
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 1, No. 6, December 2010

66 | P a g e
http://ijacsa.thesai.org/

Characterization and Architecture of Component

Based Models

Er.Iqbaldeep kaur (Author)
Assistant Professor ,Department of

Computer Science and Engineering,

Rayat and Bahra Institute of

Engineering and Bio-Technology

,Kharar, India

(eriqbaldeepkaur@gmail.com)

Dr.P.K.Suri
 Dean and Professor, Computer

Science and Application Department,

Kurukshetra University,

Kurukshetra, India

(pksuritf25@yahoo.com)

Er.Amit Verma
Assistant Professor , Department of

Electronics and Communication

Engineering, Rayat and Bahra

Institute of Engineering and Bio-

Technology,Kharar,India

(ervermaamit@gmail.com)

Abstract—Component based Software Engineering is the most

common term nowadays in the field of software development.

The CBSE approach is actually based on the principle of ‘Select

and Use’ rather than ‘Design and Test’ as in traditional software

development methods. Since this trend of using and ‘reusing’

components is in its developing stage, there are many advantages

and problems as well that occur while use of components. Here is

presented a series of papers that cover various important and

integral issues in the field concerned. This paper is an

introductory research on the essential concepts, principles and

steps that underlie the available commercialized models in CBD.

This research work has a scope extending to Component retrieval

in repositories and their management and implementing the

results verification.

Keywords- Components, CBSD, CORBA, KOAYLA, EJB,
Component retrieval, repositories etc.

I. INTRODUCTION

The advantages of component based development include

lesser development time, lower costs, reusability and better

modification. A component is the basic building block of an

application or system created with CBD. Generally, a

component can be defined as an independent and replaceable

part of a system that fulfills a clear function. It works in the

context of a well defined architecture and can communicate

with other components through its interfaces (Fig. 1).

Although the basic principle of ‗Plug and play‘ is very

promising, but it also brings in some practical difficulties

faced by the stakeholders involved. For instance, when we buy

a component, we do not know exactly about its maintenance,

the security arrangements and the most important its behavior

when integrated with other components. There exist some

models in the market that, to an extent, provide us with some

standards and interfaces to aid the intercommunication process

of components within integration. The models enable the

independently designed components to be deployed and ease

the communication between them. Rightly stated, it can be

said that a component model supports components by forcing

them to conform to certain standards and allows instances of

these components to cooperate with other components in this

model (fig. 2). In the absence of component models, there

would be obvious non-cooperation among independently

developed components, so the aim of ‗independent

deployment and assembled integration‘ of components

Fig. 1 Component and its features

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 1, No. 6, December 2010

67 | P a g e
http://ijacsa.thesai.org/

Fig. 2 Component Models provide interface to components

would not be realized. Thus, these models play a significant

role in making the real goal[26-28] of CBD achieved. In the

next sections, a detailed characteristic listing has been done for

the main component models in market.

II. EXISTING COMPONENT MODEL(BACKGROUND &

RELATED WORK)

The cornerstone of any CBD methodology is its underlying

component model which defines what components are, how

they can be constructed, how they can be assembled[1].

Component-based approach has shown considerable successes

in recent years in many application domains like Distributed

and web-based systems, desktop and graphical applications etc.

In these domains the general-purpose component technologies,

such as COM, .NET, EJB, J2EE are used [12]. According to

[5], there are some commercial players involved in the

software component revolution, such as BEA, Microsoft, IBM

and Sun. [5] also states that among the component

infrastructure technologies that have been developed, three

have become somewhat standardized: OMG's CORBA,

Microsoft's Component Object Model (COM) and Distributed

COM (DCOM), and Sun's JavaBeans and Enterprise

JavaBeans .

Most of the literature contains description about three major

component models viz, OMG‘s CORBA, SUN‘s EJB and

Microsoft‘s COM. The present work includes these three and

some other less known models that are still maturing. At

present there are various component models that are being

used. These are shown pictorially in figure 3. Some

approaches, such as Visual Basic Controls (VBX), ActiveX

controls, class libraries, and JavaBeans, make it possible for

their related languages, such as Visual Basic, C++, Java and

the supporting tools to share and distribute application pieces.

But all of these approaches rely on certain underlying services

to provide the communication and coordination necessary for

the application. The infrastructure of components, called a

component model, in fact, acts as the "plumbing" that allows

communication among components [9].

Fig.3 Component Models in Market

Generally Component Models work in three different

service categories as follows: Basic, Distributed & Enterprise

For example, the basic services include the simple component

model version like COM, CORBA or EJB. Similarly,

Distribution is provided[32-33] with a communication

protocol that has been added to the basic component model.

III. COMPONENT OBJECT MODEL

It provides platform-dependent, based on Windows and

Windows NT, and language-independent component based

applications. COM defines how components and their clients

interact. This interaction is defined such that the client and the

component can connect without the need of any intermediate

system component. Specially, COM provides a binary

standard that components and their clients must follow to

ensure dynamic interoperability. This enables on-line software

update and cross-language software reuse [7].The following

features characterize COM model:

• A model for designing components that have multiple

interfaces with dynamic binding

• COM is an open standard, with main platform as

Microsoft Windows

• Interfaces are the only means for components to

expose themselves

• The interfaces are binary which provide the obvious

ease to implement the component in multiple programming

languages such as C++, Visual Basic and Java.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 1, No. 6, December 2010

68 | P a g e
http://ijacsa.thesai.org/

• A COM component can implement and expose

multiple interfaces

 COM helps client to locate server components and

desired interfaces by establishing connection between

client and server.

 Interfaces [35-36] are defined as unchangeable units

(A basic COM rule is that one cannot change an

interface when it has been released), hence solving

the interface versioning problem. Each time a new

version of the interface is created a new interface will

be added instead of changing the older version.

DCOM is the protocol that is used to make COM location

transparent. A client talks to a proxy, which looks like the

server and manages the real communication with the server.

[3] has stated on DCOM , the extension of the Component

Object Model (COM) as follows. Distributed COM (DCOM)

is a protocol that enables software components to

communicate directly over a network in a reliable, secure, and

efficient manner.

DCOM is designed for use across multiple network

transports, including Internet protocols such as HTTP. When a

client and its component reside on different machines, DCOM

simply replaces the local inter-process communication with a

network protocol. Neither the client nor the component is

aware the changes of the physical connections. COM+ is an

extension to COM with technologies that supports various

additional services like transactions, directory service, load

balancing and message queuing. COM+ is implemented to

connect the clients to the business logic, through an Internet

Information Server (IIS) or DCOM, as shown in figure 4.

Fig.4 COM Architecture

 The business logic uses ActiveX Data Objects (ADOs) to

access the data in the databases.

IV. ENTERPRISE JAVA BEANS(EJB)

U In accordance with [3], Java platform offers an efficient

solution to the portability and security problems through the

use of portable Java byte codes and the concept of trusted and

non-trusted Java applets. Java provides a universal integration

and enabling technology for enterprise application

development, which includes:

 Interoperating across multivendor servers;

 Propagating transaction and security contexts;

 Servicing multilingual clients; and

 d)Supporting ActiveX via DCOM/CORBA

bridges.

[8] has mentioned that the JavaBeans component

architecture supports applications of multiple platforms, as

well as reusable[24],[35], client-side and server-side

components. JavaBeans and EJB extend all native strengths of

Java including portability and security into the area of

component-based development. The portability, security, and

reliability of Java are well suited for developing robust server

objects independent of operating systems, Web servers and

database management servers. Sun‘s Java-based component

model consists of two parts:

 JavaBeans for client-side component development

 Enterprise JavaBeans (EJB) for the server-side

component development.

The following are the main features of EJB: EJB is part of

the Java 2 Platform Enterprise Edition (J2EE) which includes

remote method invocation (RMI), naming and directory

interface (JNDI), database connectivity (JDBC), Server Pages

(JSPs) and Messaging services (JMS). Fig. 5 shows the

architectural style of EJB used in a three-tier application. EJB

is designed so it can run together

Fig 5 EJB Architecture

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 1, No. 6, December 2010

69 | P a g e
http://ijacsa.thesai.org/

with CORBA and access CORBA objects easily.

V. COMMON OBJECT REQUEST BROKER

ARCHITECURE (CORBA)(CURRENT

TECHNOLOGY USED)

The Common Object[25],[29] Request Broker

Architecture[30],[34] (CORBA) is a standard that has been

developed by the Object Management Group (OMG) in early

nineties. The OMG provides industry guidelines and object

management[31]specifications to supply a common

framework for integrating application development. Primary

requirements for these specifications are reusability[21-

24],[35] portability and interoperability of object based

software components in a distributed environment. CORBA is

part of the Object Management Architecture (OMA)[31]

which covers object services, common facilities and

definitions of terms. Object services include naming,

persistency, events, transactions and relationships.

The following are the primary working principle of OMG‘s

CORBA:

• The most important part of a CORBA system is the

Object Request Broker (ORB).

• An object request broker (ORB) provides the basic

mechanism for transparently

• Requests can be made through the ORB without

regard to the service location or implementation.

• Objects publish their interfaces using the Interface

Definition Language (IDL)

• Objects are stored in an interface repository where

they can be found and activated on demand from the clients.

• The stubs and proxies are generated from the IDL

specification

 According to [3], CORBA manages details of component

interoperability. Also CORBA is widely used in Object-

Oriented distributed systems[6].

 VI. LESS POPULAR COMPONENT MODEL TECHNOLOGIES

SOFA SOFA 2 KOALA KOBRA

As stated by [13], the component model SOFA is a part of

SOFA project (Software Appliances). It is a software system is

described as a hierarchical composition of primitive and

composite components. A component is an instance of a

template, which is described by its frame and architecture. The

frame is a "black-box" specification view of the component

defining its provided and required interfaces. Primitive

components are directly implemented by described software

system they have a primitive architecture[37]. The architecture

of a composed component is a "grey-box" implementation

view, which defines first level of nesting in the component. It

describes direct subcomponents and their interconnections via

interfaces. The connections of the interfaces can be

realized[38] via connectors, implicitly for simply connections

or explicitly. Explicit connectors are described in a similar

way as the components, by a frame and architecture. The

connector frame is a set of roles, i.e. interfaces, which are

compatible with interfaces of components.

SOFA 2 is a component system employing hierarchically

composed components. It is a direct successor of the SOFA

component model.

KOALA

Having most of its uses within Philips, Koala [14] offers

explicit management of a special graphical notation that is

very helpful in design discussions, and an elegant

parameterization mechanism. Its partial evaluation techniques

can calculate part of the configuration at compile time while

generating code for that part that must be determined at

runtime. In designing Koala, a strict separation is sought

between component and configuration development.

• Koala components are units of design, development,

and – more importantly – reuse.

• As in COM and Java, a Koala interface is a small set

of semantically related functions.

• Koala components access all external functionality

through requires interfaces which provides the architects with

a clear view of the of the system‘s resources use.

• Koala components are designed independently of

each other. They have interfaces to connect to other

components, but this binding is late – at configuration time.

Koala has some extra features that are aimed at handling

diversity efficiently: interface compatibility, function binding,

partial evaluation, diversity interfaces, diversity spreadsheets,

switches, optional interfaces, and Connected interfaces.

KOBRA

[16] states that KobrA is a UML-based method for

describing components and component-based systems

developed at the Fraunhofer Institute for Experimental

Software Engineering at the beginning of the decade. The

acronym stands for the term ―Komponenten basierte

Anwendungsentwicklung‖ – German for ―Component-based

Application Development‖. KobrA has been successfully used

by a number of companies in industrial settings and has given

rise to numerous specializations and offshoots . The original

version of the method was developed for the UML 1.x flavor

of the UML.

VII. CONCLUSION AND COMPARISON

Component-based systems result from adopting a

component-based design with strategy, and software

component technology includes the products and concepts that

support this design strategy. By design strategy we mean

something almost near to architectural style—a high-level

design pattern and system described by the types of

components in a system and their patterns of interaction [20].

Component based software development (CBSD) refers to the

development of software component systems making

considerable use of software components. Component based

software development can help the software industry to realize

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 1, No. 6, December 2010

70 | P a g e
http://ijacsa.thesai.org/

productivity and quality gains similar to those achieved in

hardware and manufacturing organizations. A detailed

characterization of known component model technologies has

been done in the present research work. The difference in all

the model with respect to properties as shown in table 1 is

illustrated. Some models like COM, CORBA and EJB are

very well known among users and developers, whereas some

other quite effective model technologies for component

Table 1: Comparative Study

Based software development are less popular as compared to

these. Since the CBSE is a new discipline and is still maturing,

a lot has to be done to find solutions to its associated problems

which remain unsolved.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 1, No. 6, December 2010

71 | P a g e
http://ijacsa.thesai.org/

REFERENCES

[1] Kung –Kiu and Zheng Wang, ―A survey of Software Component
Models‖, School of computer Science, University of Manchester, April,
2005, available at http://www.cs.man.ac.uk/preprints/index.htm

[2] A. Campbell. A Quality of Service Architecture. PhD Thesis, Lancaster
University,1996

[3] Component-Based Software Engineering: Technologies, Development
Frameworks, and Quality Assurance Schemes, Xia Cai, Michael R. Lyu,
Kam-Fai Wong Roy Ko, The Chinese University of Hong Kong Hong
Kong Productivity Council {xcai@cse, lyu@cse,
kfwong@se}.cuhk.edu.hk roy@hkpc.org

[4] http://www.omg.org/corba/whatiscorba.html, Mar, 2000.
[5] W. Kozaczynski, G. Booch, ―Component-Based Software Engineering,‖

IEEE Software Volume: 155, Sept.-Oct. 1998, pp. 34–36.
[6] S.S.Yau, B. Xia, ―Object-Oriented Distributed Component Software

Development based on CORBA,‖ Proceedings of COMPSAC‘98. The
Twenty-Second Annual International, 1998, pp. 246-251

[7] Y.M. Wang, O.P. Damani, W.J. Lee, ―Reliability and Availability
Issues in Distributed Component Ojbect Model (DCOM),‖ Fourth
International Workshop on Community Networking Proceedings, 1997,
pp. 59 –63.

[8] http://developer.java.sun.com/developer, Mar. 2000
[9] A.W.Brown, K.C. Wallnau, ―The Current State of CBSE,‖IEEE

Software, Volume: 15 , Sept.-Oct. 1998, pp. 37- 46
[10] C.Szyperski, "Component Software: Beyond Object-Oriented

Programming," Addison-Wesley, New York, 1998.
[11] G. Pour, ―Enterprise JavaBeans, JavaBeans & XML Expanding the

Possibilities for Web-Based Enterprise Application Development,‖
Proceedings Technology of Object-Oriented Languages and Systems,
1999, TOOLS 31, pp.282-291.

[12] Component-based Development Process and Component Lifecycle by
Ivica Crnkovic, Stig Larsson, Michel Chaudron

[13] ‗Component Model with Support of Mobile Architectures‘ by Marek
Rychllli, Brno University of Tcchnology, Czech Republic

[14] The Koala Component Model for Consumer Electronics Software, Rob
van Ommering, Frank van der Linden, Jeff Kramer, Jeff Magee, IEEE
Computer, March 2000, p78-85

[15] Enterprise Distributed Object Computing Conference, 2001. EDOC '01.
Proceedings. Fifth IEEE International Publication Date: 200, Pages 212 -
223 , Seattle, WA.

[16] ‗Modeling Components and Component-Based Systems in KobrA‘ by
Colin Atkinson

[17] Enterprise JavaBeans Specification. Version 2.0. Sun Microsystems.
2001.

[18] Object Management Group. The Common Object Request Broker:
Architecture and Specification. version 3.0./02-06-33. 2002.

[19] F. E. Redmond III. DCOM: Microsoft Distributed Component Object
Model. [sofa] Frantisek Plasil, Dusan Balek, and Radovan Janecek.
SOFA/DCUP: Architecture for Component Trading and Dynamic
Updating. Proceedings of ICCDS 98, May 4-6, 1998, Annapolis,
Maryland, USA. IEEE CS Press. 1998.

[20] Bass, L; Clements, P.; & Kazman R. Software Architecture in Practice.
Boston, Ma.: Addison Wesley, March 1998.

[21] zyperski, C, Component Software: Beyond Object-Oriented
Programming, Addison Wesley, 1999.

[22] Cecilia Albert and Lisa Brownsword, Evolutionary Process for
Integrating COTS-Based Systems (EPIC): An overview, Technical
Report CMU/SEI-2002-TR-009 ESC-TR-2002-009, July, 2002.

[23] Jerry Zeyu Gao, Jacob Tsao, Ye Wu, Testing and Quality Assurance for
Component Based Software, Artech House Publishers, 2003.

[24] David Garlan et al, ―Architecural Mismatch: Why Reuse is so Hard‖,
IEEE software, 1995.

[25] Ian graham, Object Oriented Methods, - Principles and practice, 3rd
Edition, Addison Wesley, Object Technology Series.

[26] Ian Sommervilee, Software Engineering, 7th Edition, Pearson
Education.

[27] R.S.Pressman, Software Engineering – A Practioners Approach, Fourth
Edition, McGraw Hill International Series.

[28] Hafedh Mili et al, Reuse Based Software Engineering, Techniques,
organization and Controls, John Wiley and Sons, 2002.

[29] Alencar, A. & Goguen, J. ―OOZE,‖ Stepney, S.; Barden, R.; & Cooper,
D., ed. Object Orientation in Z, Workshops in Computing. Los Angeles,
Ca.: Springer-Verlag, 1992.

[30] Allen, R.; Douence, R.; & Garlan, D. ―Specifying Dynamism in
Software Architectures,‖ Proceedings of the 1st Workshop on
Component-Based Systems. Zurich, Switzerland, 1997, in con-junction
with European Software Engineering Conference (ESEC) and ACM
SIGSOFT Symposium on the Foundations of Software Engineering
(FSE), 1997

[31] Baggiolini, V. & Harms, J. ―Toward Automatic, Run-Time Fault
Management for Component-Based Applications,‖ Proceedings of the
2nd International Workshop on Component-Oriented Pro-gramming
(WCOP97), in conjunction with the European Confer-ence on Object-
Oriented Programming (ECOOP98, Brussels, Belgium, July 1998.

[32] Barnes, J. High Integrity Ada: the SPARK Approach. Boston, Ma.:
Addison-Wesley, 1997

[33] Box, D. Essential COM. Boston, Ma.: Addison-Wesley, 1998.
[34] Ciancarani, P. & Cimato, S. ―Specifying Component-Based Soft-ware

Architectures,‖ 60–70. Proceedings of the ESEC/FSE-Workshop on
Foundations of Component-Based Systems (FoCBS), Zürich, Sep. 1997.

[35] Deline, R. ―Avoiding Packaging Mismatch with Flexible Packaging,‖
Proceedings of the 21st International Conference on Soft-ware
Engineering. Los Angeles, Ca., May 1999.

[36] Della, C.; Cicalese, T.; & Rotenstreich, S. ―Behavioral Specification of
Distributed Software Component Interfaces.‖ IEEE Computer (Jul.
1998): 46-53

[37] Dowson, M. ―ISTAR and the Contractual Approach,‖ 287-288.
Proceedings of the 9th International Conference on Software En-
gineering. Monterey, Ca, March 30-April 2, 1987. Washington DC,
Baltimore, Md.: IEEE Computer Society and the Association for
Computing Machinery, April 1987.

[38] Hissam, S & Carney, D. ―Isolating Faults in Complex COTS-based
Systems.‖ Journal of Software Maintenance: Research and Practice, No.
11 (1999): 183-1999

