects will be much
stronger.

 Implementing it especially aids integration and
system testing. Positive effects are also likely to be
observed for acceptance testing.

 The recommendation is meant to be adopted for at
least medium-sized projects and it aims at individ-
ually developed software.

 It aims at individually developed software. Theo-
retically, there could be a fading of the gray shade
into the box for mass market software. This would
mean that it would also benefit while the main fo-
cus was individual software.

 For full effect, there should be a greater number or
regular releases of the software developed.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 1, No. 4, October 2010

4 | P a g e

http://ijacsa.thesai.org/

V. TECHNICAL RECOMMENDATIONS

The following sections present five recommendations for
the optimization of technical aspects of software testing. Their
order reflects the implementation complexity.

A. State-of-the-art Development Environment

The first recommendation is pretty straightforward. We en-
courage using the latest development environments available,
particularly integrated development environments (IDE) that
are customizable and support plug-ins. They offer magnificent
opportunities to increase the quality of the developed software.
Using the latest IDEs is especially appealing since development
software is used anyway and many of these products or at least
plug-ins for them are free.

Admittedly, using an IDE is not only about testing. But the
support it offers significantly helps to increase development
quality. If the developer is aided in his routine work, testers do
not have to struggle with defects in programs that originated in
unthoughtfulness. Testers can then concentrate on finding actu-
al bugs e.g. in algorithms. Consequently, this recommendation
is a testing best practice even though parts of it do not directly
deal with testing; they have a noticeable indirect impact.

Unlike expectation, companies do not necessarily use state-
of-the-art IDEs. It is common to do so for individual develop-
ers in small enterprises. However, once the choice of develop-
ment tools is not solely based on developers' discretion but
there are general guidelines or even mandatory directives, tools
that do not offer as much functionality as would be possible are
used. This is especially true for situations in which developer
PCs are centrally set-up by IT organization staff rather than by
the developers themselves. Changing development tools could
not be possible since tools for cooperative work or versioning,
or software to access corporate-wide storage systems or re-
source pools might not be exchangeable.

Some of the participants drew a picture of the way their de-
velopment is supported by the tools used that reminded us of
the 1980s. There was no kind of syntax highlighting and no
built-in supportive functionality to aid the developer with cod-
ing. There was no direct access to the programming languages
or library documentation; developers would look it up on the
Internet or use books even for the simplest questions. And,
probably worst, there was no testing and debugging support.

Debugging was done by putting print()-statements into the
code that almost arbitrarily supplied the developers with frag-
ments (or rather shreds) of information.

Seeing how much more productive developers using mod-
ern IDEs are and how much these tools aid them in achieving
high quality software, we strongly recommend using up-to-date
development environments and the functionality that comes
with them. This general recommendation is suitable for any
company. It is extremely helpful for component testing (see
Figure 2).

If IDEs are used that do not offer some of the more sophis-
ticated functions and cannot be extended—e.g. with plug-ins—
upgrading to a more recent version or another IDE is recom-
mended. Eclipse arguably is the most widely known and one of

Component Integration System Acceptance

B
a

s
ic

A
d

v
a

n
c
e

d
T

a
rg

e
t

s
ta

te

Phase of testing

L
e

v
e

l
o

f
d

e
m

a
n

d

Medium LargeSmall

Individual software Mass market

RegularSeveralOne

Releases

Kind of development

Project size

Figure 2. Classification of Development Environment

the most powerful IDEs. It supports Java, C/C++ and (by using
extensions) many other languages such as PHP. Even though a
lot of functionality is built-in, there is a four-digit number of
plug-ins to enhance it further (an exemplary site that lists them
is [9]). To benchmark the development environment used, it is
a good idea to compare it to leading IDEs. Speaking with the
participants showed that some of them used IDEs that were far
from offering what Eclipse or Microsoft Visual Studio (the
leading tool for .NET) do. Partly the functionality does not
even reach what the leaders provided years ago.

Coloring the source code to point up the syntax (syntax
highlighting) [7] and automated suggestions while typing (code
completion) are common. Documentation fragments can be
shown directly to e.g. prevent the usage of methods marked as
deprecated. Many IDEs also offer direct checking of the code
so mistakes are immediately highlighted. Partial compilation
can provide error information without the need to explicitly
invoke the compiler. Thus, software with syntax errors will not
even be tried to compile and will be fixed by the developer
before they consider it to be finished.

Semantic correctness cannot be guaranteed automatically
but many typical mistakes can be prevented. For example, lev-
els of warning can be defined. We strongly encourage enabling
this feature. Eclipse can for example show Java warnings by
underlining code in yellow color. A variable that may take the

value of null but is used without checking for this will be

marked. Consequently, code that provokes so called Null-

PointerExceptions can be fixed. Many other mistakes
can be prevented from being made. Despite an unfamiliar feel-
ing programmers might have in the beginning, they are getting
used to the warnings quickly. Superfluous warnings usually can
be disabled; in Java this e.g. can be done by using so called
annotations [3].

The next step is checking code rules. IDEs do not offer this
functionality but there are tools and plug-ins available. While

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 1, No. 4, October 2010

5 | P a g e

http://ijacsa.thesai.org/

the above described warnings are generated by the compiler
and shown by the IDE, tools for checking code rules have a
logic on their own which makes them more powerful. Moreo-
ver, they are customizable and allow having corporate-wide
coding standards enforced. While developers should not feel
patronized, having common standards is highly recommended.
Many problems arise when several developers work on the
same code and probably misunderstand what their colleagues
did. This is particularly problematical if developers introduced
the style of their choice and then leave the company while the
code they wrote has to be maintained. This can be prevented by
having corporate-wide schemes and conventions. We suggest
using tools or plug-ins to check compliance with general cod-
ing standards suggested by the programming language vendors
(e.g. [33]), literature (e.g. [34]) and company-specific addi-
tions.

We also advocate using the debugging functionality of
modern IDEs. Instead of printing out variable contents, modern
trace debuggers visualize the complete state of a program at a
point of the developer's choice. Pointers can be followed and
variables modified; execution can be continued step-by-step.
Visualizing graphs for control flow and data flow further aids
debugging. Combined with knowledge on modern debugging
techniques [11] the debugger of a state-of-the-art IDE is a tool
of immense power and versatility.

 To sum up, we strongly recommend using a modern IDE,
even if giving up old libraries, methods, paradigms or even
programming languages is a precondition. Along with this pro-
cess, binding standards for formatting source code and for nam-
ing variables, methods etc. should be set up. For a better under-
standing how the optimal usage of a programming language
can be supported by an IDE, practitioner literature such as
[3][24] is recommended. There is a plethora of work on pro-
gramming best practices that can be utilized to augment this
recommendation.

B. Test Case Management and Database

In small projects testing often is seen as a stateless task.
Tests are done once a module is finished and found defects are
corrected directly. This is repeated at the levels of integration
and system testing. Unfortunately, it is inefficient and cannot
be combined with a holistic view [20] of testing. Hence, we
recommend using a test case management tool. It already helps
medium-sized projects that have at least a couple of releases.
While the later phases of testing are supported with little effort,
the solution can be expanded and will be beneficial for all
phases of testing (see Figure 3).

Typical functions include the compilation and categoriza-
tion of test cases, ideally using a highly customizable interface
that supports users with suggestions to disburden them of repet-
itive tasks, and setting statuses of test cases. Optionally, as-
signment of tasks and responsibilities can be done. A tool
should further support cooperative work and offer reminders
(via e-mail) for employees about assigned tasks, nearing dead-
lines and other important dates. Connections to the environ-
ments that run test cases are another amenity. They allow test-
ing to be triggered automatically.

Component Integration System Acceptance

B
a

s
ic

A
d

v
a

n
c
e

d
T

a
rg

e
t

s
ta

te

Phase of testing

L
e

v
e

l
o

f
d

e
m

a
n

d

Medium LargeSmall

Individual software Mass market

RegularSeveralOne

Releases

Kind of development

Project size

Figure 3. Classification of Test Case Management

Thus, the main purpose is formalization and structuring.
Ideally, each employee knows exactly what he has to do at any
time and can look up that information in a test case manage-
ment tool. To a certain degree he can choose from tasks yet
unassigned. When pursuing these tasks, he likely will spend his
efforts with high efficiency. The tool should also be able to
report a project's status which is especially helpful for large
projects. The added effort for entering test cases can be mini-
mized with intelligent help from the tool. Besides, regression
testing is improved.

Despite not many facts on test case management being pub-
lished, we know of one detailed work. Parveen et al. present a
case study [30] on the implementation of a centralized test
management using TestDirector, a tools by then sold by Mer-
cury Interactive. While the study is different in context and
scope, experiences are similar to our observations of the bene-
ficial effects of test case management.

The test case management's functionality can be extended
successively. Not only can it be used more precisely but addi-
tional functionality can be added. It is a good idea to include
support for requirements engineering. Tasks can be derived
from requirements and test cases can be linked to them. Should
test cases fail, the employee responsible for the requirement
might be able to help. Reporting can also help to find modules
that have a high rate of defects which probably result from mis-
takes in their requirements.

Especially for products that are continuously refined, inte-
gration of a bug tracker is recommended. This software is used
to report and manage defects (bugs) and therefore ideal for
integration with test case management. Bug trackers can be-
come an interface to the technical staff of the customer. A
wealth of further functionality can be easily added.

Test case management is thought to be an interface between
steps of processes. Erstwhile informal and hardly checkable
process components are represented by it. Information is pro-

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 1, No. 4, October 2010

6 | P a g e

http://ijacsa.thesai.org/

vided in a structured form. The management software is used
for any operative testing procedures. In fact, each testing pro-
cess begins and ends with utilizing it.

Beginning with using table calculation sheets can foster the
creation of an integrated system that offers interfaces to other
tools. Expanding the test case management should be done
step-by-step. Both a bottom-up (beginning with component
tests) and a top-down approach (beginning with system tests or
even acceptance tests) are possible. Media disruption should be
avoided as it lowers efficiency. An example for media disrup-
tion is to write results from a test run to a piece of paper and
later type the results from the paper into a tool. If a strategy for
implementation is worked out in advance, a delay of projects is
unlikely and a return-on-investment (ROI) should be achieved
timely. While implementation details are out of scope of this
paper, we strongly advise setting up a test case management.

On the first look a test case database appears to be equal to
test case management software. While both purposes can be
combined in one tool, there is a functional distinction between
them. Test case management serves towards the aim of struc-
turing and documentation. A test case database is driven tech-
nically. It is used to collect test cases in executable form and
stores components such as test stubs and mock objects. The
main aim is to increase the rate of test case reuse and hence to
facilitate regression testing.

Test case databases are usually integrated into tools but can
be implemented separately. Test cases have to be saved in a
structured way and it should be easy to find and retrieve them.
Ideally, the database system can directly invoke the environ-
ment test cases are coded for and run them. It is very helpful
for data-driven applications if (e.g. relational) databases can be
stored along with test cases. Arbitrary testing results are pre-
vented since the database can be reset to a defined and con-
sistent state for any test cases that requires this.

A test case database has amenities beyond the mere reuse of
test cases. A good strategy for testing larger software systems
is to have a defined suite of test cases and run it both for an old,
correctly working version and the new version of the software.
If results differ, defects are likely. The same applies to test da-
tabases. First the database is set to a defined state. Then the test
suite is run for the old version of the software. The same is
repeated for the newer version of it after the database has been
reverted to the defined state. Resulting states are compared
since differences hint to problems. If results are identical but
the old version is known to be buggy, problems have apparent-
ly not been fixed. While such testing is possible manually, tool
support avoids mistakes and saves much manual labor.

Test case databases are also useful if libraries are developed
that are incorporated into several other systems. They can be
tested even if changes were made. Changes to interfaces or
defined functionality are noticed immediately without deploy-
ing the library to productive systems.

The strengths of test case databases are most apparent if re-
gression testing is used. Consider an example: If two algo-
rithms for the same purpose but with different runtime charac-
teristics have to be tested, test cases have to be implemented

only once. The test cases can simply be reused. It will only be
needed to add more test cases if the new algorithm has an ex-
tended functionality. With a good test case management, this is
even true if the second algorithm has been implemented month
or years after the first one. Without such a system, the old test
cases most likely have been deleted in the meantime, were lost
along abandoned data, or there will be no knowledge how to
use them.

We advocate both using test case management and a test
case database. They are especially successful if they are inte-
grated (see Section V.D).

C. Aligning Systems for Testing and Production

Utilizing modern programming languages and paradigms
for developing complex distributed applications does not only
bear advantages. Developing applications on workstations but
deploying them to servers or mainframes is prone to compati-
bility and scaling problems.

In the very beginning of programming, software only ran
on the system it was developed for. For any other platform the
code at least had to be adjusted. It might even have been easier
to rewrite it from scratch if architectures were entirely differ-
ent. Nowadays the environment used for development and test-
ing usually differs from the one software is developed for.
Moreover, at least an operating system is mediating with the
hardware. In most cases virtualization hypervisors, application
servers and other components form additional layers. This has a
plethora of amenities. Using high level programming languages
allows for the compilation of the same code for different plat-
forms; virtual machines and other components can even offer
hardware abstraction. However, the productive system often is
far more powerful and not only its hardware is different but
often the software is different, too.

In simple cases, differences only apply to the workstations
and servers' operating systems. However, additional compo-
nents such as libraries, database management systems (DBMS)
or application servers are likely to be different as well. Server
versions of these systems will probably not even run on work-
stations. Consequently, problems arise. To give an example:
Java EE applications are commonly run in a sophisticated ap-
plication server such as IBM WebSphere. Workstations often
run a lightweight Apache Tomcat. Even though an application
that runs on Tomcat should seamlessly do so on WebSphere,
practice shows that unexpected behavior or crashes can be ex-
pected. This can be explained with a different interpretation of
specifications, differing versions, conflicting libraries and simi-
lar issues.

We recommend aligning development and testing systems
with the intended productive environment. By alignment we
mean to reasonably adjust development and productive hard-
ware and software while keeping the effort economically feasi-
ble. It will in most cases e.g. not be justified to buy a second
mainframe system just to have a testing platform that is equal
to the productive system. Nevertheless, options are often avail-
able that guarantee a high technical compatibility but are cost-
effective. Exactly to find these options alignment is about.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 1, No. 4, October 2010

7 | P a g e

http://ijacsa.thesai.org/

Business/IT alignment in general is subject to lively scientific
discussion [5].

Aligning systems is suggested for at least medium-sized
projects with a couple of releases. It is especially useful for
individually developed software and early development phases
(see Figure 4). Due to our observations we even deem addi-
tional effort to align systems justified. Surprisingly, no work
seems to be published on system alignment for the reasons of
testing.

The more advanced a testing phase is the more alike should
systems be. Compatibility problems should however be re-
solved as early as possible. Achieving this can be easier than
thought. For example, lightweight versions are available for
common server applications. This applies to the earlier Web-
Sphere example; Tomcat should be used on the client only if
the target system is Tomcat either.

Instead of installing a DBMS on the developing system, the
one installed on the server can be used remotely. A separated
database should be created to protect productive data from cor-
ruption. Modern servers and to an even higher degree main-
frames offer virtualization that allows to completely separate
instances not only of databases but of any application. Thus,
testing is possible on the same machine and with the same sys-
tem software that the application will eventually run on. Re-
source usage should be protected so that a tested application
running into a deadlock or massively using resources does not
endanger productive applications running in parallel.

Applications accessed by a number of parallel users require
realistic testing. Problems that arise with memory usage or par-
allel execution can hardly be found with systematic testing.
Such problems will not reveal themselves if just ―trying out‖
the application on the testing system. An acceptable perfor-
mance on the testing system cannot be assumed for the produc-
tive system even if it is more powerful. Not yet considered de-
pendencies, growing data and similar issues can cause prob-
lems in the (far) future. Thus, testing has to be done under real-
istic conditions. Defects in parallel algorithms might only re-
veal themselves under certain conditions. Race conditions in
which several threads of an application obstruct each other will
probably occur on fast systems only. Reasonable conclusions
about an application's performance can solely be drawn when
thoroughly testing them in a productive environment.

Besides all advocating to testing under realistic conditions,
we strongly advise not to test on productive systems without
making sure that productive data cannot be modified and that
the performance remains unaffected. Negative (side-) effects on
productive systems would render any benefit of realistic testing
useless.

Component Integration System Acceptance

B
a

s
ic

A
d

v
a

n
c
e

d
T

a
rg

e
t

s
ta

te

Phase of testing

L
e

v
e

l
o

f
d

e
m

a
n

d

Medium LargeSmall

Individual software Mass market

RegularSeveralOne

Releases

Kind of development

Project size

Figure 4. Classification of Aligning Systems

D. Integration of Tools

We learned from the participants that using tools for testing
is common. A general observation was that tools are hardly
integrated. However, exactly this is recommended.

Testing tools are applications on their own in most cases.
Common formats or defined interfaces seldom exist. Only larg-
er tools such as IBM Rational products provide an interchange
of data. Most participants desired the integration whereas only
few of them actually had experiences with it. We recommend it
for medium-sized and larger projects with at least a couple of
releases. Due to the high complexity some effort is required
before benefits can be observed for the phases of integration
and system testing. Ultimately, amenities can be realized for all
phases (see Figure 5).

Several kinds of integration are desirable. First of all, doc-
umentation systems should be linked with systems for testing.
Undocumented tests are only worth a fraction of documented
ones. Automatically synchronizing the results of execution with
the test case management system (cf. Section V.B) disburdens
testers of repetitively entering test cases. A well structured
documentation as described in [16] can be achieved more easi-
ly. An improved database of testing results can also be used for
statistical examination. Test managers can easily learn about
running times, success rates of test cases and similar data. For
regularly released software integrating the bug tracker with the
management system is another option. Reported bugs can be
adjusted with known defects and test cases. This decreases re-
dundancy.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 1, No. 4, October 2010

8 | P a g e

http://ijacsa.thesai.org/

Component Integration System Acceptance

B
a

s
ic

A
d

v
a

n
c
e

d
T

a
rg

e
t

s
ta

te

Phase of testing

L
e

v
e

l
o

f
d

e
m

a
n

d

Medium LargeSmall

Individual software Mass market

RegularSeveralOne

Releases

Kind of development

Project size

Figure 5. Classification of Integration of Tools

Linking systems for test case execution supports regression
testing. Test cases run in earlier phases can easily be repeated.
Automated synchronization again relieves testers of repetitive
tasks and ineffective work. Connections to test case manage-
ment systems and a test case database can make tasks econom-
ically feasible that would be too laborious if done manually.

The above ideas will seem utopian in a development land-
scape without integration. They should motivate alignment and
encourage challenging the status quo. To our knowledge there
is no exhaustive solution offered and there are no well-defined
standards. Individually developing tools for integration will be
unavoidable. Nevertheless, for tools newly bought integration
capabilities can be checked. Even small tools for data transfor-
mation can yield dramatic reductions of manual workload. A
tool for aggregating data and computing statistical reports from
the test documentation can e.g. be implemented with little ef-
fort and refined continuously.

By undertaking a strategy of small refinements, integration
is possible without much trouble or high costs. Growing
knowledge will bolster further development. We found open
source software to be convenient for integration. It can be mod-
ified to work with existing software with ease.

Full integration of tools enables new possibilities. This in-
cludes installing a test controlling which is used to keep an
overview of the testing process and to calculate key figures
[20]. The vision is an integration of systems that comprise test
case management, development (project) planning, test sched-
uling, staff assignment, time control, task management, con-
trolling and even a management cockpit.

E. Customizing of Tools to Fit wih Processes

In most cases, testing tools are driven by the underlying
technology. Even if they can be customized, they induce a cer-
tain way in which they have to be used. As a consequence,

Component Integration System Acceptance

B
a

s
ic

A
d

v
a

n
c
e

d
T

a
rg

e
t

s
ta

te

Phase of testing

L
e

v
e

l
o

f
d

e
m

a
n

d

Medium LargeSmall

Individual software Mass market

RegularSeveralOne

Releases

Kind of development

Project size

Figure 6. Classification of Customizing of Tools to Fit wih Processes

business processes are changed in order to fit with a tool's re-
quirements. Without changing the processes, many tools can
hardly be used. Alternatively, customizing tools is possible but
very laborious. However, tools should be tailored to fit with
business processes and not the other way around.

Especially companies that have defined testing processes
pointed out, that changing processes to enable the usage of
tools is a particularly bad idea. In fact, tools should be customi-
zable in order to seamlessly integrate into the processes. There-
fore, we recommend selecting tools based on their customiza-
bility. While introducing a new tool could be used to bench-
mark the affected business processes, well performing process-
es should not be changed. Customizing tools should be done in
larger projects with at least several releases of a software prod-
uct. The benefits will become most obvious if a company
strives for a continuous optimization of its testing processes.
Optimizations will be most apparent in tool-driven phases—
hence, there will be hardly an effect on acceptance testing (see
Figure 6).

In general, introducing new tools or installing upgrades of
existing tools entails changes. They for example are caused by
the implementation of additional phases of testing or the addi-
tion of new functionality. This kind of changes is both normal
and desirable. Companies should try to optimize their process-
es, though. Adapting the course of action and procedures given
by the tool should be a starting point for own considerations.
Only in a small number of cases these presets will align with a
company's standards. Consequently, a well-founded strategy of
integrating a tool has to be found. Moreover, evaluations of the
tool's performance should be scheduled. Experiences gained
after using it for a while should be used for further improve-
ments.

Implied processes are often based on technical details of
tools. We learned in the underlying project of this article that
only a small number of testing tools can be intuitively used.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 1, No. 4, October 2010

9 | P a g e

http://ijacsa.thesai.org/

Thus, tools should be checked for their customizability upon
evaluation and selection. Steps for creating a test case should
be designed to align with employees' flow of work. If the doc-
umentation, demonstration materials, or tool presentations hint
to fixed and unchangeable presets, tools have to be carefully
checked. It is particularly impedimental if enforced processes
cannot be divided into substeps or if tools lack interfaces. A
common problem would be tools for test execution that cannot
be integrated with documentation software.

Adaptability and customizability can be given in several
dimensions. Technically speaking, it should be possible to in-
terrupt tests during execution in order to save intermediate re-
sults. Moreover, interfaces to import and export data are very
helpful—in particular, if they can be used in real time (cf. Sec-
tion V.D). With regard to the usability, a configurable interface
positively affects the acceptance of a tool. The possibilities to
tailor a tool should be based on its complexity. Customizing in
the technical dimension (e.g. by writing scripts) is acceptable
for small tools only. Ideally, tools should offer the possibility to
load plug-ins. Furthermore, tools that are plug-ins by them-
selves and can be loaded into an integrated development envi-
ronment (IDE) are well suited. They help to design continuous
processes.

The experiences we gained in the project suggest that it is a
successful strategy to carefully calculate the effort required for
changes to tools. This effort commonly is preferable to the dis-
advantages of adapting the processes. Besides, customizing
tools offer the chance to reflect on the testing processes and
optimize them. In the long run, even small changes have great
effect. Irregularities caused by hardly changeable tools are like-
ly to cut productivity. Moreover, when tools are not customized
or no tools are introduced at all due to the strategy of saving the
effort of selecting and adapting them, the company might loose
competitiveness. Improving processes and using cutting-edge
tools will improve testing and raise the quality of the developed
software.

VI. CONCLUSION

In this paper we presented results from a project that aimed
at finding best practices for software development and especial-
ly testing. We described its background, the research approach
and the framework used to categorize recommendations. Out of
about 30 recommendations found and classified with the
framework, we presented five recommendations that make
novel contributions to the technical dimension of how testing
can be done in enterprises.

Using a modern IDE greatly supports development. It ena-
bles testing to focus on finding bugs rather than on eliminating
mistakes that entered the code by neglectfulness. Using test
case management and a test case database leads to a structured
testing process. Moreover, it supports regression testing.
Alignment of testing and productive systems prevents many
problems that arise due to incompatibilities and scaling issues.
Integrating testing and development tools requires continuous
governance but increases testing performance and efficiency.
Consequently, regression tests can be run much more efficient-
ly. Finally, customizing tools to fit with processes should be

preferred over changing processes in order to be able to work
with tools.

We found a discrepancy of testing knowledge described in
the literature and the reality of testing in enterprises. To give an
example: Even practitioners literature such as [1] distinguishes
between black box and white box testing. However, hardly any
of the project participants made an explicit distinction like this.
Not a single participant had ever heard of gray box tests. The
above described recommendations might thus be partly found
in the literature— but many companies have not implemented
them, yet. Apparently, literature is inaccessible for some practi-
tioners, not practically usable in the everyday work, or un-
known [30]. This has also been found for organizational as-
pects of testing [20]. Research progress and testing improve-
ments that were hoped for [14] seem to have reached the indus-
try only partly.

Developing software of high quality is not a mere economic
obligation. Neither is it just needed to improve the idea the
general public has about software quality. Preventing that soft-
ware harms humans in any way is an ethical obligation [11].
We thus encourage further research in both organizational areas
(i.e. information systems research) and in the technical field
(e.g. computer science and formal methods). Moreover, we
encourage enterprises to reach a culture of testing instead of
perceiving testing as a costly delay in the development process.
We therefore propose a structured approach and to keep re-
search bound to cooperation with enterprises.

VII. FUTURE WORK

The project this work is based on is continued in order to
evaluate the recommendations found. Future work will contain
a discussion of the results with practitioners and probably a
quantitative study. Ideally, a study could be done on a national
or even global scale. It could not only try to capture the success
of the recommendations but check how the literature on soft-
ware testing is used.

It is without question that a quantitative analysis would per-
fectly augment the qualitative approach. For example, measur-
ing a return-on-investment (ROI) of the improvements made
would be ideal [28]. Without quantitative data it is hard to
prove that a recommendation is effective and efficient. Deriv-
ing best practices is a first step and was very laborious due to
the problematic nature of software testing. Verifying results
implemented by companies was identified as a further step.
Design science—the research approach of our choice—is in-
crementally iterative [15]; adding additional rigor and verifying
results actually implemented by companies was identified as a
further step.

ACKNOWLEDGMENT

The author would like to thank Herbert Kuchen for discuss-
ing the recommendations and for his continuous support and
encouragement. Special thanks go to the companies that partic-
ipated in the project. It would not have been possible without
their willingness and help.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 1, No. 4, October 2010

10 | P a g e

http://ijacsa.thesai.org/

REFERENCES

[1] R. Black. Pragmatic Software Testing. Wiley, Indianapolis, 2007.

[2] R. Black. Managing the Testing Process. Wiley, Indianapolis, 3rd
edition, 2009.

[3] J. Bloch. Effective Java. Prentice Hall, Upper Saddle River, 2nd edition,

2008.

[4] F. P. Brooks, Jr. The mythical man-month (anniversary ed.). Addison-
Wesley, Boston, 1995.

[5] Y. E. Chan and B. H. Reich. IT alignment: what have we learned?

Journal of Information Technology, 22, 2007.

[6] R. N. Charette. Why software fails. IEEE Spectrum, 42(9):42–49, 2005.

[7] M. F. Cowlishaw. Lexx—a programmable structured editor. IBM J. of

Research and Development, 31(1):73–80, 1987.

[8] E. Dijkstra. The humble programmer. Communications of the ACM,
15:859–866, 1972.

[9] Eclipse marketplace. Online: http://marketplace.eclipse.org/ (Access

date: 14 September 2010).

[10] R. L. Glass: Computing Calamities: Lessons Learned from Products,
Projects, and Companies that Failed, Prentice Hall, Upper Saddle River,

1999.

[11] D. Gotterbarn and K. W. Miller. The Public is the Priority: Making
Decisions Using the Software Engineering Code of Ethics. Computer,

42(6), 66–73, 2009.

[12] T. Groetker, U. Holtmann, H. Keding, and M. Wloka. The Developer’s
Guide to Debugging. Springer, 2008.

[13] D.-J. de Grood. TestGoal: Result-Driven Testing. Springer, Heidelberg,
2008

[14] M. J. Harrold. Testing: a roadmap. In ICSE – Future of SE Track, pages

61–72, New York, 2000. ACM.

[15] A. R. Hevner, S. T. March, J. Park, and S. Ram. Design science in
information systems research. MIS Quarterly, 28(1), 2004.

[16] IEEE. IEEE Std 829-2008: IEEE standard for software ans system test

documentation. New York, 2008.

[17] C. Jones. Software Quality: Analysis and Guidelines for Success.
Thomson Learning, 1997.

[18] D. Kopec and S. Tamang. Failures in complex systems: case studies,

causes, and possible remedies. SIGCSE Bulletin 39(2):180–184, 2007.

[19] W. E. Lewis. Software Testing and Continuous Quality Improvement.

Auerbach, Boston, 3rd edition, 2008.

[20] T. A. Majchrzak. Best practices for the organizational implementation of
software testing. In Proc. of the 43th Annual Hawaii Int. Conf. on

System Sciences (HICSS-43). IEEE Computer Society, 2010.

[21] T. A Majchrzak. Status Quo of Software Testing - Regional Findings
and Global Inductions. Journal of Information Science and Technology,

7(2), The Information Institute, 2010.

[22] T. A. Majchrzak. Best Practices for Technical Aspects of Software
Testing in Enterprises. In Proc. of the Int. Conf. on Information Society

(i-Society 2010), IEEE Computer Society, 2010.

[23] T. A. Majchrzak and H. Kuchen. Handlungsempfehlungen für
erfolgreiches Testen von Software in Unternehmen. In J. Becker,

H. Grob, B. Hellingrath, S. Klein, H. Kuchen, U. Müller-Funk, and

G. Vossen, editors, Arbeitsbericht Nr. 127. Institut für
Wirtschaftsinformatik, WWU Münster, 2010.

[24] S. Meyers. Effective C++: 55 SpecificWays to Improve Your Programs

and Designs. Addison-Wesley, 3rd edition, 2005.

[25] J. Morrison and J. George. Exploring the software engineering
component in MIS research. Commun. ACM, 38(7):80–91, 1995.

[26] M. D. Myers. Qualitative research in information systems. MIS

Quarterly, 21(2):241–242, 1997.

[27] NASA. Mars climate orbiter mishap investigation board phase I report,
1999.

[28] P. Naur and B. Randell. Software Engineering: Report of a conf. spon.
by the NATO Science Committee, Garmisch, Germany. Scientific

Affairs Division, NATO, 1969.

[29] W. J. Orlikowski and C. S. Iacono. Research commentary: Desperately
seeking the ―IT‖ in IT research—a call to theorizing the IT artifact. Info.

Sys. Research, 12(2):121–134, 2001.

[30] T. Parveen, S. Tilley, and G. Gonzalez. A case study in test
management. In ACM-SE 45: Proceedings of the 45th annual southeast

regional conference, pages 82–87, New York, 2007. ACM.

[31] H. A. Simon. The sciences of the artificial. MIT Press, Cambridge, 3
edition, 1996.

[32] S. Slaughter, D. Harter, and M. Krishnan. Evaluating the cost of

software quality. Commun. ACM, 41(8):67–73, 1998.

[33] Sun Microsystems, Inc. Code Conventions for the Java Programming
Language. Online: http://java.sun.com/docs/codeconv/ (Access date: 14

September 2010).

[34] H. Sutter and A. Alexandrescu. C++ Coding Standards. Addison-

Wesley, 2004.

[35] J. Watkins. Testing IT: an off-the-shelf software testing process.
Cambridge University Press, New York, 2001.

[36] R. K. Yin. Case Study Research: Design and Methods. Sage

Publications, London, 3rd edition, 2002.

AUTHORS PROFILE

Tim A. Majchrzak is a research associate at
the Department of Information Systems

of the University of Münster, Germany,
and the European Research Center for

Information Systems (ERCIS). He
received a BSc and MSc in Information

Systems from the University of Münster
and currently finishes his PhD. His

research comprises both technical and
organizational aspects of software

testing. He has also published work on
several other interdisciplinary IS topics.

http://marketplace.eclipse.org/

