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Abstract— Most digital image forgery detection techniques 

require the doubtful image to be uncompressed and in high 

quality. However, most image acquisition and editing tools use 

the JPEG standard for image compression. The histogram of 

Discrete Cosine Transform coefficients contains information on 

the compression parameters for JPEGs and previously 

compressed bitmaps. In this paper we present a straightforward 

method to estimate the quantization table from the peaks of the 

histogram of DCT coefficients. The estimated table is then used 

with two distortion measures to deem images as untouched or 

forged. Testing the procedure on a large set of images gave a 

reasonable average estimation accuracy of 80% that increases up 

to 88% with increasing quality factors. Forgery detection tests on 

four different types of tampering resulted in an average false 

negative rate of 7.95% and 4.35% for the two measures 

respectively. 
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I. INTRODUCTION 

Due to the nature of digital media and the advanced digital 
image processing techniques provided by image editing 
software, adversaries may now easily alter and repackage 
digital content forming an ever rising threat in the public 
domain. Hence, ensuring that media content is credible and 
has not been “retouched” is becoming an issue of eminent 
importance for both governmental security and commercial 
applications. As a result, research is being conducted for 
developing authentication methods and tamper detection 
techniques. Mainly, active authentication include digital 
watermarking and digital signatures, while passive methods 
tend to exploit inconsistencies that in the natural statistics of 
digital images occur as a result of manipulation. 

JPEG images are the most widely used image format, 
particularly in digital cameras, due to its efficiency of 
compression and may require special treatment in image 
forensics applications because of the effect of quantization and 
data loss. Usually JPEG compression introduces blocking 
artifacts and hence one of the standard approaches is to use 
inconsistencies in these blocking fingerprints as a reliable 
indicator of possible tampering [1]. These can also be used to 
determine what method of forgery was used. Many passive 
schemes have been developed based on these fingerprints to 
detect re-sampling [2] and copy-paste [3,4]. Other methods try 
to identify bitmap compression history using Maximum 
Likelihood Estimation (MLE) [5,6], or by modeling the 
distribution of quantized DCT coefficients, like the use of 
Benford’s law [7], or modeling acquisition devices [8]. Image 

acquisition devices (cameras, scanners, medical imaging 
devices) are configured differently in order to balance 
compression and quality. As described in [9,10], these 
differences can be used to identify the source camera model of 
an image. Moreover, Farid [11] describes JPEG ghosts as an 
approach to detect parts of an image that were compressed at 
lower qualities than the rest of the image and uses to detect 
composites. 

In this paper we present a straightforward method for 
estimating the quantization table of single JPEG compressed 
images and bitmaps. We verify the observation that while 
ignoring error terms, the maximum peak of the approximated 
histogram of a DCT coefficient matches the quantization step 
for that coefficient. This can help in determining compression 
history, i.e. if the bitmap was previously compressed and the 
quantization table that was used, which is particularly useful in 
applications like image authentication, artifact removal, and 
recompression with less distortion.  

After estimating the quantization table, both average 
distortion measure and blocking artifact measure are 
calculated based on the estimated table to verify the 
authenticity of the image. 

All simulations were done on images from the UCID [12]. 
Performance for estimating Q for single JEPG images was 
tested against two techniques that are relevant in how the 
quantization steps are acquired; MLE [5,6], and power 
spectrum [1]. For the other abovementioned techniques (e.g. 
Benford's), they are said to work on bitmaps. Investigating 
performance for previously compressed bitmaps can be found 
in [13]. The rest of the paper is organized as follows. In 
section 2 we begin with a brief review of the JPEG baseline 
procedure and then show how the quantization steps can be 
determined from the peaks of the approximated histogram of 
DCT coefficients. We also present the two distortion measure 
used in evaluation. Testing and performance evaluation are 
discussed and section 3, where we demonstrate the use of 
estimated quantization table with the distortion measures in 
classifying test images and exposing forged parts. Finally, 
section 4 is for conclusions. 

I. A STRAIGHTFORWARD APPROACH FOR QUANIZATION 

TABLE ESTIMATION IN JPEG IMAGES 

The  JPEG  standard  baseline  compression  for  color 
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photographs consists of four lossy transform steps and yields a 
compressed stream of data: 

 (1) RGB to YCbCr color space conversion. 

(2) CbCr subsampling. 

(3) Discrete Cosine Transform (DCT) of 8×8 pixel blocks. 

 (4) Quantization: )),(/),((),( jiQjiDroundjiX  , where 

at frequency (i,j), D is the DCT coefficient, Q is the (i,j)th entry 
in the quantization table, and X is the resulting quantized 
coefficient. 

Equivalently, a decompression process involves 

 (1) Dequantization: ),(),(),( jiQjiXjiX
q

 . 

(2) Inverse Discrete Cosine Transform (IDCT). 

(3) CbCr interpolation. 

(4) YCbCr to RGB color space conversion. 

 One of the most useful aspects in characterizing the 
behavior of JPEG compressed images is the histogram of DCT 
coefficients which typically has a Gaussian distribution for the 
DC component and a Laplacian distribution for the AC 
components [5,6]. The quantized coefficients are recovered, in 
step (1) of the dequantizer above, as multiples of Q(i,j). 
Specifically, if Xq(i,j) is a dequantized coefficient in the DCT 
domain, it can be expressed as kQ(i,j), where Q(i,j) is the (i,j)th 
entry of the quantization table, and k is an integer. The 
estimation of Q(i,j) is direct from the histogram of Xq(i,j) but 
Xq(i,j) is an intermediate result and is discarded after 
decompression. Theoretically, Xq(i,j) can be recalculated as 
DCT(Xq(i,j)) since IDCT is reversible. Nevertheless in reality, 
the DCT of an image block usually generates X*(i,j), which is 
not exactly Xq(i,j), but an approximation of it. In our 
experiments, we show that Q(i,j) can also be directly 
determined from histogram of X*(i,j). Fig. 1(a) and (b) show a 
typical absolute discrete histogram of X(3,3) and X*(3,3) 
respectively, for all blocks of an image. Nonzero entries occur 
mainly at multiples of Q(3,3)=10.  

There are two main sources of error introduced during the 
IDCT calculation, mainly rounding and clipping, to keep the 
pixel levels integral and within the same range as a typical 8- 

bit image (0-255). The decaying envelopes of the histograms 
in Fig. 1 are roughly Gaussian although have shorter tails, at 
which the approximation error ),(),(* jiXjiX

q
 is limited. 

The  reason according  to [6]  is that  as  the  rounding error 
for each pixel does not exceed 0.5, the  total  rounding  error is 

bounded by 
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So, Γ can be modeled as a truncated Gaussian distribution 
in the range ±B and zero outside that range [6]. 

Now if we closely observe the histogram of X*(i,j) outside 
the main lobe (zero and its proximity), we notice that the 
maximum peak occurs at a value that is equal to the 
quantization step used to quantize Xq(i,j). This means that 
rounding errors has less significance and could be ignored in 
the estimation. On the other hand, clipping or truncation errors 
are more significant and cannot be compensated for. Hence in 
our experiments, we leave out saturated blocks when creating 
the histogram. Fig. 2 shows a test image compressed with 
quality factor 80, and the corresponding quantization table. 
Fig. 3(a) and (b) show H the absolute histograms of DCT 
coefficients of the image from Fig. 2(a) at frequencies (3,3) 
and  (3,4), respectively.  Notice that the maximum peak for 
(3,3) occurs at 6 which is equal to Q(3,3). Also for (3,4), the 
highest peak is at value 10, which corresponds to the (3,4)th 
entry of the quantization table. Because in JPEG compression, 
the brightness (the DC coefficient) or shading across the tile 
(the 3 lowest AC coefficients) must be reproduced fairly 
accurately, there is enough information in the histogram data 
to retain Q(i,j) for low frequencies. We have verified that 
the highest peak outside the main lobe corresponds to q, for 
all low frequency coefficients. 

  

(a) (b) 

Fig. 1. Histogram of (a) |Xq(3,3)| formed as periodic spaced peaks and (b) 
|X*(3,3)| formed as periodic spaced sets of peaks. The DCT coefficients were 
quantized with step size Q(3,3)=10 during compression. 
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        (a) 

(                            (b) 

Fig. 2. (a) test image compressed with QF = 80 and (b) its 
corresponding quantization table. 
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And since the texture (middle frequency AC coefficients) 
can be represented less accurately, the histogram of these 
frequencies may not be a suitable candidate for our 
observation. Indeed, we found that, for coefficients 
highlighted in gray in Fig. 2(b), the maximum peak occurs at a 
value that does not match the specific quantization step. 
However, we investigated peaks at parts of H where error is 
minimal, i.e. outside ±B and concluded that the observation 
still applies with condition. The maximum peak above B, (that 
is when | X*(i,j)|>B) occurred at a value matching the Q(i,j), 
Fig. 3(c) and (d). For a particular frequency (i,j), it is possible 

that no peaks are detected outside the main lobe. This occurs 
with heavy compression when the quantization step used is  

 

large and hence X*(i,j) becomes small and sometimes 
quantized to zeros for all blocks. The histogram decays rapidly 
to zero showing no periodic structure. Hence we do not have 
enough information to determine Q(i,j). Table 1 shows the 
difference between estimated Q table using the above method, 
and the original table for two quality factors. The X’s mark the 
“undetermined” coefficients. 

The next step is to use the estimated table to verify the 
authenticity of the image by computing a distortion measure 
and then comparing it to a preset threshold. One measure is the 
average distortion measure. This is calculated as a function of 
the remainders of DCT coefficients with respect to the original 
Q matrix: 
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 where D(i,j) and Q(i,j) are the DCT coefficient and the 
corresponding quantization table entry at position (i,j). An 
image block having a large average distortion value indicates 
that it is very different from what it should be and is likely to 
belong to a forged image. Averaged over the entire image, this 
measure can be used for making a decision about authenticity 
of the image. 

Another measure is the blocking artifact measure, BAM 
[1], which is caused by the nature of the JPEG compression 
method. The blocking artifacts of an image block will change 

 a lot by tampering and therefore, inconsistencies in 
blocking artifacts serve as evidence that the image has been 
“touched”. It is computed from the Q table as: 
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B(n) is the estimated blocking artifact for testing block n, 
D(i,j) and Q(i,j) are the same as in (2). 

II. EXPERIMENTAL RESUTLS AND DISCUSSION 

A. Estimation Accuracy 

We created a dataset of image to serve as our test data. The 
set consisted of 550 uncompressed images collected from 
different sources (more than five camera models), in addition 
to some from the public domain Uncompressed Color Image 
Database (UCID), which provides a benchmark for image 
processing analysis [12]. For color images, only the luminance 
plane is investigated at this stage. Each of these images was 
compressed with different standard quality factors, [50, 55, 60, 

TABLE I.  DIFFERENCE BETWEEN ESTIMATED AND ORIGINAL Q. 
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(a) (b) 

  

(c) (d) 

Fig. 3. Absolute histogram of (a) X*(3,3) where Hmax occurs at Q(3,3)=6. 
(b) X*(3,4) where  Hmax  occurs at Q(3,4) = 10 (c) X*(5,4) where  Hmax  occurs 
at Q(5,4)=22. (d) X*(7,5) where  Hmax  occurs at Q(7,5) = 41. 
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65, 70, 75, 80, 85, and 90]. This yielded 550×9 = 4,950 
untouched images. For each quality factor group, an image’s 
histogram of DCT coefficients at one certain frequency was 
generated and used to determine the corresponding 
quantization step at that frequency according to section 2. This 
was repeated for all the 64 histograms of DCT coefficients. 
The resulting quantization table was compared to the image’s 
known table and the percentage of correctly estimated 
coefficients was recorded. Also, the estimated table was used 
in equations (2) and (3) to determine the image’s average 
distortion and blocking artifact measures, respectively. These 
values were recorded and used later to set a threshold value for 
distinguishing forgeries from untouched images. 

The above procedure was applied to all images in the 
dataset. Table 2 shows the accuracy of the used method for 
each tested quality factor averaged over the whole set of 
images. It shows that quality factor of 75 gives a percentage of 
around 80%. This is reasonable as this average quality factor 
yields the best image quality-compression tradeoff and hence 
the histograms have enough data to accurately define the 
quantization steps. As the quality factor decreases, estimation 
accuracy drops steadily. This, as explained earlier, is due to 
heavy quantization and corresponding large steps used with 
lower qualities. Histograms convey no data to predict the 
compression values. For higher quality factors, it is predictable 
that performance tend to improve which is apparent in the 
rising values in Table 2. Nevertheless, notice the drop in 
estimation for very high quality factors (95 and 100). This is  

 due to very small quantization steps. The peaks of the 
histogram are no longer distinguishable as “bumps” outside 
the zero vicinity, but rather show as quick swinging. 
Moreover, most of the lower steps for such high qualities have 
the values of 1 or 2, which are very close to zero (for QF=100, 
all entries of the Q table are 1’s and no compression takes 
place). In our method, we remove zero and its neighborhood 
which are all the next lower points until we hit a mount again.  
These values removed before estimation causes our method to 
always fail to estimate a step size of 1. The only case we 
manage to record a 1 is when the histogram of 1 is larger than 
the histogram of 0 which sometimes occur within lower 
frequencies. As for higher frequencies, they often give 
erroneous results. One way to correct them is to threshold the 
number of entries in the resulting table having the value of 1. 

If most low frequency steps are 1 then we consider QF = 100 
and output the corresponding table of 64 ones. 

 To verify that a wide range of quantization tables, standard 
and non standard can be estimated, we created another image 
set of 100 JPEG images from different sources as our arbitrary 
test set. Each image’s quantization table was estimated and the 
percentage of correctly estimated coefficients recorded. This 
gave an average percentage of correct estimation of 86.45%. 

 Maximum Likelihood methods for estimating Q tables [5-
6], tend to search for all possible Q(i,j) for each DCT 
coefficient over the whole image which can be 
computationally exhaustive. Furthermore, they can only detect 
standard compression factors since they re-compress the 
image by a sequence of preset quality factors. This can also be 
a time consuming process. Other methods [1, 8] estimate the 
first few (often first 3×3) low frequency coefficients and then 
search through lookup tables for matching standard tables. Ye 
et. al [1], proposed a new quantization table estimation based 
on the power spectrum, PS, of the histogram of DCT 
coefficients. They constructed a low-pass filtered version of 
the second derivative of the PS and found that the number of 
local minima plus one equals the quantization step. Only the 
first 32 coefficients are used in the estimation because high 
frequency DCT coefficients would be all zero when quantized  
by large step. The authors of that work did not provide filter 
specifications, and we believe through experimenting, that 
there are no unanimous low-pass filter parameters for all 
quality factors or for all frequency bands. This means that 

either we use different settings for each group of Q steps, or 
use one filter to get a few low frequencies and then retrieve the 
rest of the table through matching in lookup tables. We found 
that a 1×3 Gaussian filter with a large cutoff frequency gave 
the best possible results when tested on a number of images. 
We used the filter to estimate the first nine AC coefficients 
and recorded the percentage of correct estimation. Tables 3 
and 4 show the estimation time and accuracy of the MLE 
method and power spectrum method against our method for 
different quality factors averaged over 500 test images of size 
640×480 from the UCID. While MLE requires double the 
time, the average time in seconds for the latter two methods is 
very close while the average accuracy of the power spectrum 
method using the specified filter was around 77%. We believe 
filter choice is crucial but since we could not optimize a fixed 
set of parameters, we did not investigate the method any 
further. 

B. Forfery Detection 

 To create the image set used for forgery testing, we 
selected 500 images from the untouched image set. Each of 
these images was processed in a way and saved with different 
quality factors. More specifically, each image was subjected to 
four kinds of common forgeries; cropping, rotation, 
composition, and brightness changes. Cropping forgeries were 

TABLE II.  PERCENTAGE OF CORRECTLY ESTIMATED COEFFICIENTS FOR SEVERLA QFS 

50 55 60 65 70 75 80 85 90 95 100 

66.9 69.2 72.0 74.2 76.9 79.4 82.3 85.5 88.2 66.33 52.71 

TABLE III.  AVERAGE ESTIMATION ACCURACY AGAINST OTHER METHODS 

FOR DIFFERENT QUALITY FACTORS. 

QF Method 50 60 70 80 90 

MLE 59.12 63.75 86.25 86.34 70.50 

Power Spectrum 65.37 68.84 75.75 90.12 84.75 

Maximum Peak 96.04 97.69 97.33 91.89 73.33 
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done by deleting some columns and rows from the original 
image to simulate cropping from the left, top, right, and 
bottom. For rotation forgeries, an image was rotated by 270o. 
Copy-paste forgeries were done by copying a block of pixels 
randomly from an arbitrary image and then placing it in the 
original image. Random values were added to every pixel of 
the image to simulate brightness change. The resulting fake 
images were then saved with the following quality factors [60, 
70, 80, and 90]. Repeating this for all selected images 
produced total of (500×4) × 4 = 8,000 images. Next, the 
quantization table for each of these images was estimated as 
above and used to calculate the image’s average distortion,  

 (2), and the blocking artifact, (3), measures, respectively.  

 The scattered dots in Fig. 4 show the values of the average 
distortion for 500 untouched images (averaged for all quality 
factors for each image) while the cross marks show the 
average distortion values for 500 images from the forged 
dataset. As the figure shows, the values are distinguished to 
distortion measure and hence the values for forged images 
tend to cluster higher than those for untampered images.  

 Through practical experiments we tested the distortion 
measure for untouched images against several threshold values 
and calculated the corresponding false positive rate FPR (the 
number of untouched images deemed as forged.), i.e., the 
number of values above the threshold. Optimally, we aim for a 
threshold that gives nearly zero false positive. However, we 
had to take into account the false negatives (the number of 
tampered images deemed as untampered) that may occur when 
testing for forgeries. Hence, we require a threshold value 
keeping both FPR and the FNR low. But since we rather have 
an untampered show up as tampered, rather than the other way 
round, we chose a threshold that is biased towards false 
positive rate. We selected a vale that gave FPR of 12.6% and a 
lower FNR as possible for the different types of forgeries. The 
horizontal line marks the selected threshold τ = 30. Similarly, 
the same set of images was used with the BAM and the 
threshold was selected to be τ = 20, with a corresponding FPR 
of 6.8%.  

 Fig. 5 shows the false negative rate (FNR) for the different 
forgeries at different quality factors. The solid line represents 
the FNR for the average distortion measure, while the dashed 
line is for the blocking artifact measure. Each line is labeled 

with the average FNR over all images. As expected, as QF 
increases, a better estimate of the quantization matrix of the 
original untampered image is obtained, and as a result the 
error percentage decreases. Notice that cropping needs to 
destroy the normal JPEG grid alignment in order to achieve 
high distortion and hence mark the image as possible fake. 
This is because if the picture happens to be aligned perfectly 
to the original grid after cropping, then the cropping forgery 
would go undetected in this case. Similarly, detecting copy-
paste forgery is possible since the pasted part fails to fit 
perfectly into the original JPEG compressed image. As a 
result, when the distortion metric is calculated, it exceeds the 
detection threshold. Charts show that the blocking artifact 
measure  recorded  a  lower  threshold  and usually lower FNR 
than average distortion measure. Generally, the performance 
of the two measures is relatively close for brightened and 
rotated images. However, BAM is more sensitive to cropping 
and compositing since it works on the JPEG’s “grid” and these 
two manipulations tend to destroy that natural grid. Brightness 
manipulated images are the most ones likely to go undetected 

as they leave the grid intact. 

Fig. 6(a) and (b) show two untouched images that are used 
to make a composite image (c). Part of the car from the second 
images was copied and pasted into the first image and the 
result was saved with different compression factors. The 
resulting distortion measures for the composite image are 
shown in Fig. 6(d) through (g). The dark parts denote low 
distortion whereas brighter parts indicate high distortion 
values. Notice the highest values corresponding to the part 

TABLE IV.  AVERAGE ESTIMATION TIME (FIRST 3×3) AGAINST 

OTHER METHODS FOR DIFFERENT QUALITY FACTORS. 

QF Method 50 60 70 80 90 

MLE 22.29 22.35 22.31 22.26 22.21 

Power Spectrum 11.37 11.26 10.82 10.82 11.27 

Maximum Peak 11.27 11.29 11.30 11.30 11.30 

 

Fig. 4. Average distortion measure for untouched and tampered images. 

 

Fig. 5. False negative rate for two distortion measures, calculated for 
different forgery types. 
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pasted from the second image and hence marking the forged 
area. Apparently as the quality factor increases, detection 
performance increases. Moreover, if the forged image was 
saved as a bitmap, detecting inconsistencies becomes easier as 
no quantization, hence loss of data, takes place. This can help 
in establishing bitmap compression history. 

III. CONCLUSIONS 

We showed in this paper that while ignoring quantization 
rounding errors, we still can achieve reasonably high 
quantization table estimation accuracy through computing a 
histogram once for each DCT coefficient. The maximum peak 
method, although straightforward gives good estimation 
results while neglecting rounding error. Hence, this reduces 
the need to statistically model rounding errors and hence 
reduces computations and time. It was tested against MLE 
method that models round off errors as modified Gaussian, 
and proved to require half the time with no degraded accuracy, 
if not better for some quality factors. 

We have found through extensive test that the method 
estimates all low frequencies in addition to a good percentage 
of the high frequencies. Hence, this reduces the need for 
lookup tables and matching overtime as a large percentage of 
the table can be reliably estimated directly from the histogram 
(even some high frequencies). And by "large percentage" we 
mean enough entries to compute the distortion measure 
correctly without further searching in lookup tables. Also this 
means that arbitrary step sizes can be estimated which are 
often used in different brands of digital cameras. 

The method was tested against the power spectrum method 
and proved to require nearly the same estimation time with 
improved accuracy. However, eliminating the need for lookup 
tables will naturally affect execution time since we will have 
to process all 64 entries not just the first 9. 

Nevertheless, for images heavily compressed, the 
histogram fails to estimate high frequencies. In this case, we 
can always estimate the first few low frequency coefficients 
and then search lookup tables for a matching Q table. Of 
course this works only for standard compression table. Also 
images with large homogenous areas may fail to give 
estimation if we choose to exclude uniform blocks when 
approximating the histogram. In addition, performance tends 
to drop when an image is further compressed with a different 
quality factor. In such cases, double quantization leaves its 
traces in the histogram and methods for estimating primary 
and secondary quantization tables can be used. 

Maximum peak also works well for retrieving bitmaps 
previous compression tables and using them for forgery 
detection. 

FUTURE WORK 

Investigating the chroma planes and further testing on 
bitmaps and multiple compressions is due as future work. 
Also, after classifying an image, we require and approach that 
can be used to identify which type of manipulations the image 
underwent. 

Estimation of color space quantization tables: We have so 
far addressed gray scale images and the luminance channel of 
color images. A further study of the two chroma channels and 
the histograms of their DCT coefficients, and hence 
suggestion of possible methods for estimating the chroma 
tables, are natural extension to this work. 

Double Quantization: Double compressed images contain 
specific artifacts that can be employed to distinguish them 
from single compressed images. When creating composites, 
the pasted portion will likely exhibit traces of a single 
compression, while the rest of the image will exhibit signs of 
double compression. This observation could in principle be 
used to identify manipulated areas in digital images. 

JPEG2000: provides better compression rates with respect 
to quality compared to the standard JPEG compression. It is 
based on Wavelet transforms, and constitutes an interesting 
research topic in digital image forensics. 
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(a) Original with QF = 80. (b) Original with QF = 70. (c) Composite image. 

 

 

 

 

(d) QF = 70 

 

 

 

 

(e) QF = 80 

 

 

 

 

(f) QF = 90 

 

 

 

 

(g) BMP 

Fig. 6.  Two test images (a) and (b) used to produce a composite image (c). For each QF (d) through (g), the left column figures represents the average 
distortion measure while the right column figures represents the blocking artifact measure for the image in (c). 


