
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 1, No. 5, November 2010

14 | P a g e

http://ijacsa.thesai.org

A Model for Enhancing Requirements Traceability

and Analysis

Ahmed M. Salem

Department of Computer Science, California State University, Sacramento

Sacramento, CA 95819

 916-278-3831 – Fax 916-278-6774

salema@ecs.csus.edu

Abstract—Software quality has been a challenge since the

inception of computer software. Software requirements

gathering, analysis, and specification; are viewed by many as the

principle cause of many of the software complex problems.

Requirements traceability is one of the most important and

challenging tasks in ensuring clear and concise requirements.

Requirements need to be specified and traced throughout the

software life cycle in order to produce quality requirements. This

paper describes a preliminary model to be used by software

engineers to trace and verify requirements at the initial phase.

This model is designed to be adaptable to requirement changes

and to assess its impact.

Keywords- Requirements Traceability; Software Faults; Software

Quality.

I. INTRODUCTION

Consistent and traceable software requirements are critical
elements in today’s complex software projects. Requirements
include business requirements, user requirements, functional
requirements, non-functional requirements, and process
requirements. It is well documented such that most of the errors
in software development occur in the requirements phase. With
the complexity of software systems and the interdependencies
of requirements, requirement traceability models and tools
become very critical for improving software fault detection and
the overall software quality.

Requirements traceability can be defined as the ability to
describe and follow the life of a requirement, in both a forward
and backward direction, i.e. from its origins, through its
development and specification, to its subsequent deployment
and use, and through periods of ongoing refinement and
iteration in any of these phases. The requirements traceability is
a characteristics of a system in which the requirements are
clearly linked to their sources and to the artifacts created during
the system development life cycle based on these requirements.
[10]

 It provides an efficient method for the detection of
software faults, which are the static defects that occur due to an
incorrect state or behavior of the system. Through traceability
we can track which part of the code is linked to the
requirements and which is not, this helps us remove
discrepancies if any. These discrepancies if not detected can be
really expensive at later stages and can lead to faults and
failures.

 The benefits of requirements traceability are the most
obvious when the system changes. When high-level
requirements change, it is implied that lower-level objects need
to be changed. This issue alone justifies the need for
requirements traceability. Testing and software quality also
benefit greatly from requirements traceability. If a low-level
requirement should fail during requirements testing, the
software engineer would know which high-level requirements
will not be met. Furthermore, if there is a defect, all of the
segments that will be affected based on the requirements
traceability can be identified, documented and reviewed.

II. BACKGROUND

Requirements engineering has played a vital role in the
development of software in recent years. Ever since,
requirements traceability has become an important issue as it
can help provide answers to a variety of questions, such as: "Is
the implementation compliant with the requirements?" or "Is
the implementation even complete?" [2]. Many such questions
can be answered depending on the completeness of the
traceability links between the requirements and other software
artifacts. However, in practice, a variety of traceability
problems occur which generally include the use of informal
traceability methods, failure in the cooperation between people
responsible for coordinating traceability, difficulty in obtaining
necessary information in order to support the traceability
process, and lack of training of personnel in traceability
practices.

 To deal with such challenges and the additional burden of
today's globally distributed development environment, some
researchers have introduced an Event-Based method [1]. In this
approach, the author proposes a methodology in which
requirements and other software engineering artifacts can be
linked through publish-subscribe relationships. This type of
relationship is widely used in systems such as news service
subscriptions and hardware management. In this Event-Based
Traceability (EBT) system, requirements and other software
artifacts that may induce changes are considered to be
publishers while artifacts dependent on such changes act as
subscribers. Hence the requirements are published and the
performance models subscribe to the system.

A change in requirements will cause events to be published
to an event server, which in turn will send out notifications to
all dependent subscribers. The ―publish-subscribe‖ model used

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 1, No. 5, November 2010

15 | P a g e

http://ijacsa.thesai.org

within EBT allows automatic linkage and validation of values
within the requirements that are established with the EBT
system. The EBT system then acts as an automated change
notification agent. When changes are made, the affected
artifacts and models are logged, and the developer can
determine which artifacts to update, and which to ignore. This
is done based on factors such as the criticality of the
requirement changed. The developers, can then make the
necessary changes. The major advantage of this system is its
support for managing changes as well as its ability to support
the identification and maintenance of artifacts. Another
research project presented the Information Retrieval (IR)
approach as the key to recover traceability links between code
and documentation [3]. This research introduces a
methodology where Information Retrieval techniques are used
to link artifacts to each other as well as requirements, through a
mechanism that queries the set of artifacts. Next, by using an
indexing process, artifact information and semantics are parsed
and used in order to rank each artifact on its relevance to a
given query. The rankings are then used to create links between
artifacts, which are returned to the user. The user can use the
rankings in order to understand the relationships between
artifacts and even requirements in order validate the links that
have been generated by the system.[8] Establishing these
traceability links can help support tasks such as: program
comprehension, maintenance, requirement tracing, impact
analysis and reuse of existing software[5]. The premise of this
research relies on the probability that most programmers tend
to use meaningful names for program items, such as: function
names and variables. Concepts implemented in the code are
suggested by the use of such names. By using such
correlations, queries can be constructed from modules in the
source code. This proposed model concludes that IR provides a
practical solution to the problem of semi-automatically
recovering traceability links. In a different research work titled
―Rule-Based Generation of Requirements Traceability
Relations‖, the authors address the challenges that arise when
analyzing requirements [6]. This approach uses traceability
rules to support the automatic generation of traceability
relations. The generation of such relations is based on the
requirement-to-object-model traceability rules. They help to
trace the requirements and use case specification documents to
an analysis object model, and inter-requirements traceability
rules to trace requirement and use case specification documents
to each other.[9] Throughout this approach, the authors focus
on the challenge that requirements are expressed in natural
language and often contain ambiguity.

Other new models have also been proposed to support the
ideology of requirement traceability, one such model is the
Conceptual Trace Model. It consists of three parts; A fine-
grained trace model, which determines the types of
documentation entities and relationships to be traced to support
impact and implementation of system requirements changes; A
set of process descriptions that describe how to establish traces
and how to analyze the impacts of changes and the third part is
tool support that provides (semi-) automatic impact analyses
and consistency checking of implemented changes. [7] Our
proposed model shares some of these concepts, but with a
unique approach to requirement traceability.

III. PROPOSED TRACEBILITY MODEL

The proposed model is an extension to a previously
suggested traceability model [4] which allows the software
developer to achieve traceability at the source code level. The
model focused on keeping track of the sets of working modules
specific to satisfying the requirements. This model is the base
for our extension and the new model thus offers a number of
enhancements and features. There are two types of users for
requirements traceability, high-end users and low-end users.
Low-end users tend to consider traceability only because it is
required, while high-end users recognize the importance of
traceability [4]. This new model is simple for low-end users,
yet comprehensive for high-end users.

It is composed of a Traceability Engine Component (TEC),
a Traceability Viewer Component (TVC), and a Quality
Assurance Interface (QAI). The first component, the TEC, is
used to assist developers correlate source code elements with
the software requirements. It functions by first reading in the
requirements data from the requirements database, analyzes the
source code and corresponding requirements, and creates its
own internal traceability matrix. The TEC supplies this data to
the QAI for evaluation, and is then updated with the results.
The data that the TEC receives and the results of its own
analysis are kept in a Traceability Database where it is
accessible for re-evaluation at each stage of software
development.

 The TEC also contains an interface that enables the
developer to indicate flags relating each piece of code or file to
a specific requirement. When the code is checked into the CVS
(Concurrent Version System), a version control system which
is used to record source code history and documents, the TEC
detects any change that has been made, and will prompt the
developer to indicate the specific requirements related to each
piece of code. Once all these relationships have been entered,
the QAI is notified that there is data that needs to be verified. In
addition, once the QAI has completed its process, the TEC will
be able to determine which pieces of code do not have
corresponding requirements and which requirements have no
corresponding code.

The TVC acts as the 'client' portion of the proposed model.
The TVC provides the software engineer with a unique way to
view all the information that the TEC has gathered. It will have
the ability to provide custom data such as: a detailed list of all
requirements, reports regarding which requirements have been
met and in which modules they are implemented, and the
results of the verification and validation completed by the QAI.

The business analyst must insert the requirements into a
spreadsheet, which is then imported into the database tables
using a specialized tool. The interface added is called the
Quality Assurance Interface (QAI), which a quality assurance
specialist may use to verify that the code being checked meets
the corresponding requirements. The importing of requirements
and the QAI will be discussed in greater detail in the sections to
follow.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 1, No. 5, November 2010

16 | P a g e

http://ijacsa.thesai.org

Figure 1: Proposed Traceability Model

TABLE 1: Requirements Flags

Flag Name Description Comments

NCF Code Not Checked Flag File name/line number and requirement set should be

evaluated

CVF Checked and Valid Flag Signifies a good file name/line number and

requirement set

CNF Checked and Not Valid Flag Developer of the code is working on his/her code to

satisfy the requirement

CNFDATA Checked and Not Valid Flag (DATA Error) Developer of the code is working on his/her code to

fix the data error and satisfy the requirement

CNFLOGIC Checked and Not Valid Flag (Coding Bug) Developer of the code is working on fixing a bug in

his/her code to satisfy the requirement

CRF Code with no Requirement Flag There is a significant amount of code that is not

assigned a requirement match

RCF Requirement with no Code Flag A certain requirement has not been met with any of

the source code from the project

RCFF Requirement Changed Flag Indicates that the requirement has been modified

RRCF Related Requirement Changed Flag Indicates that a requirement related to this requirement

has been changed

Spreadsheet of

Requirements

Tool to Import

Data

TVC generates reports

and displays requirements

status to developers as a

Background Service

Developer Writes

Module/Function

Developers check

in files to CVS

QAI performs

verification and

validation and

issues proper flags

Traceability

Database

TEC Processes

Requirements Data

TEC updates the

Traceability

Database (file table

and QA table)

TEC detect the changes

from the checked in

files and prompt for

requirements number

Requirements Table

File/Code Table

QAI Table

Flags Code Table

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 1, No. 5, November 2010

17 | P a g e

http://ijacsa.thesai.org

A. Quality Assurance Interface (QAI)

The proposed model provides a mechanism to address the
issue of validating and verifying that the requirements are
actually being met. This model allows the software engineer to
choose either to add the tags directly to the source code, or, to
choose which requirement is being met from a list of all
requirements. The QAI will be able to perform aspects of
verification and validation such as to ―double-check‖ that a
requirement has actually been met. The QAI performs a dual
job, which is to insure that the requirements are accomplished,
and to report requirements or parts of source code that do not
match.

The table (See table 1) shows the requirements flags that
are used in the QAI to indicate the status of the verification and
validation of the requirements and the code. When the source
code is checked into a version control system (CVS), a table
will be populated with all the file names and line numbers
which satisfy certain requirements. Each of these file name/line
number and requirement matches are assigned a flag, NCF,
which signifies that they have not been verified by the QAI. In
addition to this, each requirement is assigned an NCF flag to
indicate that it does not have any corresponding code that
meets the requirement or that the validity of the correlation has
not been verified. To insure that the requirements are truly met,
the QAI will parse this table and go through a six step process
to determine if the requirements have been met.

First, the QAI will look up the requirement from the
database in the initial list of requirements that were given for
the project. Second, it will read in the description of the
requirement that has been linked with the requirements in the
database. Third, the QAI will find the file and the line from the
file name/line number combination from the match. Fourth, it
will read and evaluate the source code. Fifth, it will determine
if the match is a good match and if the requirement is actually
met. Lastly, the sixth step is to create a flag for this file
name/line number and requirement match that signifies that the
match has been checked. Furthermore, it will indicate that
either the requirement has been accomplished or it has not been
sufficiently met. If it has not been met an email will be sent to
the developer with the message that the source code should be
re-done.

The second major task of the QAI is to handle the flags for
the software requirements. This will help solve the problem of
reporting which requirements or parts of the source code do not
have matches. There are nine different flags that can be
assigned; see Table 1. The first of these flags is the Not
Checked flag (NCF). This signals to the QAI that the file
name/line number and requirement set should be evaluated as
outlined above. The second flag is the Checked and Valid flag
(CVF); this signifies that a file name/line number and
requirement set are valid. The third flag is the Checked and Not
Valid flag (CNF); this means that the developer of the code is
working on the code to satisfy the requirements. The fourth
flag is the Checked and Not Valid Flag as a result of a Data
Error (CNFDATA); this indicates that the developer needs to
work on the code to fix the data error in order to fulfill the
requirement. The fifth flag is the Checked and Not Valid Flag

as a result of a coding bug (CNFLOGIC); this indicates that
there is a bug in the code that needs to be resolved before the
requirement can be met. The sixth flag is the Requirement with
No Code flag (RCF); this signifies that a certain requirement
has not been met with any of the source code from the project.
This should signal that the requirement needs to be completed.
The seventh flag is the Code with No Requirement flag (CRF);
this indicates that there is a significant amount of code that is
not assigned a related requirement has changed since it was
imported into the database.

The QAI also has the ability to handle changes made to the
requirements. When a requirement is changed or simply
modified, the corresponding flag field in all records in the QAI
table containing this requirement will be reset to the
Requirement Changed Flag (RCHF). In addition, all
requirements listed in the related requirements field will have
their flag in the QAI reset to Related Requirement Changed
Flag (RRCF). With the use of these two flags, when
requirements change, only the code that could possibly relate to
the requirements will need to be reviewed to ensure that it still
satisfies the new requirement. This model enables changes to
be made to the requirements without a need for all
requirements and code to be rechecked. Only the changed
requirement and requirements that relate to it need to have their
corresponding code reviewed by the QAI.

B. Traceability Database Tables

The Traceability Database contains five tables. The
Requirements Table (See table 2) is populated with the
requirements that were imported from the business analyst’s
spreadsheet. The table will contain the following fields: the
requirements key, which is the primary key for the table, the
person adding the requirement, and a description of the
requirement.

The related requirement field contains any requirements
that are directly related to the listed requirement; any changes
made to the requirement or its related requirements can be
indicated in the QAI table (See table 5).

The Code/File Change Table (See Table 3) contains the
following fields: the code key, which is the primary key for the
table, the file path, the file name, the method name, the class
name, the date the change was entered, and the name of the
coder.

When the coder checks the code into requirements without
a need for all requirements and code to be rechecked. Only the
changed requirement and CVS, changes that have been made
are tracked by assigning a new code key. For example, if
Door.cs and abc.config, the new record will look like table 2.
After the new record has been added, the TEC will prompt for
the requirements key from the requirements table (Table 2).

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 1, No. 5, November 2010

18 | P a g e

http://ijacsa.thesai.org

TABLE 2: Requirements Table

TABLE 3: Code/File Change Table

The Code Flags table (See Table 4) contains fields for the
Flag Key, which is the primary key, the flag name, the
description of the flag, and the purpose of the flag. When flags
are assigned in the QAI table (See table 5), the Flag Key is
used; the Flag Name is used for display purposes only. In
addition, by using the key in place of the name, it will be more
functional for purposes such as grouping records. The QAI can
also add custom-defined code flags to the system.

The QAI table (Table 5) is a link between the Requirements
records and the Code/File records. After a new record has been
added to the Code/File Change table, the TEC will prompt for a
requirement key to correspond to the entry. Once it has been
entered, the TEC will create a new record in the QAI table to
show which files or lines of code correspond to which
requirements. he fields in this table are: the QAIKey, the
primary key for the relationship; the requirements key, a
foreign key to the Requirements table; the Code/File Key, a

foreign key to the Code/File Change Table; the Flag Key, a
foreign key to the Code Flags Table (discussed later); the date
the record was entered into the database; and the person who
performed the QA. Based on table 2, once the TEC has
received the requirements key input, a table will be displayed
as in table 4. The QA analyst then performs the verification and
validation, and the flags will be assigned to each record
through the QAI interface. After this has been completed, the
TEC gathers the data and imports it into the QAI table as
reflected in table 6.

RequirementKey (Primary Key) AddedBy Description

Related Requirements

1000 BA1 Display Name in the header. 1010

1001 BA2 Display Date. 1010

1002 BA1 Be able to select style. 1011

1003 BA1 To store names. 1012, 1013

1004 BA1 To change names. 1012, 1013

1005 BA2 To delete names. 1012, 1013

CodeKey

(Primary Key)

FilePath FileName Method Name Class Name Date Coded by

1000 \Main\Project1\ Display.cs GetName()

Display 10/1/06

Coder1

1001

\Main\Project1\

Render.cs

GetLineNumber()

Render

10/12/06

Coder2

1002

\Main\Project2\

Cashier.cs

NULL

Cashier

10/13/06

Gary

1003

\Main\Project1\

Interface.cs

NULL Interface

10/12/06

Coder4

1004

\Main\Project3\

Window.cs

NULL

Window

10/13/06

Coder5

1005

\Main\Project5\

Door.cs

Main()

Door

10/18/06

Gary

1006

\Main\

abc.config

NULL

NULL

10/18/06

Gary

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 1, No. 5, November 2010

19 | P a g e

http://ijacsa.thesai.org

TABLE 4: Code Flags Table

TABLE 5: QAI Table Default Entry

FlagKey

(Primary Key)

Flag

Description of Flag

Purpose

1000 NCF Code Not Checked

Flag

File name/line number and

requirement set should be evaluated

1001 CVF Checked and Valid

Flag

Signifies a good file name/line

number and requirement set

1002 CNF Checked and Not Valid

Flag

Developer of the code is working on

his/her code to satisfy the

requirement

1003 CNFDATA Checked and Not Valid

Flag (DATA Error)

Developer of the code is working on

his/her code to satisfy the

requirement

1004 CNFLOGIC Checked and Not Valid

Flag (Coding Bug)

Developer of the code is working on

his/her code to satisfy the

requirement

1005 CRF Code with no

Requirement Flag

There is a significant amount of code

that is not assigned a requirement

match

1006 RCF Requirement with no

Code Flag

A certain requirement has not been

met with any of the source code from

the project

1007 RCHF Requirement Changed

Flag

Indicates that the requirement has

been modified

1008 RRCF Related Requirement

Changed Flag

Indicates that a requirement related

to this requirement has been changed

QAIKey (foreign key

to Requirements

Table)

RequirementKey

(foreign key to

Requirements Table

)

Code/File (foreign

key to the Code File

Table)

Flag (foreign key to

Code Flags Table)

Date QA by

1001 1001 1001 1000 (NCF, Default) 10/1/06 QA1

1002 1001 1002 1000 (NCF) 10/12/06 QA1

1003 1001 1003 1000 (NCF) 10/13/06 Gary

1004 1001 1004 1000 (NCF) 10/12/06 QA1

1005 1002 1004 1000 (NCF) 10/13/06 QA2

1007 1003 1005 1000 (NCF) NULL NULL

1008 1004 1006 1000 (NCF) NULL NULL

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 1, No. 5, November 2010

20 | P a g e

http://ijacsa.thesai.org

TABLE 6: QAI Table after QAI is Performed

The TEC also has the ability to indicate which pieces of

code do not have corresponding requirements and which
requirements do not have corresponding code. The TEC
takes the keys from the Code/File Change table and the
Requirements table and verifies that each exists in a record
in the QAI table. If they do not exist, then a record is
created in the QAI table with a null value in the field of the
item that does not exist, as in the last record in table 6.

C. Populating the Database

Another advantage of this model is that it considers the
initial state of the database as shown in figure 1. But the
question that follows is: how does the database get
populated initially? Using a tool to fill the database with
requirements can be one technique. Most current Database
Management Systems such as SQL Server and Oracle, have
a specialized tool to allow the importation of data from
other types of file formats. One example is the Data
Transformation Service (DTS) that is available with the
more recent versions of SQL Server. This service allows
the user to import data using a convenient user interface in
the form of a wizard. Even though this wizard is
convenient, it is not likely that the business analysts will
have direct access to the database. Therefore they will not
be able to use this wizard and must list the requirements in
an organized manner. The business analysts will have to
give the data to the developers in a format that can be
imported into the database.

In general, business analysts are skilled in working with
spreadsheets. Therefore, the business analysts should list
the requirements in a spreadsheet with each row containing
one requirement. This spreadsheet will be comprised of the
following columns: requirement number, requirement
name, description of the requirement, and related
requirements. The requirement number must be unique and
can serve as a key. This number will be chronological and
the business analysts will be given a block of numbers from

the developer that he or she will be able to use for that
particular spreadsheet. The related requirements column
will give the requirement number for any requirements that
are related to it. This list of requirement numbers must be a
set of valid values that are separated by commas. This
would make it simple for the developer to parse these fields
and extract the requirement numbers. The columns in this
spreadsheet must be named as follows:

• RequirementKey,

• AddedBy

• RequirementName,

• Description,

• RelatedReqNumbers

The columns must have these names to maintain
database consistency and to allow the tool to recognize
which column in the spreadsheet corresponds to which
column in the database. There are tools available for SQL
Server, Oracle, MySQL, and Access to import data from
Excel spreadsheets, therefore spreadsheets created in
Microsoft Excel would be the most versatile.

IV. CONCLUSION AND FUTURE WORK

As previously noted, requirements traceability in the
early stages plays a crucial role in the software
development lifecycle. This model provides a very intuitive
and dynamic way of requirements traceability. It provides
a formal and measurable process to carry out traceability
which can really be critical in exposing the defects at very
early stages of the lifecycle. The suggested model
amalgamates the features of the event based tracking and
information retrieval tracking and adds new features in the
design which makes it a very efficient method for
requirement traceability. However, in order for this

RequirementKey (foreign

key to Requirements Table

)

Code/File (foreign key to

the Code File Table)

Flag (foreign key to Code

Flags Table)

Date QA by

1001 1001 1000 (NCF, Default) 10/1/06 QA1

1001 1002 1000 (NCF) 10/12/06 QA1

1001 1003 1000 (NCF) 10/13/06 Gary

1001 1004 1000 (NCF) 10/12/06 QA1

1002 1005 1000 (NCF) 10/13/06 QA2

1003 1005 1001 (CVF) 10/19/06 Dan

1004 1006 1003 (CNFDATA) 10/19/06 Dan

1005 NULL 1006 (RCF) 10/19/06 Dan

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 1, No. 5, November 2010

21 | P a g e

http://ijacsa.thesai.org

approach to be successful it does require commitment and
support from the quality assurance group. The proposed
model will prove beneficial to the software engineer and
the software quality assurance process and will help in
optimizing the process as a whole. The TEC, TVC, and
QAI components provide a very efficient way of tracking
and tracing requirements which can be quite tedious to
detect considering the complex nature of requirements and
its relationship. The Quality Assurance Interface can
facilitate the verification of the code to the requirements by
following a six-step process that we have prescribed. The
process ensures all the changes in the requirements are
accessed thoroughly and their impact are foreseen clearly.
Furthermore, a mechanism to import requirements into a
database was outlined with detailed account of all the
objects that will be used such as the tables . Finally, a
flagging procedure is designed using Requirements Flags to
provide traceability between the requirements and the
source code. The flagging procedure clearly demarcates
which parts of the code is linked to the requirements and
which are not. This preliminary model provides a simple
interface that allows developers to seamlessly locate the
correct requirements and link them to the correct source
code elements, thus providing a very dynamic and intuitive
method of requirement traceability during the software
development process.

Several directions for future work are possible. First and
foremost, a tool implementing this model and its
corresponding database will be useful in determining the
feasibility of the proposed system. Case studies need to be
conducted to further evaluate the effectiveness of such an
approach. Further add-ons to the TEC and TVC can be
done to make it more flexible and generic. The database
can be further developed to accommodate more flags and
features that helps in more detailed description of mapping
attributes. The QAI can be further developed to be more

dynamic and effective. Finally, it will be important to
incorporate the tracing of software design documentation
into this traceability model. The ultimate goal will be to
provide traceability over every software artifact of the
software development lifecycle.

REFERENCES

[1] Cleland-Huang, J., Chang, C.K., and Christensen, M. ―Event-based
traceability for managing evolutionary change‖. IEEE Transactions
on Software Engineering, Volume: 29, Issue: 9, Sept. 2003, Pages:
796 – 810.

[2] Requirements Tracing – An Overview. Retrieved on March 9, 2005,
from http://www.sei.cmu.edu/str/descriptions reqtracing_body.html

[3] Antoniol, Giuliano, Gerardo Canfora, Gerardo Casazza, Andrea De
Lucia, and Ettore Merlo.―Recovering Traceability Links between
Code and Documentation‖. IEEE Transactions on Software
Engineering, VOL. 28, NO. 10, OCTOBER 2002

[4] Ahmed Salem and Johnny Lee ―Requirements Traceability Model
for the Coding Phase‖, Conference on Computer Science, Software
Engineering, Information Technology, E-Business and
Applications, 2004

[5] Ramesh, Balasubramaniam. ―Factors Influencing Requirements
Traceability Practice‖. Association for Computing Machinery, Inc.,
1998.

[6] Spanoudakis, George, Andrea Zisman, Elena Perez- Minana, and
Paul Krause. ―Rule-based generation of requirements traceability
relations‖. Software Engineering Group, Department of Computing,
City University, Northampton Square, August 2003.

[7] Mirka Palo. "Requirements Traceability", Department of Computer
Science, University of Helsinki, October 2003.

[8] Grant Zemont. ―Towards Value-Based Requirements Traceability‖,
DePaul University, Chicago Illinois, March 2005 .

[9] George Spanoudakis, Andrea Zisman, Elena Pérez-Miñana and Paul
Krause. “Rule-based generation of requirements traceability
relations‖, Journal of Systems and Software, July 2004.

[10] Gotel and A. Finkelstein. ―An Analysis of the Requirements
Traceability Problem,‖ Proceedings of the First International
Conference on Requirements Engineering, Colorado Springs, April
1994

http://www.sei.cmu.edu/str/descriptions%20reqtracing_body.html

