
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 2, No.1, January 2011

59 | P a g e

http://ijacsa.thesai.org/

An Efficient Resource Discovery Methodology for

HPGRID Systems

D.Doreen Hephzibah Miriam

Department of Computer Science and Engineering,

Anna University

 Chennai, India

Email: doreenhm@gmail.com

K.S.Easwarakumar

Department of Computer Science and Engineering,

Anna University

 Chennai, India

 easwara@cs.annauniv.edu

Abstract — An efficient resource discovery mechanism is one of

the fundamental requirements for grid computing systems, as it

aids in resource management and scheduling of applications.

Resource discovery activity involves searching for the

appropriate resource types that match the user’s application

requirements. Classical approaches to Grid resource discovery

are either centralized or hierarchical, and it becomes inefficient

when the scale of Grid systems increases rapidly. On the other

hand, the Peer-to-Peer (P2P) paradigm emerged as a successful

model as it achieves scalability in distributed systems. Grid

system using P2P technology can improve the central control of

the traditional grid and restricts single point of failure. In this

paper, we propose a new approach based on P2P techniques for

resource discovery in grids using Hypercubic P2P Grid

(HPGRID) topology connecting the grid nodes. A scalable, fault-

tolerant, self-configuring search algorithm is proposed as

Parameterized HPGRID algorithm, using isomorphic

partitioning scheme. By design, the algorithm improves the

probability of reaching all the working nodes in the system, even

in the presence of non-alive nodes (inaccessible, crashed or nodes

loaded by heavy traffic). The scheme can adapt to a complex,

heterogeneous and dynamic resources of the grid environment,

and has a better scalability

Keywords- Peer-to-Peer; Grid; Hypercube; Isomorphic

partitioning; Resource Discovery

I. INTRODUCTION

Computational Grids and Peer-to-Peer (P2P) computing are
the two popular distributed computing paradigms that have
been converging in recent years. Computational Grid is an
infrastructure that can integrate the computational resources of
almost all kinds of computing devices to form a global
problem-solving environment. On the other hand, P2P systems
aim at resource sharing and collaboration through direct
communication between computers without a centralized
server as a medium. Computational Grids and P2P are both
resource sharing systems having as their ultimate goal the
harnessing of resources across multiple administrative
domains. These two distributed systems have some
commonalities as well as some conflicting goals as discussed in
[4]. They have many common characteristics such as dynamic
behavior and heterogeneity of the involved components. Apart

from their similarities, Grid and P2P systems exhibit essential
differences reflected mostly by the behavior of the involved
users, the dynamic nature of Grid resources (i.e., CPU load,
available memory, network bandwidth, software versions) as
opposed to pure file sharing which is by far the most common
service in P2P systems. Although Grid and P2P systems
emerged from different communities in order to serve different
needs and to provide different functionalities, they both
constitute successful resource sharing paradigms. It has been
argued in the literature that Grid and P2P systems will
eventually converge [12, 17]. The techniques used in each of
these two different types of systems will result to a mutual
benefit.

Resource discovery is the key requirements in large
heterogeneous grid environments, and an effective and efficient
resource discovery mechanism is crucial. Traditionally,
resource discovery in grids was mainly based on centralized or
hierarchical models. Resource discovery could be the potential
performance and security bottleneck and single point of failure.
The Peer-to-peer systems for discovering resources in a
dynamic grid discussed in [19]. Using P2P technology, the
resource can be discovered quickly and effectively in grid
environment, scalability and robustness can also be improved
in P2P Grid.

In this paper, we propose a P2P based Grid resource
discovery model, HPGRID system which uses Parameterized
HPGRID algorithm, to optimize grid resource discovery and
reaches all the grid nodes during searching process even in the
presence of non-alive (crashed, inaccessible, experiencing
heavy traffic, etc.). The model overcomes the defects of central
resource discovery mechanism. The HPGRID model can adapt
to the distributed and dynamic grid environments, and has a
better scalability. The HPGRID nodes are partitioned
isomorphically listing the available resources according to their
zones which aids the user to select the needed resource to
execute its job rather than traversing the whole grid nodes.

The rest of this paper is structured as follows. Section 2
surveys the related work. Section 3 describes the Hypercubic
P2P grid topology. Section 4 describes the HPGRID resource
discovery algorithm integrated with Isomorphic partitioning.

mailto:doreenhm@gmail.com

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 2, No.1, January 2011

60 | P a g e

http://ijacsa.thesai.org/

Section 5 presents the performance evaluation. Finally, section
6 concludes the paper and presents the future work

II. RELATED WORK

The taxonomy of resource discovery discussed in [21] has
identified four main classes of Resource Discovery systems
namely centralized, distributed third party, multicast discovery
and P2P resource discovery. P2P-based resource discovery
systems allow nodes participating in the system to share both
the storage load and the query load [18]. In addition, they
provide a robust communication overlay. P2P-based Grid
resource discovery mechanisms that appear in the literature can
be divided into two categories: structured and unstructured
[11]. Most proposed systems depend on a structured P2P
underlying layer. A structured system however assumes that all
pieces of information are stored in an orderly fashion according
to their values in a DHT. This is the reason structured systems
support efficient resource discovery. However, apart from
static resources, Grids include dynamic resources whose values
change over time. Whenever the value of a resource attribute
stored in a structured system changes, it needs to be
republished. If this occurs too often, the cost of republishing
becomes prohibitively high.

Iamnitchi et al. proposes resource discovery approach in [7]
based on an unstructured network similar to Gnutella combined
with more sophisticated query of forwarding strategies which is
taken from the Freenet overlay network. Requests are
forwarded to one neighbor which are only based on
experiences obtained from previous requests, thus trying to
reduce network traffic and the number of requests per peer
compared to simple query flooding as used by Gnutella.
Iamnitchi improves the central control of the traditional grid
and adapts fully the decentralized resource discovery in grid
environments. However, the limitations are still there in this
approach.

Felix Heine et al. propose grid resource discovery approach
based ontology and structured P2P technologies in [6]. The
approach tackles the semantic problem, but the maintenance of
Peer is too high cost because Peer joins and leaves dynamically
in structured P2P grid environments. Moreover, the approach
focuses on the inherited relationship among grid resource
classes and have not discussed the unstructured P2P
technologies.

Several P2P schemes, e.g. MAAN [2], NodeWiz [1] and
SWORD [8], [16] have been proposed to index and discover
Grid resources in a structured P2P network. By using
appropriate routing schemes, search queries are routed to the
nodes that are responsible for indexing the corresponding
resources. Therefore, these schemes scale well to large number
of participating nodes. On the other hand, their flat indexing
structures pose a major challenge to the global resource
monitoring in Grids due to its large-scale and decentralized
nature

The HyperCuP system used ontology to organize peers into
groups of similar interests using a hypercube topology network
[9]. Search queries were forwarded to interest groups to

produce a better hit rate and reduce redundant query messages.
This approach required complex construction of the structured
hypercube topology network. When joining the network, a peer
declared its interest so that the network could put the peer into
the cluster of its interest. As P2P is a dynamic environment, a
peer might change its interest over time. Constantly updating
the network would result in high cost. Furthermore, it would be
more complicated if peers had more than one interest. A super-
peer model for resource discovery services in large-scale grids
discussed in [20]. Zheng [22] describes a model for resource
discovery among Grids based on the community categorized by
application domain. Rozlina [23] discussed the issues related to
matrix for measuring the cost and benefit for choosing the right
resource discovery mechanism for a P2P systems. The main
purpose of the resource discovery Strategy [24] is to improve
the efficiency of the implementation of grid system.
Abdelkader Hameurlain [25] provides a survey and a
qualitative comparison of the most promising approaches (P2P
techniques and agent systems) for RD. Viability of Grid
systems relies mainly on efficient integration of P2P techniques
and mobile agent (MA) systems to bring scaling and
decentralized control properties to Grids.

III. HYPERCUBIC P2P GRID

A. Hypercubic P2P Grid Topology

The Hypercubic P2P Grid Topology is the hypercube
structure with additional neighborhood links. In short, we refer
Hypercubic P2P Grid as HPGRID.

The Hypercubic P2P Grid nodes have 11 nk)

neighbors. Let l , 1 ≤ l ≤ kn−2, be the layer of the HPGRID. Let
d be the set of nodes at each layer of the HPGRID, then d = 0,
1, 2, 3. Also, the number of nodes in HPGRID is kn, and the

number of edges are knnn 12 1 . The HPGRID Topology

for n = 3 is depicted in Figure 1. There in, the dashed lines are
the additional neighborhood links.

The HPGRID system can be represented by an undirected

graph EVG , where vv dl
V

0.0.
,......, .

2

2

1
1.13.3.12.0.11.2.10.

,,,,,,,

n

l
llllllll vvvvvvvvE

 1
1

:, qpqp

where p and q are the binary values of the nodes of HPGRID
for a 3D HPGRID (000) denotes node 0and (001) denotes node

1 and so on., and p
1
denotes the number of ones in p. Here

)111(3.2),110(2.2),101(1.2),100(0.2

)011(3.1),010(2.1),001(1.1),000(0.1

vvvv

vvvv
V

and

http://portal.acm.org/author_page.cfm?id=81100198735&CFID=7149776&CFTOKEN=69681051

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 2, No.1, January 2011

61 | P a g e

http://ijacsa.thesai.org/

)3.2,(3.1),2.2,(2.1),1.2,(1.1),0.2,(0.1

)0.2,(2.2),2.2,(3.2),3.2,(1.2),1.2,(0.2

)0.1,(2.1),2.1,(3.1),3.1,(1.1),1.1,(0.1

)1.2,(3.1),3.2,(2.1),0.2,(1.1),2.2,(0.1

vvvvvvvv

vvvvvvvv

vvvvvvvv

vvvvvvvv

E

In E, the first four edges are the additional neighborhood
links, and the remaining edges are the hypercubic edges.

Figure 1. A 3D Hypercubic P2P Grid Topology

B. Representation of HPGRID

Generally, the grid model integrated with P2P mode is
composed of many Cubic GridPeers [13]. Each Cubic Grid-
Peer represents a super management domain. Each Cubic
GridPeer controls the access of a group of local computing
resources. It plays two roles: one as the resource provider and
the other as resource consumer. The resource provider allows
its free resources to other Cubic GridPeer (consumer), while
the consumer arbitrarily uses its local resources or the free
resources of other Cubic GridPeers to carry out its task. The
resource discovery model for HPGRID is shown in figure 2.
The bottom communities of the model using the traditional grid
technologies, and the P2P mode are adapted to interact the
information between Cubic GridPeers. Here, Cubic GridPeer
(CGP) is equivalent to a super node. When they search
resources, the users first query the resources in the domain of
Cubic GridPeer. If no query result, the search will be carried
out through Cubic GridPeer to query the other Cubic GridPeers
with P2P way.

Figure 2. Overview of HPGRID

 In HPGRID, each node represents a CGP where each
CGP is a collection of Grid Nodes GNs. The GN that belongs
to a particular CGP is called Grid Community GC. Each Grid
node is represented using its own identifier and the identifier of
the corresponding CGP. That is, grid node & is represented as
 IDID gCGPg)(,

At each CGP in the HPGRID system, it contains a CGP
Header in the format represented in figure 3.

Figure 3. CGP Header Format

The CGP Header field description is as follows,

 CGPID : Cubic Grid Peer Identifier,

 DF : Distance factor,

 RD: Resource Density,

 LF : Load Factor,

 Flag = 0,CGP is non-alive, Flag = 1,CGP is alive,

 NodeIDi
: Nodes Identifier where i = 1, 2 …n.

 Resrc_Avail: : The total number resources available at
the node,

 Ptr to RT :Pointer to Resource Table,

 No. of CPUs : Total number of processing element at
the node.

Each CGP contains a common resource table which has the
details of all the available resources in its own GC. The
Resource table format is described in Figure 4. It contains the
resource name and number of resources corresponding to its
resource number.

Figure 4. Resource Table

C. Parameter at Cubic Grid Peer

The parameters represent the state of a Cubic Grid Peer
(CGP) that one must meet the following criteria: they must be
small, they must facilitate identifying the fertility of a Cubic
GridPeer and they must not divulge resource structure
information. Based on parallel application characterization
experience, we identified the following parameters.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 2, No.1, January 2011

62 | P a g e

http://ijacsa.thesai.org/

1) Distance Factor (DF)

This gives an idea of how far the target CGP is from the
home CGP. A home CGP is defined to be the CGP in which
the program and input data are present and to which the output
data will go. If it is separated by a large network distance, i.e.,
high latency and low bandwidth, the staging files and the
arriving program and the input files to that CGP will be costly.
Another reason why such a factor is important is that tasks in
parallel programs might be scheduled on different CGP. Thus
there will be some communication between CGP, even though
such a situation will be reduced as far as possible by the search
algorithm. For tightly coupled applications this may not always
be possible and the scheduler might be forced to schedule them
on different CGP. This parameter will make CGP between
which there is large latency or low bandwidth less desirable to
the CGP selector. A high value of this factor makes a CGP less
desirable for scheduling.

)}(),({_ CGPnCGPhdistMinDF

where h(CGP) denotes home CGP and n(CGP) denotes
neighbor CGP.

2) Resource Density (RD):

This parameter represents the intensity of computing power
per unit communication bandwidth. The lower the value of RD,
the more will be the bandwidth between every pair of nodes.
This signifies that the resources in those CGPs are tightly
coupled. For parallel programs that have a communicator in
which a small group of processes communicate a lot, a CGP
with a low value of RD is important. For example, a SMP will
have low RD whereas a network of workstations will have high
RD. A similar parameter has been used to represent the
computation to communication ratio in schedulers of parallel
programs.

Resource Density =

edocessorSpe

thionBandwidCommunicat

Pr

3) Load Factor (LF)

This gives the overall load at some instant in that CGP.
This is important to take care of the computation component of
the parallel program. Thus parallel processes have a high
computation aspect compared to communication which would
prefer a better value for LF than for RD.

Load Factor =
i

ilizationocessorUtiPr%

 These parameters would be number calculated from
information about the state of resources in a particular .CGP

IV. RESOURCE DISCOVERY

In this section, a HPGRID resource discovery model is
proposed, and is described as isomorphic partitioning and
resource search algorithm.

A. Isomorphic Partitioning

The basic idea of isomorphic partitioning is to partition the

HPGRID into
2

i

n
k number of hyper cubes, where i is the

partition step, where i = 1 for n = 3, i = 2 for n = 4, and so on.
After Partitioning, the HPGRID is divided into 4 zones namely
Z1, Z2, Z3 and Z4. Each zones differ in their higher order bit as
shown in figure 5. The processor space is partitioned into
higher dimensional isomorphic sub-cubes and keeping the
same order of dimension. Isomorphic partitioning strategy for
HPGRID systems significantly improves the Subcube
recognition capability, fragmentation, and complexity
compared to existing methods as discusses in [3].

The following zones show the results of isomorphically
partition of the 3D HPGRID into 4 zones containing the
following nodes at each zone.

 vvZvvZvvZvvZ 3.13.012.12.031.11.020.10.01 ,,,,,

 Thus, there is one bit difference between the neighboring
zones. The partitioned HPGRID for 3D has been depicted in
figure 6. The resulting partitioned sub-cubes are said to be
isomorphic in the sense that they are also n-cubes, and for this
reason, they retain many attractive properties of Hypercube
networks, includes symmetry, low node degree (2n) and low
diameter (kn).

Figure 5. Isomorphic Partitioning of 3D HPGRID System

Figure 6. Partitioning 3D HPGRID System.

The 3D HPGRID is isomorphically partitioned into 4 zones
containing the following nodes at each zone.

B. Resource discovery algorithms

In this section we present a scalable self configuring
resource search algorithm (named Parameterized HPGRID

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 2, No.1, January 2011

63 | P a g e

http://ijacsa.thesai.org/

Algorithm) that is able to adapt to complex environments. It is
possible to initiate a search request from any of the live nodes.
For the reasons of clarity, however the examples used from
now on assume that node 0 is the start node, without a loss of
generality.

1) The Search Procedure in an HPGRID using

Parameterized HPGRID Algorithm

The search procedure starts when a consumer wants to
discover a CGP service. The consumer connects to one of the
CGP nodes of the system and requests a service (a resource or
some resources). The service discovery is tried first inside the
requester's own CGP depending on the parameters explained in
Section 3.3. If there is no provider, then the request is
redirected to other CGPs. Parameterized HPGRID Algorithm
gives the pseudo-code in a node when a new resource request
message arrives

Algorithm 1: Parameterized HPGRID Algorithm

begin
 satisfyRequest=procRequest(message.request);
 if(satisfyrequest)then
 Calculate DF,RD,LF at its CGP;
 if (DF < Threshold) & (RD is lowerbound)

 &(LF < Acceptable Value) then
 Resource found at the present CGP.
 end
 end
 if(NOT satisfyrequest)then
 if (startNode) THEN
 vd={0,1,2,..,n-1}
 va={};
 vst={0000};
 else
 vd =message. vd;
 va =message. va;
 vst =message. vst;
 end
 vd,dalive,nnon-alive=statusNeighbour(vd);
 if(nnon-alive>1) then
 va2=addtolist(va, dalive);
 else dalive={};
 for mk=size(vst), k=0 to ((vd.size() - nnonalive-

 1) do
 if (vd is not in vst) then
 message. vd =creatList(k, vd);
 if (vd [k] = dalive) then
 message. va = va2;
 else message. va = va;
 addToList(vst, vd [k]);
 end
 msg.vst=vst;
 if (mk < size(vst)) then prop=1;
 for (k=mk to(vst.size() - 1)) do
 sendToNeighbor(vd[k],message);
 end
 va, nnon-alive=statusNeighbour(va);

 for (j=0 to (va.size()-nnonalive -1)) do
 if (neighbor va [j] is not parent

 node) then
 if(vd is not in vst)then
 EmptyList(va [j]);
 prop=1;
 sendToNeighbor(va[j], message);

 end
 end
 end
 if (prop = 0) then
 for (d = 0) to (d < di) do
 if(d is alive and d is not in

 vst) then
 EmptyList(d);
 sendToNeighbor(d,message);
 end
 end
 end
 end
end

Algorithm 2: EmptyList(k)

begin
 message. vd ={};
 message. va ={};
 message.vst= vst;
 addToList(vst, k);
end

2) Description of the Parameterized HPGRID Algorithm

1. When a new service request message is received by a
node in the HPGRID system, the function
procRequest(message.request) is called. If the request
included in the message cannot be satisfied, the node
sets the value of satisfyRequest to false and the request
will be propagated. Otherwise, satisfyRequest is set to
true. Here, it calculates the Distance factor (DF),
Resource Density (RD) and Load Factor (LF) to check
whether resource is available at CGPs Grid
Community. If so, no propagation is performed. The
message forwarded is composed of the request
(message.request) and two vectors of dimensions
(message.vd and message.va). In case the request
cannot be satisfied and the node that receives the
message is the start node (startNode is true), the list vd
is initialized to vd = {0, 1,..., n - 1} (the complete set of
dimensions) and va is initialized to va = {} (an empty
list). Otherwise, vd and va are initialized to the lists
received along with the request message. In both the
cases the lists represent the set of dimensions
(neighbors) along which the message must be
propagated.

2. The node calls the statusneighbors function and
reorders the list vd in such a way that the dimensions
corresponding to the nonalive neighbors are located at

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 2, No.1, January 2011

64 | P a g e

http://ijacsa.thesai.org/

the last positions of the list. For example, if vd =
{0,1,2} and the neighbor along dimension 0 and 1 is
not responding, then vd is reordered to {2,1,0}. The
statusneighbors also returns with two integer values
nnon-alive and dalive. The integer value nnon-alive represents
the number of non-alive nodes in the reordered list vd.
The integer value dalive represents the dimension of the
last alive neighbor stored in vd. For example, if vd =
{2,1,0} and its neighbors in dimensions 0 and 1 are
non-alive nodes, nnon-alive = {2} and dalive ={2}.

3. If the number of non-alive neighbors (nnon-alive) is more
than one, the node calls the addToList(va, dalive)
function. This function appends dalive to the end of the
list va and returns to the new list (va2) else it make the
dalive empty.

4. When a new service request message is received by a
node in the HPGRID system, the function
procRequest(message.request) is called. If the request
included in the message cannot be satisfied, the node
sets the value of satisfyRequest to false and the request
will be propagated. Otherwise, satisfyRequest is set to
true. Here, it calculates the Distance factor (DF),
Resource Density (RD) and Load Factor (LF) to check
whether resource is available at CGPs Grid
Community. If so, no propagation is performed. The
message forwarded is composed of the request
(message.request) and two vectors of dimensions
(message.vd and message.va). In case the request
cannot be satisfied and the node that receives the
message is the start node (startNode is true), the list vd
is initialized to vd = {0, 1,..., n - 1} (the complete set of
dimensions) and va is initialized to va = {} (an empty
list). Otherwise, vd and va are initialized to the lists
received along with the request message. In both the
cases the lists represent the set of dimensions
(neighbors) along which the message must be
propagated.

5. The node calls the statusneighbors function and
reorders the list vd in such a way that the dimensions
corresponding to the nonalive neighbors are located at
the last positions of the list. For example, if vd =
{0,1,2} and the neighbor along dimension 0 and 1 is
not responding, then vd is reordered to {2,1,0}. The
statusneighbors also returns with two integer values
nnon-alive and dalive. The integer value nnon-alive represents
the number of non-alive nodes in the reordered list vd.
The integer value dalive represents the dimension of the
last alive neighbor stored in vd. For example, if vd =
{2,1,0} and its neighbors in dimensions 0 and 1 are
non-alive nodes, nnon-alive = {2} and dalive ={2}.

6. If the number of non-alive neighbors (nnon-alive) is more
than one, the node calls the addToList(va, dalive)
function. This function appends dalive to the end of the
list va and returns to the new list (va2) else it make the
dalive empty.

7. For each position k in the list vd represents an live
neighbor node, the node calls the createList(k, vd)
function which creates a new list composed of all the
dimensions located after position k in the ordered list
vd. In other words, if the number of elements in
vd(vd.size()) is q, the function returns [{ vd [k+1], ..., vd
[q-1]}] For example, if vd = {2,1,0} and k = 1, the call
to createList(k, vd) will return {1,0 }. Also for each
alive neighbor, the va list is initialized. The request, vd,
and va are sent to the corresponding neighbor in the
vd[k] dimension inside a new message by calling the
sendToNeigbor(vd [k], message) function. See Figure 7
(a complete example using Parameterized HPGRID
Algorithm) where the start node (000) sends vd ={1,0}
and va ={2} to its last alive neighbor (the only one in
this case).

8. Finally, the node propagates the request to each of the
neighbors along with va dimensions only if the
corresponding neighbor is not its parent node. Now this
propagation takes place under two cases.

Case 1: If the number of elements in vd is not equal to 0 i.e.,
vd.size() !=0, then the request travels inside a message together
with va and vd as empty lists.

Case 2: If the number of elements in vd is equal to 0 i.e.,
vd.size()==0, then the node calls the statusneighbors(va)
function and reorders the list va in such a way that the
dimensions corresponding to the nnon-alive neighbors are located
at the last positions of the list. The status neighbors(va) also
returns two integer values nnon-alive and dalive. The integer value
nnon-alive represents the number of non-alive nodes in the
reordered list va. The integer value dalive represents the
dimension of the last alive neighbor stored in va.

9. For each position k in the list va that represents a live
neighbor node, the node calls the createList(k, va)
function which creates a new list composed of all the
dimensions located after position k in the ordered list
va. Also, for each alive neighbor, the vd list is
initialized as empty. The request, vd and va are sent to
the corresponding neighbor in the vd[k] dimension
inside a new message by calling the sendToNeigbor(va
[k],message) function. For the remaining elements in
the list va represents non-alive neighbor node, the
request travels inside the message together with va and
vd as empty lists.

10. Propagating the requests in this way, the effect of non-
alive nodes is reduced. Consequently, the algorithm
tries to isolate the nodes that are in a non-alive state so
that they become leaf nodes (if it is possible) under
such circumstances, each node has only one non-alive
neighbor, and then all live nodes can be reached. On
the other hand, the nodes that are unreachable because
of inaccessible or crashed nodes along a path to them,
can be reached eventually via other nodes - using the va

list.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 2, No.1, January 2011

65 | P a g e

http://ijacsa.thesai.org/

V. PERFORMANCE EVALUATION

In this section, we present the simulation results using the
GridSim simulator [14]. The Parameterized HPGRID algorithm
has been implemented for three and four dimensional HPGRID
system. This algorithm has been evaluated in comparison with
the existing algorithm described in [5]. In order to evaluate we
describe the following test cases.

 BEST CASE: All the nodes in the network are in alive
state and the request has been satisfied at the first hop
itself.

 AVERAGE CASE: Some of the nodes are in alive and
some are in non-alive state and the request is satisfied
at the next hop.

 WORST CASE: Most of the nodes are in non-alive
state and the request is satisfied at the last zone.

Figure 7. A complete example using Parameterized HPGRID Algorithm. A

request of resource started at node 000 in a three-dimensional hypercube

Simulation has been done on a 3D HPGRID for the worst
case keeping the nodes source nodes as (000) making the
zeroth, first and second dimension nodes as non alive depicted
in Figure 8, the following figure 9 gives the complete traversal
example for 3D HPGRID system starting from node (000),
having all its neighbor non alive namely (001,010,100) except
the node present in the additional link node 110 is alive.
Sample part of the gridsim output for resource discovery on a
best cast 4D HPGRID is shown in Figure 10. Resource search
path traversal for the best case in the 4D HPGRID system is
depicted in figure 11.

Figure 8. Gridsim output of Parameterized HPGRID Resource discovery

Algorithm for a worst case 3D HPGRID

Figure 9. Parameterized HPGRID Resource discovery Algorithm for a

worst case 3D HPGRID

Figure 10. Part of Gridsim output of Parameterized HPGRID Resource

discovery Algorithm for a best case 4D HPGRID

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 2, No.1, January 2011

66 | P a g e

http://ijacsa.thesai.org/

Figure 11. Parameterized HPGRID Resource discovery Algorithm for a best

case 4D HPGRID

Figure 12 and 13 depicts that HPGRID algorithm
outperforms the existing algorithm in comparison with the
number of hops needed to complete the resource discovery
process simulated using Gridsim [15] for both the 3D and 4D
HPGRID systems in comparison with the HGRID system
which does traversals in a normal hypercube.

Figure 12. Performance Evaluation of 3D HPGRID

Figure 13. Performance Evaluation of 4D HPGRID

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 2, No.1, January 2011

67 | P a g e

http://ijacsa.thesai.org/

TABLE I. COMPARISON OF RESOURCE DISCOVERY ALGORITHM

The hypercubic P2P grid approach for resource discovery
has been compared with the existing approaches discussed in
[10]. The following table gives the comparison study of
resource discovery algorithm described in Table I.

VI. CONCLUSIONS AND FUTURE WORK

Our resource discovery scheme in HPGRID system uses
Parameterized HPGRID algorithm which reaches all the alive
nodes with minimum number of hops. The proposed algorithm
is scalable in terms of time, because it keeps the maximum
number of time steps required to resolve a resource request, to
a logarithmic scale with respect to the total number of nodes.
Moreover, each node has knowledge of the overlay CGP using
the parameters defined. Therefore, our approach is also scalable
and reaches all the alive nodes even in the lesser dimension of
its search. Furthermore, scalability is also maintained by
querying each node only once at the most (if possible). This
important property (scalability) also extends to the number of
nodes in the CGP. By using the deep multidimensional
interconnection of a hypercube with additional neighborhood
links, we provide enough connectivity so that resource requests
can always be propagated in spite of non alive nodes. This
makes our proposed algorithm much more fault-tolerant when
it is compared with other topologies such as centralized,
hierarchical or trees. In the absence of non alive nodes, it is
able to offer lookup guarantees. Using isomorphic partitioning

scheme if the resource needed not in the start node zones, then
the number of resources and the number of tasks under
examination are reduced by a single hop, thereby reducing
resource discovery time The future work could be integrating
of other resource management issues in this topology which
could be extended to generalized topology like k ary n-cube
systems. It could be extended considering the scheduling,
security, QoS issues and also design and maintenance of new
protocols in HPGRID

REFERENCES

[1] S. Basu, S. Banerjee, P. Sharma, and S.J. Lee. NodeWiz: Peer-to-peer
resource discovery for grids. In Proceeding of Cluster Computing and
the Grid (CCGrid), 2005.

[2] M. Cai, M. Frank, J. Chen, and P. Szekely. MAAN: A mulit-attribute
addressable network for grid information services. Journal of Grid
Computing, 2(1):3–14, 2004.

[3] D. Doreen Hephzibah Miriam, T. Srinivasan, and R. Deepa. An efficient
SRA based isomorphic task allocation scheme for k-ary ncube massively
parallel processors. In Proceedings of the International Symposium on
Parallel Computing in Electrical Engineering (PARELEC’ 06), 2006.

[4] I Foster and Adriana Iamnitchi. On death, taxes, and the convergence of
peer-to-peer and grid computing. In 2nd International Workshop on
Peer-to-Peer Systems (IPTPS03), pages 118–128, 2003.

[5] A. Gallardo, L. Daz de Cerio, and K. Sanjeevan. HGRID: A hypercube
based grid resource discovery. In Proceeding of the 2nd International
Conference on Complex, Intelligent and software Intensive Systems
(CISIS), pages 411–416, 2008.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 2, No.1, January 2011

68 | P a g e

http://ijacsa.thesai.org/

[6] F. Heine, M. Hovestadt, and O. Kao. Ontology-driven p2p grid resource
discovery. In Proceedings of the Fifth IEEE/ACM International
Workshop on Grid Computing (GRID’04), pages 76–83, 2004.

[7] A. Iamnitchi and Ian Foster. On fully decentralized resource discovery in
grid environments. In Proceedings of the Second International
Workshop on Grid Computing, pages 51–62. Springer-verlage, 2001.

[8] D. Oppenheimer, J. Albrecht, D. Patterson, and A. A. Vahdat. Design
and implementation tradeoffs for wide-area resource discovery. In
Proceeding of the International Symposium of High Performance
Distributed Computing(HPDC), 2005.

[9] M. T. Schlosser, M. Sintek, S. Decker, and W. Nejdl. HyperCuP -
hypercubes, ontologies, and efficient search on peer-to-peer networks.
Lecture Notes in Computer Science, 2530:112–124, 2002.

[10] A. Sharma and S. Bawa. Comparative analysis of resource discovery
approaches in grid computing. Journal of Computers, 3(5):60–64, May
2008.

[11] P. Trunfio, D. Talia, C. Papadakis, P. Fragopoulou, M. Mordacchini, M.
Pennanen, K. Popov, V. Vlassov, and S. Haridi. Peer-to-peer resource
discovery in grids: Models and systems. Future Generation Computer
Systems, 23(7), 2007.

[12] P. Trunfio and Domenico Talia. Toward a synergy between p2p and
grids. IEEE Internet Computing, 7(4):94–96, 2003.

[13] Z. Xiong, Xuemin Zhang, and Jianxin Chen. Research on grid resource
discovery scheme integrated p2p mode. In International Symposium on
Electronic Commerce and Security, pages 105–109, 2008.

[14] Rajkumar Buyya and Manzur Murshed. Gridsim: A toolkit for the
modeling and simulation of distributed resource management and
scheduling for grid computing. CONCURRENCY AND
COMPUTATION: PRACTICE AND EXPERIENCE (CCPE),
14(13):1175–1220, 2002.

[15] Agustin Caminero, Anthony Sulistio, Blanca Caminero, Carmen
Carrion, and Rajkumar Buyya. Extending gridsim with an architecture
for failure detection. Parallel and Distributed Systems, International
Conference on, 1:1–8, 2007.

[16] Manfred Hauswirth and Roman Schmidt. R.: An overlay network for
resource discovery in grids. In In: 2nd International Workshop on Grid
and Peer-to-Peer Computing Impacts on Large Scale Heterogeneous
Distributed Database Systems, 2005.

[17] A. Iamnitchi and Ian Foster. On death, taxes, and the convergence of
peer-to-peer and grid computing. Lecture Notes in Computer Science,
2735:118–128, 2003.

[18] Adriana Iamnitchi, Ian Foster, and Daniel C. Nurmi. A peer-to-peer
approach to resource discovery in grid environments. In In High
Performance Distributed Computing. IEEE, 2002.

[19] Moreno Marzolla, Matteo Mordacchini, and Salvatore Orlando. Peer-to-
peer systems for discovering resources in a dynamic grid. Parallel
Computing, 33(4-5):339–358, 2007.

[20] Carlo Mastroianni, Domenico Talia, and Oreste Verta. A super-peer
model for resource discovery services in large-scale grids. Future
Generation Computer Systems, 21(8):1235–1248, 2005.

[21] Koen Vanthournout, Geert Deconinck, and Ronnie Belmans. A
taxonomy for resource discovery. Personal Ubiquitous Computing,
9(2):81–89, 2005.

[22] ZHENG Xiu-Ying, CHANG Gui-Ran, TIAN Cui-Hua and LI Zhen. A
Model for Resource Discovery Among Grids. The 10th IEEE
International Conference on High Performance Computing and
Communications, 678-682, 2008.

[23] Rozlina Mohamed and Siti Zanariah Satari. Resource Discovery
Mechanisms for Peer-to-peer Systems. Second International Conference
on Computer and Electrical Engineering, 100-104, 2009

[24] Honggang Xia and Hongwei Zhao A Novel Resource Discovery
Mechanism in Grid. International Conference on Future BioMedical
Information Engineering, 493-495, 2009.

[25] Abdelkader Hameurlain, Deniz Cokuslu, Kayhan Erciyes. Resource
discovery in grid systems: a survey. International Journal of Metadata,
Semantics and Ontologies , 5(3): 251-263,2010

AUTHORS PROFILE

D. Doreen Hephzibah Miriam is currently a Research Scholar at the
Department of Computer Science and Engineering at Anna University,
Chennai. She received her B.Tech in Information Technology from Madras
University, Chennai, and M.E degree in Computer Science and Engineering
from Anna University, Chennai. Her research interests include parallel and
distributed computing, peer to peer computing and grid computing.

K. S. Easwarakumar is a Professor & Head at the Department of
Computer Science and Engineering at Anna University, Chennai. He received
his M.Tech in Computer and Information Sciences from Cochin University of
Science and Technology, Cochin and Ph.D in Computer Science and
Engineering from Indian Institute of Technology, Madras. His research
interests include parallel and distributed computing, Data Structures and
Algorithms, Graph Algorithms, Parallel Algorithms, Computational Geometry,
Theoretical Computer Science and Molecular computing.

