
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 2, No.1, January 2011

106 | P a g e

http://ijacsa.thesai.org/

Improved Off-Line Intrusion Detection Using A

Genetic Algorithm And RMI

Ahmed AHMIM1

Department of Computer Science,

Badji Mokhtar University

Annaba, 23000, Algeria

ahmed.ahmim@hotmail.fr

Nacira GHOUALMI2

Department of Computer Science,

Badji Mokhtar University

Annaba, 23000, Algeria

ghoualmi@yahoo.fr

Noujoud KAHYA3

Department of Computer Science,

Badji Mokhtar University

Annaba, 23000, Algeria

kahya.noudjoud@gmail.com

Abstract— This article proposes an optimization of using

Genetic Algorithms for the Security Audit Trail Analysis

Problem, which was proposed by L. Mé in 1995 and improved

by Pedro A. Diaz-Gomez and Dean F. Hougen in 2005. This

optimization consists in filtering the attacks. So, we classify

attacks in “Certainly not existing attacks class”, “Certainly

existing attacks class” and “Uncertainly existing attacks class”.

The proposed idea is to divide the 3
rd

 class to independent sub-

problems easier to solve. We use also the remote method

invocation (RMI) to reduce resolution time. The results are

very significant: 0% false+, 0%false-, detection rate equal to

100%. We present also, a comparative study to confirm the

given improvement.

Keywords-component; intrusion detection system; Genetic

Algorithm; Off-Line Intrusion Detection; Misuse Detection;

I. INTRODUCTION

The computing networks became the paramount tool for
the various sectors (social, economies, military… etc.). The
phenomenal developments of networks are naturally
accompanied by the increase in the number of users. These
users, known or not, are not necessarily full of good
intentions for these networks. They can exploit the
vulnerabilities of networks and systems, to try access to
sensitive information in order to read, modify or destroy
them. Therefore, that these networks appear the targets of
potential attacks, their securing has become an unavoidable
bet.

Computer security has become in recent years a crucial
problem. It rallies the methods, techniques and tools used to
protect systems, data and services against the accidental or
intentional threats, for ensure: Confidentiality; Availability;
Integrity [1].

 Nowadays, different techniques and methods have been
developed to implement a security policy: authentication,
cryptography, firewalls, proxies, antivirus, Virtual Private
Network (VPN), Intrusion Detection System (IDS). This
paper is organized after an introduction as: The second
section is a state of the art on the IDS. The third section
presents a formalization of the Security Audit Trail Analysis
Problem (SATAP) as well as using Genetic Algorithms for
the Security Audit Trail Analysis Problem proposed by Mé

[2]; the fourth section presents our contribution to optimize
using Genetic Algorithms for the Security Audit Trail
Analysis Problem. The fifth section presents the results
obtained by our approach; the sixth section presents a
comparative study between the two approaches. Finally, the
conclusion presents the advantages of our approach, and the
prospects work.

II. THE INTRUSION DETECTION SYSTEMS

Intrusion detection systems (IDSs) are software or
hardware systems that automate the process of monitoring
the events occurring in a computer system or network,
analyzing them for signs of security problems [3]. The
intrusion detection system was introduced by James
Anderson [4], but the subject didn’t have great success. After
that, Denning defined the intrusion detection system models
[5], where he exhibits the importance of security audit, with
the aim to detect the possible violations of system security
policy.

According to Intrusion Detection Working Group of
IETF an intrusion detection system includes three vital
functional elements: information source, analysis engine, and
response component [6].

There are five concepts to classify intrusion detection
Systems, which are: The detection method; The behavior on
detection; The audit source location; The detection
paradigm; The usage frequency [6].

The detection method is one of the principal characters of
classification they describe the characteristics of the
analyzer. When the intrusion detection system uses
information about the normal behavior of the system it
monitors, we qualify it as behavior-based. When the
intrusion detection system uses information about the
attacks, we qualify it as knowledge-based [6].

III. INTRUSION DETECTION BY SECURITY AUDIT TRAIL

ANALYSIS

The Security Audit is as medical diagnosis, in order to
determine the set of conditions, which may explain the
presence of observed symptoms (in IDS: the recorded events
in the audit trail). For this reason, expert uses specific
knowledge (the scenarios of attack) based cause at an effect.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 2, No.1, January 2011

107 | P a g e

http://ijacsa.thesai.org/

The expert uses its knowledge to develop assumptions that
confront the reality observed. If there are still observed
symptoms than the made hypothesis made is wrong. On the
other hand, if there are more symptoms than those observed
in the reality, a new hypothesis more relevant must be tested
[2].

In this approach, the attack scenarios are modeled as a set
of couples () where is the type of event and is the
number of occurrences of this type of event in the scenario.
This approach is called « the Security Audit Trail Analysis
Problem».

A. Specification of the Security Audit Trail Analysis
Problem [7]

Formally, the Security Audit Trail Analysis Problem can
be expressed by the following statement:

Figure 1. The Security Audit Trail Analysis Problem [7]

 : the number of type of audit events.

 : the number of potential known attacks.

 AE : is the attacks-events matrix which

gives the set of events generated by each attack.

 is the number of audit events of type i

generated by the scenario j

─ (1)

 R : is dimensional weight vector, where:

─ () (2)

─ is the weight associated to the attack i (is

proportional to the risk inherent in the attack scenario

i).

 O : is the dimensional vector where:

─ counts the occurrence of events of type i present in

the audit trail (O is "observed audit vector").

 H : is dimensional hypothesis vector, where:

 (3)

(a) If the attack i is present according to the

hypothesis and

 (4)

(b) Otherwise (H describes a particular attack

subset).

(c)

To explain the data contained in the audit trail (i.e. O) by
the occurrence of one or more attack. We have to find the H
vector which maximizes the Product (it's the
pessimistic approach: finding H so that the risk is the
greatest) with the constraint:

() , () (5)

Finding H vector is NP-complete. Consequently, the
application of classical algorithms is therefore, impossible
where equals to several hundreds.

The heuristic approach that we have chosen to solve that
NP-complete problem is the following: a hypothesis is made
(e.g. among the set of possible attacks, attacks i, j and k are
present in the trail), the realism of the hypothesis is evaluated
and, according to this evaluation, an improved hypothesis is
tried, until a solution is found.

In order to evaluate a hypothesis corresponding to a
particular subset of present attack, we count the occurrence
of events of each type generated by all the attacks of the
hypothesis. If these numbers are less than or equal to the
number of events recorded in the trail, then the hypothesis is
realistic.

After, we have to find an algorithm to derive a new
hypothesis based on the past hypothesis: it is the role of the
genetic algorithm.

B. Using Genetic Algorithms for Misuse Detection [7]

Genetic algorithms (GA) are optimum search algorithms
based on the mechanism of natural selection in a population.
A population is a set of artificial creatures (individuals or
chromosomes). These creatures are strings of length 1 coding
a potential solution to the problem to be solved, most often
with a binary alphabet. The size L of the population is
constant. The population is nothing but a set of points in a
search space. The population is randomly generated and then
evolves in every generation. A new set of artificial creatures
is created using the fittest or pieces of the fittest individuals
of the previous one. The fitness of everyone is simply the
value of the function to be optimized (the fitness function)
for the point corresponding to the individual. The iterative
process of population creation is achieved by three basic
genetic operators: selection (selects the fittest individuals),
reproduction or crossover (promotes exploration of new
regions of the search space by crossing over parts of
individuals) and mutation (protects the population against an
irrecoverable loss of information).

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 2, No.1, January 2011

108 | P a g e

http://ijacsa.thesai.org/

Two challenges arise when applying GAs to a particular
problem: coding a solution for that problem with a string of
bits and finding a fitness function to evaluate everyone of the
population.

1) Coding a Solution with a Binary String [7]

An individual is a one length string coding a potential
solution to the problem to be solved. In our case, the coding
is straightforward: the length of an individual is and each
individual in the population corresponds to a particular H
vector.

2) The Fitness Function [7]

We have to search, among ail the possible attack subsets,
for the one which presents the greatest risk to the system.
This result in the maximization of the product . As
GAs are optimum search algorithms, finding the maximum
of a fitness function, we can easily conclude that in our case
this function should be made equal to the product . So
we have:

 ∑

(6)

 Where I is an individual.

This fitness function does not take into account the
constraint feature of our problem, which implies that some

individuals among the Possible are not realistic.

This is the case for some i type of events when:

 () (7)

As a large number of individuals do not respect the
constraint. We decided to penalize them by reducing their
fitness values. So we compute a penalty function (P) which
increases as the realism of this individual decreases: let be
the number of types of events for which

 () (8)

The penalty function applied to such an H individual is
then:

 (9)

A quadratic penalty function (i.e. p = 2) allows a good
discrimination among the individuals. The proposed fitness
function is thus the following:

 () (∑

) (10)

The β parameter makes it possible to modify the slope of
the penalty function and α sets a threshold making the fitness
positive. If a negative fitness value is found, it is equaled to 0
and the corresponding individual cannot be selected. So the
parameter allows the elimination of a too unrealistic
hypothesis.

This selective function was improved by Diaz-Gomez, P.
A. Hougen [8]. This improvement proved mathematically [9]

[10]. A new selective function provides less false positives
and less false negative [11].

The new selective function is:

 () (11)

Where corresponds to the total number of classified
events. Corresponds to the number of overestimates, i.e.,
the number of times () for each attack .
That is, if a hypothesized attack considered alone, would
cause () for some i, and another
hypothesized attack considered alone, would also cause

() , then would have a value of 2 [12].

IV. CONTRIBUTIONS

Inspired from Ludovic Mé [7] contributions and Diaz-
Gomez, P. A. Hougen [8] improvement, we classify attacks
in Security Audit Trail in three classes and divide the 3rd
class to independent sub-problems. Then, we apply the
genetic algorithm with the proposed crossover operator in
[13] and L. Mé selective function (10). The second
contribution is to optimize the resolution time of the genetic
algorithm. For this we apply RMI (remote method
invocation) to each sub-problem.

The Figure2 represents the activity diagram that
summarizes the different steps of our proposition.

Figure 2. Activity diagram of our contribution

A. Filtration of attacks

The Filter uses Observation matrix “O” and the Matrix
attack-event “AE’. The proposed idea is reducing the size of
the problem in order to obtain the correct solution and to
reduce the runtime.

Consequently, we classify attacks in three classes, and
divide the last class to sub-problems:

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 2, No.1, January 2011

109 | P a g e

http://ijacsa.thesai.org/

1) Certainly not existing attacks' class

 Eliminate attacks, which have a probability of existence
equal to 0%. These attacks generate an occurrence number
for one of the events greater than the occurrences number
audited for this event. So, attacks i satisfy the following
formula:

 () (12)

To eliminate these attacks, we compare Matrix attack-
event “AE” with the Observation matrix “O”. The result is
attacks noted . After that, we remove the events that have

value 0 in Observation matrix “O”. The number of events
used for selected attacks is noted .

The results are matrixes with the following dimensions:

 () , () , () , () (13)

Figure 3 shows an example of elimination certainly not
existing attacks. For example, attack A2 generates 5 events
E9, while the Security Audit Trail records only 4 events
E9.

Figure 3. Example of step1

2) Certainly existing attacks' class

Eliminate attacks, which have a possibility of existence
equal to 100 %. These attacks haven’t a common event with
other attacks. In this case, the sum of their occurrence
number is less than or equal to the audited occurrences'
number for this event. For eliminate these attacks we
compare the () and matrix () . So, attacks i

that verify the following formula:

 (() ((∑

))) (14)

The result is the attacks noted . Consequently, we

resize Matrix attack-event “AE” to the size(). After

these treatments, we eliminate the events j that verifies the
formula:

 (∑

) (15)

The number of attacks events retain is noted .

The results are matrixes with the following dimensions:

 (), (), (), ()

(16)

Figure 4 shows an example of elimination certainly
existing attacks. For example attack A11 haven’t a common
event with other attacks for event E4,and when they have a
common event with other attacks(E7,E14,E19), the sum of
their occurrences number is less than or equal to the audited
occurrences number for this event.

Figure 4. Example of step 2

3) Uncertainly existing attacks' class

This last class is concerned by our contribution. These
attacks that we doubt for their existence represent the real
Security Audit Trail Analysis Problem (SATAP). These
attacks represent the uncertainly existing attacks' class.

B. Divisions SATAP to sub-SATAP

We use the 3rd class. So, we regroup the attacks that
generate the same kind event where the sum of the
occurrences number exceeds the occurrences number audited
for this event. This relation between attacks called “mutually
exclusive”.

Each attack group contain attacks “mutually exclusive”
over there and we associate to each attack group the event
group which they have an occurrences number higher than
the audited occurrences number. We create the Sub-SATAP
where each contains the attacks of the group i with
associated events.

Figure.5 presents the associated algorithm to the process
described above. Procedure add-element is called in
procedure grouping.

Procedure grouping
begin
for i=1 to do
 if (not-marked attack(i)) then
 Create group() ;
 Mark(i) ;
 add-element(i) ;

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 2, No.1, January 2011

110 | P a g e

http://ijacsa.thesai.org/

end.
Procedure add-element(i)
begin
for to do

 if then

 for to do
 if then

 if (not-marked attack (x)) then
 add-to-

group(x);
 Mark(i);
 add-

element(x);
 else fusion-group-where-

belong(x,i);
end .

 Figure 5. Division SATAP to Sub-SATAP algorithm

Each sub-SATAP * + defines the sub-

Figure 6 shows an example of Divisions SATAP to sub-
SATAPs. For example, attack A5 is mutually exclusive with
attacks A8 for the event E6 and mutually exclusive with
attacks A9 for the event E9. For this reason, the attacks A5
A8 A9 with the event E6 E9 represent one of the sub-
SATAP.

Figure 6. Example of step 3

C. The crossover

The proposed crossover operator is a crossover strongly
random. All heritage possibilities are reached from the first
generation in reduced time. The advantage of this crossover
is the minimization of the generation number needed to
generate certain individual that can be the best solution of
our problem. This crossover consists, firstly, to make a
cloning one of the two parents. So, the generated member
inherits randomly the genes of the second parent, and we put
it in the corresponding locus in the cloned parent [13] as
shown in Figure 7.

Figure 7. Crossover of our proposition

D. Resolve the sub SATAP simultaneously with RMI

This step consists to resolve the sub-SATAPs
simultaneously using the remote method invocation. We
associate to each sub-SATAP a thread to resolve it in the
suitable computer (best performance for the biggest sub-
SATAP) as shown in Figure 8.

Figure 8.Simultaneous resolution mechanism of the sub-SATAP

V. EXPERIMENTATIONS

A. Used Metrics

To evaluate the performance of this contribution, several
tests with several benchmarks extracted from the KDD Cup
1999 data set [14] was performed. The evaluation metrics
used are the following:

 False positive: false alarms caused by legitimate
changes in program behavior [15].

 False negative: missed intrusions caused by attackers
who mimic benign users [15].

 Detection rate.

 Processing time.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 2, No.1, January 2011

111 | P a g e

http://ijacsa.thesai.org/

TABLE I. IT SUMMARIZES THE DIFFERENT RESULTS OBTAINED WITH

THE VARIOUS BENCHMARKS.

We remark that for all benchmarks the proportion of false
positive and false negative equal to 0 % and the detection
rate equal to 100 % that signify, the good quality of
resultants.

We remark also that there are several benchmarks,
treated in real time (0 ms). This means, that during the two
first steps of attack classification we can attest about the
existing attacks or not. The other benchmarks are concerned
by the second step “Divisions SATAP to sub-SATAP” and
the genetic algorithms must be applied to identify attacks
that justify the increase of processing time. The benchmark
(15, 19) and (25, 51) are treated in the more reducing time
than the resolution without remote method invocation due to
simultaneously treatment of the sub-SATAP.

VI. COMPARATIVE STUDY

First we compare the results of the contribution and the
work of Mé [7] using the same benchmarks. The following
metric are used: the number of detected attacks, the number
of constraints raped during each generation, the convergence
speed to the best solution, the number of generation and the
necessary time for the resolution.

Results show in Figure.10 and Figure.9 and table 2 that
with our work we detect the same attack's percentage that
represents the real attacks.

However, there are some differences:

 Runtime: the processing time of our proposition is
less than the processing time of [7] and [11] due to
minimizing of problem size and dividing the
problem to sub-problems and the simultaneously
treatment of sub-SATAP.

 Generations number: the number of generations
needed for our proposition is less than the number of
generations needed for [7] and [11], because the size
of the biggest sub-SATAP to be treated is less than
or equal (in the worst case) the size of SATAP.

 Convergence speed: the convergence speed of our
proposition is faster than [7]and[11], because the
resolution of sub-SATAP is more efficient than that
of SATAP.(in the worst case) the size of SATAP.

 Constraints' violation: due to the filtering operation
and the dividing of SATAP to sub-SATAP, the
constraint's violation of contribution is lesser (almost
nonexistent) than the [7] and [11].

Figure 9. Comparison between our improvement and Diaz-
Gomez, P. A. and Hougen for benchmark (15,19)

Figure 10. Comparison between improvement and L.Mé resolution for
benchmark (25,51)

Benchmark Fals

e +

%

Fals

e - %

Detec

tion rate

%

Processi

ng Time

Processi

ng Time with

RMI

benchmark(2,4) 0% 0% 100% ≈0 ms ≈0 ms

benchmark(5,9) 0% 0% 100% ≈0 ms ≈0 ms

benchmark(6,9) 0% 0% 100% ≈7 ms ≈7 ms

benchmark(9,1

1)

0% 0% 100% ≈0 ms ≈0 ms

benchmark(10,

12)

0% 0% 100% ≈0 ms ≈0 ms

benchmark(15,

19)

0% 0% 100% ≈13 ms ≈16 ms

benchmark(15,

20)

0% 0% 100% ≈0 ms ≈0 ms

benchmark(17,

35)

0% 0% 100% ≈0 ms ≈0 ms

benchmark(21,

40)

0% 0% 100% ≈0 ms ≈0 ms

benchmark(24,

50)

0% 0% 100% ≈0 ms ≈0 ms

benchmark(25,

51)

0% 0% 100% ≈232 ms ≈265 ms

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 2, No.1, January 2011

112 | P a g e

http://ijacsa.thesai.org/

TABLE II. TCOMPARISON BETWEEN THE TWO RESOLUTION METHODS

OF SATAP

VII. CONCLUSIONS AND PERSPECTIVES

Using Genetic Algorithms for the Security Audit Trail
Analysis Problem has significant results. This contribution
consists to classify attacks in Security Audit Trail in three
classes and divide the 3rd class to sub-problems. Then, we
apply the genetic algorithm with the proposed crossover
operator in [13] and same selective function of Mé [7]. The
second contribution is to optimize the resolution time of
genetic algorithm. For this we apply RMI (remote method
invocation) to each sub-problem simultaneously.

The contribution brings the following advantages:

 0% False +.

 0% False -.

 100% detection rate.

 Minimizing the runtime.

 Increasing the convergence speed.

 Reducing the constraints violation.

 Reducing the generations number needed to solve
this problem.

This improvement confirms the power of using Genetic
Algorithms for the Security Audit Trail Analysis Problem
where we detect 100% of real attacks.

Our perspective is to propose architecture of multi-agents
system for real time resolution of SATAP.

REFERENCES

[1] E. Cole, Ronald L. Krutz, J. Conley, “Network Security Bible,” Wiley
Publishing, Inc.January 2005 ISBN13:978-0-7645-7397-2

[2] L. Mé ,“Un algorithme génétique pour détecter des intrusions dans un
système informatique ,” VALGO, 95(1):68-78, 1995.

[3] R. Bace, P. Mell , “NIST Special Publication on Intrusion Detection
Systems” ,2001 .

[4] J. Anderson, , ”Computer Security Threat Monitoring and
Surveillance”. Technical report, James P. Anderson Company, Fort
Washington, Pennsylvania (1980).

[5] D. Denning,”An Intrusion-Détection Model”. IEEE transaction on
Software Engineering, 13(2):222-232 (1987).

[6] H. Debar, M. Dacier, A. Wespi, “A Revised Taxonomy for Intrusion-
Detection Systems”. Annales des Télécommunications, 55(7-8),
2000.

[7] L. Mé, “GASSATA, A Genetic Algorithm as an Alternative Tool for
Security Audit Trails Analysis”. Web proceedings of the First
international workshop on the Récent Advances in Intrusion
Détection 1998 .

[8] P. A. Diaz-Gomez, D. F. Hougen, “Improved Off-Line Intrusion
Detection using a Genetic Algorithm” In Proceedings of the Seventh
International Conference on Enterprise Information Systems, 2005

[9] P. A. Diaz-Gomez, D. F. Hougen,, “Analysis and Mathematical
Justification of a Fitness Function used in an Intrusion Detection
System” In Proceedings of the Seventh Annual Genetic and
Evolutionary Computation Conference 2005.

[10] P. A. Diaz-Gomez, D. F. Hougen, “Mathematical Justification of a
Fitness Function used for Audit Trail Intrusion Analysis” In the
Poster Session of the Research Experience Symposium 2005, at the
University of Oklahoma.

 [11] P. A. Diaz-Gomez, D. F. Hougen, “A Case Study in Genetic
Algorithms applied to Off-line Intrusion Detection Systems” In 1st
Annual Computer Science Research Conference at the Stephenson
Research and Technology Center 2005.

 [12] P. A. Diaz-Gomez, D. F. Hougen, “Further Analysis of an Off-Line
Intrusion Detection System”: An Expanded Case Study in Multi-
Objective Genetic Algorithms SCISS'05 The South Central
Information Security Symposium

[13] M. Rachid,N. Ghoualmi, “Crossover and Mutation Based Cloning
Parent for Degree Constrained Minimum Spanning Tree Problem,” ,
AMERICAN UNIVERSITY OF SHARGAH, UAE , IEEE ICESMA
(2010), 30-1 April, ISBN: 978-9948-427-14-8.

[14] KDD Cup Data, http://kdd.ics.uci.edu/databases/kddcup99/
kddcup99.html October 28, 1999.

[15] P. Roberto, M. Luigi V, “Intrusion Detection Systems,” 2008,
ISBN:978-0-387-77265-3.

 Classical

resolution

Our proposition

Without

RMI

With RMI

benchmark(2,

4)

≈16 ms ≈0 ms ≈0 ms

benchmark(5,

9)

≈62 ms ≈0 ms ≈0 ms

benchmark(6,

9)

≈125 ms ≈7 ms ≈7 ms

benchmark(9,

11)

≈234 ms ≈0 ms ≈0 ms

benchmark(1

0,12)

≈312 ms ≈0 ms ≈0 ms

benchmark(1

5,19)

≈1s 60 ms ≈16 ms ≈13 ms

benchmark(1

5,20)

≈1s 139 ms ≈0 ms ≈0 ms

benchmark(1

7,35)

≈2s 777 ms ≈0 ms ≈0 ms

benchmark(2

1,40)

≈4s 771 ms ≈0 ms ≈0 ms

benchmark(2

4,50)

≈7s 909 ms ≈0 ms ≈0 ms

benchmark(2

5,51)

≈8s 502 ms ≈265 ms ≈232 ms

