
(IJACSA) International Journal of Advanced Computer Science and Applications,  

Vol. 1, No. 6, December 2010 

 

102 | P a g e  

http://ijacsa.thesai.org/ 

Design Strategies for AODV Implementation in 

Linux 

Ms. Prinima Gupta 

MCA dept., Manav Rachna College of Engineering, 

Sector-43, Faridabad. INDIA 

prinima_mail@rediffmail.com 

 

Dr. R. K Tuteja  

 MCA dept., N.C. Institute of Computer Sciences, Israna, 

Panipat. INDIA 

rk_tuteja2006@yahoo.co.in

Abstract—In a Mobile Ad hoc Network (MANET), mobile nodes 

constructing a network, nodes may join and leave at any time, 

and the topology changes dynamically. Routing in a MANET is 

challenging because of the dynamic topology and the lack of an 

existing fixed infrastructure. In this paper, we explore the 

difficulties encountered in implementing MANET routing 

protocols in real operating systems, and study the common 

requirements imposed by MANET routing on the underlying 

operating system services. Also, it explains implementation 

techniques of the AODV protocol to determine the needed events, 

such as: Snooping, Kernel Modification, and Netfilter. In 

addition, this paper presents a discussion of the advantages as 

well as disadvantages of each implementation of this architecture 

in Linux. 

Keywords- Ad-hoc Networking, AODV, MANET. 

I. INTRODUCTION 

AODV is an on demand algorithm, meaning that it builds 
routes between nodes only as desired by source nodes. It 
maintains these routes as long as they are needed by the 
sources. Hence, it is considered as a reactive routing protocol. 
The Ad-hoc On Demand Distance Vector Routing (AODV) 
protocol is an algorithm used for the implementation of such 
networks. The connection between nodes is established for the 
duration of one session, so no need to have a base station in 
order to establish such a connection between nodes. Nodes 
discover other target nodes that are out of range by 
broadcasting the network with Rout Requests (RREQ) that are 
forwarded by each node. If the destination node get the RREQ, 
then it sends back Route Reply (RREP) to the source node. 
After the route has been discovered between source node and 
destination node, then it’s the time to start sending data thru 
that route.  

There are a limited number of such implementations, 
mostly for the Linux operating system. This paper is an 
exploration and comparison of several AODV implementations 
including: National Institute of Science and Technology 
(NIST), the University of California, Santa Barbara (UCSB), 
Uppsala University (UU) in Sweden and the University of 
Illinois, Urbana-Champaign (UIUC). The earliest 
implementation of AODV is the Mad-hoc implementation.  

In this paper we first give an overview of the challenges 

implementers face when implementing an on-demand ad hoc 

routing protocol. These challenges emerge, as the on-demand 

routing model does not easily fit into the standard operating 

system routing and packet forwarding model. We describe the 

problems with the routing model of current operating systems 

and identify the necessary extra events that must be rec-

ognized to ensure correct behaviour of on-demand ad hoc 

routing protocols. Then we describe and discuss the different 

design strategies that have previously been deployed in 

implementations of on-demand ad hoc routing protocols, 

focusing on AODV implementations in Linux. The intention is 

to give an overview of the developed solutions and point out 

best practices and experiences learnt. 

II. BACKGROUND 

First, we describe the AODV routing protocol and its basic 
operation. Then, we describe the available implementations of 
AODV for the Linux platform. It describes their available 
functionality and their design philosophy. 

A. AODV Protocol Overview 

The AODV routing protocol is a reactive routing protocol; 
therefore, routes are determined only when needed. Hello 
messages may be used to detect and monitor links to neighbors. 
If Hello messages are used, each active node periodically 
broadcasts a Hello message that all its neighbors receive. 
Because nodes periodically send Hello messages, if a node fails 
to receive several Hello messages from a neighbor, a link break 
is detected. When a source has data to transmit to an unknown 
destination, it broadcasts a Route Request (RREQ) for that 
destination. When a RREQ is received by an intermediate 
node, a route to the source is created. If the receiving node has 
not received the RREQ before, is not the destination and does 
not have a current route to the destination, it rebroadcasts the 
RREQ. If the receiving node is the destination or has a current 
route to the destination, it generates a Route Reply (RREP). 
The RREP is unicast in a hop-by-hop fashion to the source. As 
the RREP propagates, each intermediate node creates a route to 
the destination. When the source receives the RREP, it records 
the route to the destination and begins sending data. If multiple 
RREPs are received by the source, the route with the shortest 
hop count is chosen. 

As data flows from the source to the destination, each node 
along the route updates the timers associated with the routes to 
the source and destination, maintaining the routes in the routing 
table. If a route is not used for some period of time, a node 

mailto:prinima_mail@rediffmail.com


(IJACSA) International Journal of Advanced Computer Science and Applications,  

Vol. 1, No. 6, December 2010 

 

103 | P a g e  

http://ijacsa.thesai.org/ 

cannot be sure whether the route is still valid; consequently, the 
node removes the route from its routing table. If data is flowing 
and a link break is detected, a Route Error (RERR) message is 
sent to the source of the data in a hop-by-hop fashion. As the 
RERR propagates towards the source, each intermediate node 
invalidates routes to any unreachable destinations. When the 
source of the data receives the RERR, it invalidates the route 
and reinitiates route discovery, if necessary. 

B. AODV Implementations 

 Each implementation was developed and designed 
independently, but they all perform the same operations.  The 
field studies using the AODV routing protocol have thus far 
been limited to devices running the Linux operating system, as 
the current implementations of AODV have all been developed 
for that platform. Thus real-world testing of the protocol has 
been limited to homogenous network environments. There are 
two types of different implementations, user space daemons 
and kernel modules.  

1) Mad-Hoc Implementation: was the first available 

implementation of AODV by Fredrik Lilieblad, Oskar 

Mattsson, Petra Nylund, Dan Ouchterlony, and Anders 

Roxenhag running on a Linux 2.2 kernel but does not supports 

multicast. It uses the method of snooping ARP and data 

packets, using the libpcap Linux packet capturing facility. It is 

a user space only solution. It does not comply with an up-to-

date version of the AODV specification, and is no longer 

supported. As such, it does not interoperate properly with the 

later implementations, and is not recommended for use. 

2) NIST Implementation: was the only kernel 

implementation done by the NIST, Department of Commerce's 

Technology Administration U.S., and Wireless 

Communications Technologies Group running on a Linux with 

a 2.4 kernel. It is very fast and efficient reaching the best 

performance of all implementations. The NIST Implementation 

of AODV is currently at version 2.1 at time of writing. The 

latest version has support for multicast AODV, as well as 

multi-hop Internet gatewaying. The protocol is implemented 

completely as a Linux kernel module. If uses Netfilter from the 

2.4 kernel to capture packets going in and out of the node 

instead of using the libcap library. It uses a Proc file to update 

the user about current routes and statistics for that node. 

3) Uppsala University Implementation: The University of 

Uppsala also published a user space daemon implementation 

called AODV-UU which runs on Linux with a 2.4 kernel. 

Multicast support is available via a patch implemented by a 

group of researchers from the University of Maryland. The 

protocol is implemented as a user space daemon, and two 

loadable Linux kernel modules (kaodv and ip_queue_aodv). It 

uses the Netfilter library to intercept incoming and outgoing 

packets, but this is performed in user space. 

4) University California, Santa Barbara Implementation:  

was the newest daemon published on 2nd of April 2002 by the 

University of California, Santa Barbara, running on a Linux 

with a 2.4 kernel. Similar to the UU implementation, the UCSB 

version is implemented as a user space daemon. It similarly 

uses the Netfilter library for intercepting incoming and 

outgoing packets from the chosen interface. In fact, the 

implementation uses directly the UU packet input user space 

packet queuing module and the kaodv/packet_queue_aodv 

kernel modules. As such, it suffers from exactly the same 

problems as the UU implementation in that all packets must 

pass the boundary between kernel and user space twice.  

5) University of Illinois, Urbana-Champaign 

Implementation:  The UIUC implementation, is based on their 

ad-hoc support library (ASL), which is a Linux specific library 

designed to provide all the services required by ad-hoc routing 

protocols.  As such, the UIUC AODV implementation is a user 

space daemon compiled against the ASL library. The 

implementation has not been interoperability tested against the 

other protocol implementations. Much of the complexity of the 

user space ad-hoc routing module has been removed to the 

ASL library, a very desirable feature, as this should allow 

other, different, ad-hoc routing protocols to be developed using 

the same library. 

III. IDENTIFYING THE CHALLENGES OF ON-DEMAND AD-HOC 

PROTOCOLS  

When we are discussing the challenges faced when 
implementing an on-demand ad hoc routing protocol, it is of 
relevance to recap the routing architecture of current operating 
systems. In particular, how the functionality is divided and why 
implementing on-demand protocols is a challenge compared to 
implementing traditional routing protocols or proactive ad hoc 
routing protocols. 

The routing functionality in modern operating systems is 
typically divided in two parts: 

A. Packet forwarding function 

Consists of the routing function within the kernel, located 
within the IP layer of the TCP/IP stack, in which packets are 
directed to the appropriate outgoing network interfaces, or local 
applications, according to the entries in the kernel routing table. 
When the IP-layer receives a packet, it inspects a table called 
the forwarding table. Based on the IP destination address the 
packet is either directed to a local application listening on the 
specified port number, dropped, or sent out to the 
corresponding next-hop neighbor on the specified network 
interface according to the destination IP address of the packet. 

B. Packet routing function  

It typically consists of a user-level program responsible for 
populating the kernel routing table. The definition of an 
optimal route is dependent on the routing algorithm; the 
number of hops to the destination is usually the chosen metric. 
The program performing the routing is typically implemented 
in user space as a program running in the background (the 
routing daemon).  

On Linux the route selection process is carried out the 
following way: when selecting a route for a packet, the kernel 



(IJACSA) International Journal of Advanced Computer Science and Applications,  

Vol. 1, No. 6, December 2010 

 

104 | P a g e  

http://ijacsa.thesai.org/ 

first searches the routing cache for an entry matching the 
destination IP address of the packet, and if found it forwards 
the packet to the next hop specified in the routing cache entry. 
Entries are deleted which have not been used for some time. If 
no entry for the destination is found in the routing cache, the 
kernel makes a look-up for the destination in the kernel routing 
(FIB) table using longest prefix matching. If an entry is found 
in the table, a new entry for the destination is created and 
inserted into the routing cache, i.e., the kernel routing table is 
used to populate the routing cache. 

In on-demand routing protocols not all routes are known in 
advance, they must be discovered as they are needed. In such 
cases a mechanism is required to notify the on-demand routing 
protocol that a route discovery cycle must take place for the 
destination, and any packets already being sent to the 
destination must be queued while the route discovery cycle 
completes.  For the AODV routing daemon to function, it must 
be determined when to trigger AODV protocol events. Since 
the IP stack was designed for static networks where link 
disconnections are infrequent and packet losses are unreported, 
most of these triggers are not readily available. Therefore, these 
events must be extrapolated and communicated to the routing 
daemon via other means. The events that must be determined 
are: 

1) When to initiate a RREQ: Route Requests are needed 

when the IP layer receives a packet to be transmitted to an 

unknown destination, i.e., a destination with no matching entry 

in the route table. The problem of the current network stack 

architecture is that we only know we need a route after the 

packet has already crossed the boundary between user space 

and kernel space. 

2) When and how to buffer packets waiting for a route 

discovery cycle (or for some other reason) to complete: When 

an application attempts to send a packet to a destination for 

which the routing table has not a valid route, the IP layer 

should buffer the packet for a period of time while a route 

discovery cycle takes place. If a route is found, the packets 

should be reinserted into the IP layer and sent to the 

destination. If a route is not found, the packets should be 

discarded and the application program should be notified. 

3) When to update the lifetime of an active route: On-

demand routing protocols typically cache a route that has been 

discovered for a period of time before deleting it if it is 

inactive. The IP layer therefore must have the capability to 

notify the routing protocol when an on-demand route has been 

used, so that the routing protocol can update its timers for the 

route.  

4) When to generate a route error message if a valid route 

does not exist for the next-hop IP address of a received 

packet: If a data packet is received from another host and there 

is no valid route to the destination, the node must send a RERR 

so that the previous hops and the source stop transmitting data 

packets along this invalid route. Under normal operation of the 

IP layer on receiving a packet is to send a destination host 

unreachable ICMP message to the source of the transmission, 

and silently drop the packet. Instead, the IP layer must give 

notification to the AODV routing protocol such that it knows it 

should send a route error message to the original source or the 

packet. 

5) When to generate a RERR during daemon restart: 

When a node reboots, the AODV specification requires that it 

sends Route Error messages to any nodes attempting to 

communicate with it up until the end of DELETE_PERIOD 

seconds. This behavior is required in order to ensure no 

routing loops occur. 
 

These notification and capabilities are not explicitly present 
in the protocol stacks of modern operating system. The existing 
implementations have taken a number of different approaches 
to solving this problem. The next section describes a number of 
possible approaches that implementers have taken in Linux.  

IV. DESIGN STRATERGIES OF LINUX 

Special emphasis is given on implementation techniques for 
Linux. We highlight the advantages and disadvantages of each 
technique and discuss how the implementation techniques and 
the techniques available for programmers have evolved. The 
alternatives described in this section are: 

 Kernel Modifications: Modify the source code of an 
operating system kernel to produce new API for 
implementation. 

 Snooping: Use packet capturing facilities. 

 Netfilter: Use the packet filter and packet mangling 
architecture. 

The Linux netfilter framework can also partly be attributed 
to the fact that Linux has become the most popular platform for 
on-demand ad hoc routing protocol implementation 
development of the thirteen listed implementations on the 
AODV web page, eight are for Linux only.   

A. Kernel Modification 

Another possibility to determine the AODV events is to 
modify the networking code of an operating system kernel. 
Royer and Perkins modified the Linux kernel to support their 
implementation of the AODV protocol. Such an API would 
require mechanisms as they would require protocols to register 
interest with the kernel in the relevant routing events (such as 
the requirement for a new Route Request). The kernel would 
then inform the ad-hoc routing protocol when a route Request 
is required; to initiate route discovery, code is added in the 
kernel at the point where route lookup failures occur. The 
kernel source was modified so that a route look-up failure 
would result in a notification to a user space daemon that was a 
part of the implementation, it would provide a mechanism to 
buffer packets for which a route request is being performed and 
to later reinject them; it would maintain timers associated with 
the route, etc. Figure 1 shows the architecture of the AODV 
daemon and the required support logic. 

Advantages 



(IJACSA) International Journal of Advanced Computer Science and Applications,  

Vol. 1, No. 6, December 2010 

 

105 | P a g e  

http://ijacsa.thesai.org/ 

 The events are explicitly determined and there are no 
wasted overhead.  

 By modifying the kernel data structures and support 
code directly, there is no overhead of additional 
protocol accounting, compared to a user space 
implementation or even a Linux kernel module.  

 
 

 

 

 

 

 

 

 

 

Figure 1.  Kernel Modification Architecture 

Disadvantages  

 Difficult Installation procedure: Installation of the 
necessary kernel modifications requires a complete 
kernel recompilation.  

 Less Portable: A drawback of this approach is that it 
will require major changes to the operating system 
kernels, and will not be very portable for existing 
operating system kernels without requiring users to 
install a new kernel. 

 Difficult to maintain: Patches (modifications) might 
only apply cleanly against a certain version of the 
Linux kernel. There could even be problems with 
kernels with the same version number as distributions 
apply their own set of patches to the Linux kernel 
source.  

The first release of the AODV-UCSB implementation used 
the kernel modifications approach. Desilva and Das also made 
an implementation of AODV by modifying the Linux kernel 
and the in-kernel ARP implementation.  

B. Snooping 

Using code built into the kernel of most operating systems, 
a user space program can capture all incoming and outgoing 
packets on a network interface. The process of capturing 
packets is also known as sniffing or snooping. The code to 
perform snooping is built into the kernel and is available to 
user-space programs by using the Packet Capture Library 
(libpcap). Each packet that is transmitted is passed to the 
routing daemon using libpcap. When the daemon sees that a 
packet was transmitted along an active route, the lifetime for 
that route is updated so that it does not expire, since it is in use. 
In a similar manner, all the other AODV events may be 

determined by monitoring the incoming and outgoing packets. 
By snooping the Address Resolution Protocol (ARP) packets 
and data packets, AODV can be implemented without any 
kernel modifications. As such, the routing protocol can be 
implemented easily in either kernel space or user space. The 
routing protocol can determine when a route discovery cycle is 
needed by snooping ARP request packets, as an ARP request is 
sent to resolve the hardware address for an unknown IP address 
(if there is an appropriate subnet route entry set up for the 
correct interface).  

The routing protocol can observe incoming and outgoing 
data packets, and as such can determine when a route is being 
used, or when a packet is received for which we have no 
routing information. 

Advantage 

 Simple installing and execution: It does not require any 
code to run in the kernel-space. 

Disadvantages 

 Overhead: An ARP packet is generated when a node 
does not know the MAC address of the next hop. Using 
this inference, if an ARP request packet is seen for an 
unknown destination and it is originated by the local 
host, and then a route discovery needs to be initiated. 
Since route discovery is initiated by outgoing ARP 
packets, these outgoing packets are unnecessary 
overhead, and they waste bandwidth. 

 Dependence on ARP: If the routing table and ARP 
cache become out of sync, it is possible that the routing 
protocol may not function properly. For example, if the 
ARP cache contains an entry for a particular unknown 
destination, then an ARP packet will not be generated 
for this destination even though the destination is not 
known by the routing daemon. Consequently, route 
discovery will not be initiated. For proper operation the 
routing protocol must monitor and control the ARP 
cache in addition to the IP routing table, because 
disagreement between the two can cause the routing 
protocol to function incorrectly. 

C. Netfilter 

Netfilter is a packet filtering framework implemented as a 
set of hooks at well defined places in the Linux TCP/IP 
networking stack. Netfilter redirects packet flow through user 
defined code, which can examine, drop, discard, modify or 
queue the packets for the user-space daemon. Netfilter is 
similar to the snooping method; however, it does not have the 
disadvantage of unnecessary overhead or dependence on ARP.  

It consists of a number of hooks in the IP layers that are 
well-defined points in a packet’s traversal of the protocol stack. 
The IPV4 stack has five hooks. The two hooks 
NF_IP_LOCAL_OUT and NF_IP_LOCAL_IN are for packets 
incoming to and outgoing from local processes on the current 
host. Here a routing decision on what to do with the packet is 
made. If it is an incoming packet, it may be sent to the 
NF_IP_FORWARD hook before forwarding, sent up to the 

AODV 

Daemon 

  

Applications 

Sockets 

Route Lookup 

Failure 

 

Route Used 

 

. 

. 

. 

. 

 

Link Layer 

Feedback 

Driver 

  EthX 

User Space 

 
Kernel space Hardware 



(IJACSA) International Journal of Advanced Computer Science and Applications,  

Vol. 1, No. 6, December 2010 

 

106 | P a g e  

http://ijacsa.thesai.org/ 

NF_IP_LOCAL_IN hook for delivery to a local process, or 
dropped. If it is an outgoing packet, it is dropped or sent on the 
NF_IP_POST_ROUTING hook before being released to the 
appropriate network interface driver for transmission across the 
network. Incoming packets also traverse the 
NF_IP_PRE_ROUTING hook as they enter the IP layer, before 
being subjected to kernel routing. Thus, packets going from 
and to other hosts can be captured at these two hooks. Routing 
decisions are made for packets arriving at the network interface 
of the host after traversing NF_IP_PRE_ROUTING, to see if 
they are bound for this host or destined to be forwarded. 
Routing decisions are made for packets sent by local processes 
after traversing NF_IP_POST_ROUTING.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.  Netfilter Architecture 

     These functions can show the direction packets travel 
through the network stack as they enter from a local process or 
a network interface.  

 NF_ACCEPT: allow the packet to pass to the next 
registered hook 

 NF_DROP: have the choice to either discard the packet 

 NF_QUEUE: request that these packets be queued for 
later reinsertion into the IP layer otherwise this is equal 
to NF_DROP 

 NF_STOLEN: grab the packet. We may reinsert the 
packet at a later point in time  

 NF_REPEAT: call this hook again 

     These hooks are used by the kaodv kernel module. The 
kernel module driver, ip_queue module is used to queue these 
packets for the user-space daemon. There the AODV daemon 
uses a user space library libipq to make control decisions about 
each packet. Finally packets that are queued (by returning 
NF_QUEUE) are buffered by the ip_queue driver, typically 
(though not necessarily) for user space, see figure 2. These 
packets are handled asynchronously and thus they can be 
returned to the IP layer at any later time, or discarded. 

The Netfilter architecture can be used for firewall filtering 
(the Linux ip_tables tool uses Netfilter in version 1.4 of the 

kernel), all kinds of Network Address Translation (NAT) 
services, or for other advanced packet processing requirements. 

Advantages 

 Highly portable 

 Easy to install 

Disadvantage 

 Requires a kernel module: A kernel module is more 
portable than a kernel modification because it depends 
only on the Netfilter interface. This interface does not 
change from one kernel version to the next. 

 

V. CONCLUSION 

AODV is currently one of the most popular ad-hoc routing 
protocols. These indicate that AODV performs very well both 
during high mobility and high network traffic load, making it 
one of the most interesting candidates among today’s ad-hoc 
routing protocols. Implementing a routing protocol is very 
important to validate its design. Coming up with a clean 
implementation not only helps better understanding of the 
protocol nuances, but also allows extensions to explore the 
protocol design space. In this paper we analysed design 
possibilities for AODV implementations. We then examined 
the advantages and disadvantages of three strategies for 
determining this information. This analysis supported our 
decision to use small kernel modules with a user-space 
daemon. We hope that the information in this paper aids 
researchers in understanding the trade-offs in ad hoc routing 
protocol implementation development. Further, the description 
of the design structure and performance of each 
implementation can assist users in deciding which 
implementation best fits their needs. 

REFERENCES 

[1] Luke Klein-Berndt, NIST Kernel AODV homepage, 
http://w3.antd.nist.gov/wctg/aodv_kernel/. September 2003. 

[2] Mad-hoc AODV homepage. http://mad-ho.flyinglinux.net/. September 
2003. 

[3] Luke Klein-Berndt, “Kernel AODV”. National Institute of Standards and 
Technology. http://w3.antd.nist.gov/wctg/aodvkernel. 30 Oct 2008. 

[4] Ian Chakeres, UCSB AODV homepage. 
http://moment.cs.ucsb.edu/AODV/aodv. html, September 2003. 

[5] Erik Nordström, UU AODV homepage. 
http://user.it.uu.se/~henrikl/aodv/, September 2003. 

[6] Binita Gupta, UIUC AODV homepage. Including ASL library. 
http://sourceforge.net/projects/aslib/, September 2003. 

[7] E. M. Belding-Royer, “Report on the AODV Interop,” University of 
California Santa Barbara, Tech. Rep. 2002-18, June 2003. 

[8] E. Borgia, “Experimental evaluation of ad hoc routing protocols,” in 
Proc. of IEEE PerCom 2005 Workshops, Kauai Island, Hawaii, March, 
8–12 2005.  

[9] "Running AODV-UU in the Network Simulator NS-2.". 
https://prj.tzi.org/repos/ dmn/aodv-uu-dtn/trunk/ README.ns. 2 Nov 
2008 

[10] Erik.Nordstr¨om., AODV-UU. ttp://core.it.uu.se/core/index.php/AODV-
UU. Last accessed December 2006. 

AODV 

Daemon 

Applications 

Sockets 

libipq ip_queue kaodv 

Netfilter Driver EthX 

User Space 

 
Kernel space Hardware 

http://mad-ho.flyinglinux.net/
http://user.it.uu.se/~henrikl/aodv/
http://sourceforge.net/projects/aslib/


(IJACSA) International Journal of Advanced Computer Science and Applications,  

Vol. 1, No. 6, December 2010 

 

107 | P a g e  

http://ijacsa.thesai.org/ 

[11] Ian D. Chakeres and Elizabeth M. Belding-Royer. “AODV routing 
protocol implementation design”. In ICDCSW ’04: Proceedings of the 
24th International Conference on Distributed Computing Systems 
Workshops - W7: EC (ICDCSW’04), pages 698–703, Washington, DC, 
USA, 2004. IEEE. 

[12] Douglas E. Comer., “Internetworking with TCP/IP: Principles, 
Protocols, and Architecture”. Prentice-Hall, Inc., Upper Saddle River, 
NJ, USA, fourth edition, 2000. 

[13] Saman Desilva and Samir R. Das., Experimental evaluation of a wireless 
ad hoc network. In Proceedings of the 9th Int. Conf. on Computer 
Communications and Networks (IC3N), pages 528–534, Las Vegas, NV, 
USA, October 2000. 

[14] Nova Engineering, “NovaRoam,” http://www.novaroam.com/. 

[15] C. E. Perkins and E. M. Royer, “The Ad hoc On-Demand Distance 
Vector Protocol,” in Ad hoc Networking, C. E. Perkins, Ed. Addison-
Wesley, 2000, pp. 173–219. 

[16] C. E. Perkins, E. M. Belding-Royer, and S. Das, “Ad hoc On-Demand 
Distance Vector (AODV) Routing,” RFC 3561, July 2003. 

[17] E.M. Royer & C.E Perkins, “An Implementation Study of the AODV 
Routing Protocol”, Proceedings of the IEEE Wireless Communications 
and Networking Conference, Chicago, IL, September 2000. 

[18] Netfilter homepage. http://www.netfilter.org/. September 2003. 

[19] J. Kadlecsik, H. Welte, J. Morris, M. Boucher, and R. Russell, “The 
netfilter/iptables Project,” http://www.netfilter.org/. 

[20] IEEE Computer Society, “IEEE 802.11 Standard, IEEE Standard For 
Information Technology,” 1999. 

[21] J. Tourrilhes, “Wireless Tools for Linux,”. 
http://www.hpl.hp.com/personal/Jean Tourrilhes/Linux/Tools.html. 

[22]  H. Lundgren, D. Lundberg, J. Nielsen, E. Nordstrm, and C. F. Tschudin, 
“A Large-scale Testbed for Reproducible Ad hoc Protocol Evaluations,” 
in IEEE Wireless Communications and Networking Conference 2002 
(WCNC), March 2002. 

[23] V. Kawadia, Y. Zhang, and B. Gupta, “System Services for 
Implementing Ad-Hoc Routing: Architecture, Implementation and 
Experiences,” in Proceedings of the International Conference on Mobile 
Systems, Applications, and Services (MobiSys), San Francisco, CA, 
June 2003, pp. 99–112. 

[24] G. Bianchi, “Performance Analysis of the IEEE 802.11 Distributed 
Coordination Function,” IEEE Journal Selected Areas in 
Communications, vol. 18, March 2000. 

 

AUTHORS PROFILE 

 
Prinima Gupta is presently working as Asst. Professor in MCA 

Department, Manav Rachna College of Engineering, Faridabad. 

She has completed Master of Computer Application from 

Kurukshetra University, Kurukshetra, M.Phil from 

Vinayaka Mission University, Tamil Nadu and presently 

doing PhD in Computer Science. She has 5+ years of teaching 

experience. She published 03 papers in National conferences. 

Her area of specialization includes Computer Networks and 

Computer Architecture 

 
Prof. (Dr.) R. K Tuteja is presently working as Director 

(Academics) in NCICS, Israna, Panipat. He has 45 years of 

teaching experience. He was successfully guided 30 PhD 

research students and 17 students for M. Phil. Degree. He has 

published 126 Research papers in National/International 

Journals. He has worked as Head of Statistics/ Mathematics/ 

Computers Science & Application Department at M. D. 

University Rohtak. 
 

 

 

 

 

http://www.netfilter.org/

