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Abstract—Healthcare service providers, including those involved 

in renal disease management, are concerned about the planning 

of their patients’ treatments. With efforts to automate the 

planning process, shortcomings are apparent due to the following 

reasons: (1) current plan representations or ontologies are too 

fine grained, and (2) current planning systems are often static. To 

address these issues, we introduce a planning system called 

Dynamic Personalized Planner (DP Planner) which consists of: 

(1) a suitably light-weight and generic plan representation, and 

(2) a constraint-based dynamic planning engine. The plan 

representation is based on existing plan ontologies, and developed 

in XML. With the available plans, the planning engine focuses on 

personalizing pre-existing (or generic) plans that can be 

dynamically changed as the condition of the patient changes over 

time. To illustrate our dynamic personalized planning approach, 

we present an example in renal disease management. In a 

comparative study, we observed that the resulting DP Planner 

possesses features that rival that of other planning systems, in 
particular that of Asgaard and O-Plan. 

Keywords-patient care planning; treatment protocols; dynamic 

treatment planning; personal health services. 

I.  INTRODUCTION 

Healthcare service providers are undoubtedly concerned 
about updating their patients’ health records or profiles, and the 
planning of their patients’ treatments to support the efficient 
and effective delivery of healthcare services. However, not all 
healthcare service providers are carrying out planning activities 
effectively, especially when it comes to automated or 
computer-based planning, due to shortcomings in current 
planning systems. 

The first problem is that most of the current plan 
representations or ontologies are too fine grained (detailed). 
This means that the plan representations or ontologies are not 
suited for all situations and for all levels. We need to have a 
portable and intuitively easy representation that facilitates the 
storage and manipulation of generic plans. The second problem 
is that current planning systems are often static. This means 
planning is carried out once without taking into account 
changes that may take place as time goes on. These plans also 
do not consider past events. Dynamic planning is therefore 
required to allow plans to be updated as new situations arise. 

To address the concerns above, we present a methodology 
for generic and dynamic healthcare planning, resulting in a 
system called the Dynamic Personalized Planner (DP Planner) 
[1]. For this purpose, we define (1) a suitably light-weight and 
generic plan representation based on existing plan ontologies, 
and (2) a constraint-based dynamic planning engine. 

II. STATE OF THE ART 

A popular approach for plan representation is via 
ontologies, i.e. plans are designed based on project specific 
ontologies and domain description languages [2]. Fig. 1 shows 
the structure of the Plan Ontology proposed by Tate [3]. 

 
Figure 1.  Plan Ontology structure [3]. 

Another useful plan ontology for generic planning is the 
task-specific ontology and approach called Asbru which uses 
skeletal plans [4]. Asbru represents skeletal plans using a task-
specific, intention-based, and time-oriented language. It can be 
used to design specific plans [5]. In Asbru, a plan contains a 
name and a set of arguments (time annotation and knowledge 
roles). All plans and actions have a temporal dimension and the 
plan’s execution is controlled by a number of conditions such 
as filter, setup, suspend, reactivate, abort and complete [6]. Fig. 
2 shows the Asbru plan ontology structure. 

Besides plan ontologies (which contribute towards plan 
representation), there are also a number of plan generation 
initiatives. An example of such an initiative is the RAX 
Planner/Scheduler (RAX-PS) [7]. The RAX-PS generates plans 
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that are temporally flexible, allowing the execution system to 
adjust to actual plan execution conditions without breaking the 
plan. The result is a system capable of building concurrent 
plans. 

 

Figure 2.  The Asbru plan ontology structure [4]. 

Fig. 3 shows the architecture of the planning system in 
RAX-PS. For the RAX-PS, the domain model describes the 
dynamics of the system [8] to which the planner is being 
applied, i.e. the Deep Space One Spacecraft. The plan database 
is initialized by a plan request which consists of an initial state 
and a set of goals. The initialized database is then modified by 
a search engine to generate a complete and valid plan. This 
complete plan is then put into operation by an execution agent. 
The heuristics and planning experts are also integral parts of 
the Deep Space One planning system. The heuristics guide the 
search engine while the planning expert interfaces with external 
systems which provide critical inputs such as altitude and 
speed. 

 
Figure 3.  The RAX Planner/Scheduler (RAX-PS) [7]. 

The Capture the Flag (CTF) [9] game project uses the 
notion of critical points (time during the execution of an action 
or plan where a decision might be made) to define states in the 
continuous domain. These states are then used to efficiently 
evaluate plans. An action or a plan posts a goal, G. This 
invokes the CTF planning algorithm [10].  

In the effort to generate outputs that are dynamically 
assembled from smaller fragments, the Personalized Healthcare 
Information (PHI) system [11] composes personalized 
documents that conform to an individual’s health profile. The 
composition of PHI is carried out in a three-step procedure 
which are (1) selection of a set of Topic Specific Documents 
(TD), where each selected TD addresses some of the 
individual’s healthcare concerns, (2) combination of the 
selected TDs to produce an aggregated PHI document, and (3) 
verification of the accuracy of the aggregated PHI document. 
Each individual illness/concern/issue noted in the health profile 
is addressed by at least a single TD. Constraint satisfaction 

techniques are used to ensure that the aggregated PHI 
document is medically consistent. Fig. 4 shows the processes 
for PHI composition. 

 
Figure 4.  The process flow for PHI composition [11]. 

We have found the PHI system’s approach in using 
constraints attractive as this approach could be adapted in our 
DP Planner to ensure the coherency of plan fragments that are 
assembled to form a complete plan. 

III. THE DYNAMIC PERSONALISED PLANNING 

METHODOLOGY 

The dynamic personalized planning approach consists of 
two phases: 

1. Plan ontology definition and representation. 

2. Planning algorithm definition. 

Fig. 5 briefly shows the two phases together with the 
techniques and approaches used. 

 
Figure 5.  DP Planner methodology with related techniques and 

approaches [1]. 
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A. Phase 1: Plan Ontology Definition and Representation 

In defining the plan ontology, the Asbru plan ontology was 
adopted as the basis for the DP Planner’s plan ontology in view 
that it is reasonably concise compared to other ontologies that 
were surveyed. Besides this, some elements of Goals, 
Operators, Methods and Selection (GOMS) analysis [12] were 
also incorporated. GOMS is a method for analyzing and 
modeling the knowledge and skills that a user must develop in 
order to perform tasks on a device or system. 

1) Plan ontology definition 
Fig. 6 shows the DP Planner’s plan ontology [13]. 

 
Figure 6.  DP Planner’s plan ontology structure [13]. 

Referring to Fig. 6, the plan is positioned at the highest 
position in the plan hierarchy, and is basically the task that 
needs to be performed. Examples of plans are those for kidney 
patient treatment monitoring, gestational diabetes mellitus 
monitoring, student performance monitoring, etc. The plan 
consists of a sequence of plan fragments. These plan fragments 
are the necessary steps to achieve the task and can be viewed as 
the most crucial component of the plan ontology. 

Each plan fragment consists of seven attributes: 

 Name: Identifies a plan. 

 Goal: States the target to be achieved. 

 Date: States the date of plan execution (if required). 

 Time: States the duration of plan execution. 

 Constraints: Information of the plan execution limit. 

 Condition: Situations in which the task takes place. 

 Status: Keeps track of the situation of plan execution. 

Some of the plan component’s attributes have detailed sub-
attributes. Examples are as follows: 

 Date has six sub-attributes: Earliest Date Start (EDS), 
Latest Date Start (LDS), Earliest Date Over (EDO), 
Latest Date Over (LDO), Minimum Date Duration 
(MinDD) and Maximum Date Duration (MaxDD), 

 Time also has six sub-attributes: Earliest Time Start 
(ETS), Latest Time Start (LTS), Earliest Time Over 
(ETO), Latest Time Over (LTO), Minimum Time 

Duration (MinTD) and Maximum Time Duration 
(MaxTD). 

 Condition consists of three sub-attributes: 

o Pre-condition: This is to ensure that certain 
conditions are met before the execution of a 
particular plan fragment. 

o Current condition: This ensures that certain 
conditions are currently met in a particular 
plan fragment. 

o Post-condition: This is to ensure that certain 
conditions are met after the execution of a 
particular plan fragment and before the next 
plan fragment. 

2) Plan representation 
Fig. 7 illustrates an example of a plan represented in XML 

for the treatment of a patient with renal disease. Note that the 
plan ontology can be naturally implemented in XML as the 
hierarchical nature of ontologies maps very well into the nested 
nature of XML. With the defined DP Planner plan ontology 
and representation, the DP Planner planning engine 
implementation is discussed next. 

 
Figure 7.  Plan representation in XML format. 

B. Phase 2: Planning Algorithm Definition 

The DP Planner’s planning strategy involves reusing plans 
that are stored in the plan repository and subsequently 
personalizing these plans according to the constraints defined 
by the user. 

The planning algorithm is divided into two parts (see Fig. 
8): 

1. Generic plan generation. 

2. Plan personalization. 
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Figure 8.  The planning algorithm. 

1) Generic plan generation 
Firstly, user inputs are matched against each of the existing 

plans in the plan repository. A concentration unit is calculated 
during the matching process to compare the closeness of the 
match. This unit is based on the number of matches between 
the user’s inputs (pre-conditions and current conditions) with 
those of the plan fragments which constitute each plan. The 
similarity between the user’s pre-condition and current 
condition inputs, and those of a particular plan, P, is expressed 
as CP, (see Equation 1). 

    
 

   
  (1) 

where n = number of matches of pre-conditions + matches of 
current conditions, and Tf = total number of plan fragments in a 
plan. The values of C for each plan will be compared. The plan 
with the highest value will be chosen as the generic plan. After 
a generic plan has been identified, the process of plan 
personalization will follow 

2) Plan personalization 
The personalization method employs a combination of (1) a 

simple matching and linking technique, and (2) a constraint-
based approach to form certain restrictions [9] so that only plan 
fragments that meet the predetermined criteria and user’s inputs 
can form the finalized and personalized plan for a particular 
user or situation. Personalization is only carried out when the 
user’s status is active, i.e. the plan is still relevant to the user's 
condition. For a start, the user will be asked for the outcomes of 
following the activities defined in a particular plan fragment. 
These outcomes are called post-conditions. Here, a simple 
matching technique will be applied to match the post-
conditions of a particular (current) plan fragment with the pre-
conditions in the next plan fragment. If these match each other, 
that next plan fragment in the generic plan will be 
recommended as the subsequent plan for the user. However, if 
they do not match, the plan (or sequence of plan fragments) 
will terminate at that current plan fragment. 

The matching technique is applied to ensure that each plan 
fragment in the finalized plan links to each other (see Fig. 9). 
This is to ensure that the final plan generated by the system 
corresponds to the needs of the user. After ensuring that the 
plan fragments in the generic plan fulfils the initial matching of 
post-conditions with the pre-conditions, the actual 
personalization can then take place using constraints.  

 
Figure 9.  The linking between plan fragments in a plan. 

Constraints are utilized to ensure the consistency of the 
multiple fragments of a plan in order to form a complete plan. 
The individual plan fragments must not contradict each other or 
lead to improper recommendations [11]. Therefore, for the 
purpose of the DP Planner, a constraint is simply a variable 
which restricts the execution of a particular plan fragment. It 
also describes the relationship between plan fragments in a 
plan. Ultimately, the constraints are used to find suitable 
replacements for plan fragments which are not suited for the 
plan fragments preceding or following it. Fig. 10 illustrates 
how constraints are used to personalize a generic plan. 

 
Figure 10.  The use of constraints in plan personalization. 
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In Fig. 10, the generic plan’s Plan Fragment 4 shows 
constraint 5 (C5) = yes. However, let us assume this does not 
fulfill a constraint specified by the user, i.e. the user has C5 = 
no. Therefore, plan personalization is carried out to find a plan 
fragment in the plan repository which fulfils the user’s 
constraint. The example in Fig. 10 shows Plan Fragment 5 in 
Plan A has C5 = no. Therefore, our system will use this plan 
fragment to replace Plan Fragment 4 in the generic plan 
provided other details are also met (e.g. pre-conditions, post-
conditions, etc.). 

IV. RESULTS: EXAMPLE CASES 

Fig. 11 shows the command-line system interface which 
obtains inputs from the user to generate a generic and 
personalized plan in the domain of renal disease. 

 
Figure 11.  The process of finding the best-matched plan in the plan 

repository. 

A. Generic Plan Generation 

From Fig. 11, the interaction labeled A gets the inputs of 
pre-conditions while the interaction labeled B gets the inputs of 
current conditions from the user (bold text indicates text 
entered by the user). Both of these conditions will be used to 
match the pre-conditions and current conditions in the plans 
found in the plan repository. As described in Section III.B.1, 
this matching is carried out to find the plan that best matches 
the user’s pre-condition and current condition inputs, i.e. the 

plan with the highest concentration of matches value (see 
Equation 1) is identified. Then, a copy of that plan is created as 
an XML file and assigned with a new ID. The values for the 
pre-conditions and current conditions are assigned with those 
inputted by the user while dates, times, and post-conditions are 
left empty. 

B. Plan Personalization 

After the generic plan has been generated, personalization 
then takes place. Firstly, the user will be presented with the 
first plan fragment in the plan as shown in Fig. 11 (labeled C). 
Then, the planning system will prompt the user about their 
status, i.e. whether active (user is implementing the plan) or not 
active (not implementing the plan). Either response will result 
in a different output for the user. Hence, we show the results of 
different cases in the following sub-sections. This process is 
repeated with other plan fragments (labeled D to H in Fig. 11). 

1) Case 1: Status is active 
This case is for situations when the user is implementing a 

particular plan fragment. When this happens, the system will 
prompt for details about the user’s post-condition as shown in 
Fig. 12. Assuming that the user’s input for post-condition was 
Percentage of renal damage = 95% therefore, this input will be 
matched with the next plan fragment’s pre-condition. If they 
match, the constraints of the next plan fragment will be 
highlighted to the user: Diabetes = yes?: (T=True/F=False) as 
shown in Fig. 12. If the user fulfils the constraint, the next plan 
fragment will be presented. The output for this user will be 
generated as shown in Fig. 13. 

 

Figure 12.  Part of the system interface when status of the user is “active”. 

 

Figure 13.  Part of the system output when status of the user is “active”. 

2) Case 2: Status is not active 
This case shows that the user is not implementing a 

particular plan fragment. When this is indicated by the user, the 
system will not perform any personalization in the subsequent 
plan fragments. Therefore, the planning process is deemed to 
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be complete. The output for the user will be generated as 
shown in Fig. 14. Here, the result is personalized by removing 
the subsequent plan fragments that are not necessary. 

 

Figure 14.  Part of the system output when status of the user is “not active”. 

3) Case 3: Inputs do not fulfill conditions or constraints in 

the generic plan 
This situation can be further divided into three sub-cases as 

follows: 

1. Inputs which do not fulfill conditions in the generic 
plan. 

2. Inputs which do not fulfill some conditions but fulfill 
constraints in the generic plan. 

3. Inputs which do not fulfill constraints in the generic 
plan. 

In the first case, consider the example system interface in 
Fig. 15. Assume that the post-condition in the generic plan is 
Percentage of renal damage = 95%, and this does not match 
with the user’s input which is Percentage of renal damage = 
60%. Therefore, the personalization process is terminated and 
the entire planning process is deemed to have completed. As a 
result, the planning system generates the output as shown in 
Fig. 16 as the personalized plan for this case. 

 

Figure 15.  System interface for inputs which do not fulfill conditions in the 
generic plan. 

 

Figure 16.  Personalized plan for inputs which do not fulfill conditions in the 

generic plan. 

In the second case, consider the example system interface 
in Fig. 17. Let us assume that the post-condition in the generic 
plan, i.e. Patient condition = stable (see Fig. 18), does not 
match the user’s input which is Patient condition = not stable 
(Fig. 17). Therefore, the process terminates. As a result, the 
planning system generates the personalized plan as showed in 
Fig. 19. 

 

Figure 17.  System interface for inputs which do not fulfill some conditions 
but fulfill constraints in the generic plan. 

In the third case, consider the example system interface in 
Fig. 20. Let us assume that the user does not fulfill the 
constraint of High blood pressure = yes, the planning system 
would search the plan repository for a plan fragment which 
fulfils the user’s input. This plan fragment is then retrieved and 
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used to replace the one in the generic plan which did not fulfill 
the user’s input. Fig. 21 shows the personalized plan for this 
case. 

 

Figure 18.  Generic plan for inputs which do not fulfill some conditions but 
fulfill constraints in the generic plan. 

 

Figure 19.  Personalized plan for inputs which do not fufill some conditions 
but fulfill constraints in the generic plan. 

 

Figure 20.  System interface for inputs which do not fulfill constraints in the 

generic plan. 

 

Figure 21.  Personalized plan for inputs which do not fulfill constraints in the 

generic plan. 
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V. DISCUSSION AND COMPARISON 

In general, the generic and personalized plan generation 
processes performs up to expectation. However, as a limitation 

of the DP Planner system, these processes would not function 
fully when a replacement cannot be found in the plan 
repository. When the system encounters this situation, it will 
advise the user to refer the case to a medical practitioner. 

TABLE I.  COMPARISON OF DP PLANNER WITH OTHER PLANNING SYSTEMS. 

 

Table 1 shows the comparison between the DP Planner 
with other planning systems, i.e. Asgaard, O-Plan, Prodigy, 
STRIPS, PLANET and RAX-PS. From our observation, 
Asgaard and O-Plan are established planning systems that the 
DP Planner can be compared to in view that they have the 
relevant plan ontology, plan representation, as well as the 
planning engine for their planning system. Further comparisons 
with Asgaard and O-Plan are discussed in the following sub-
sections. 

A. Plan Ontology Definition and Representation 

Asgaard was inspired by Belief-Desire-Intention (BDI) 
model [14] while DP Planner was developed based on Goals-
Operators-Method-Selection (GOMS) model. Using the BDI 
framework, Asgaard has been used to build large-scale, highly 
capable agent system [15]. Therefore, Asgaard is more suited 
for domains with large and complex but partly vague and 
incomplete knowledge. In contrast, DP Planner is based on the 
GOMS framework that has not been used to develop large-
scale systems. GOMS has been mainly used to represent 
human knowledge necessary for performing certain tasks and 
complex human activities. As a result, DP Planner which is 
based on GOMS is more suited in domains with obvious 
knowledge, i.e. knowledge that is confirmed and complete, for 
performing certain tasks and knowledge. 

Due to its simplicity, the DP Planner plan ontology was 
developed without the need for any ontology tool such as 
Protégé. The DP Planner plan representation in XML is also 
intuitively easy to understand. Asbru (which is Asgaard’s plan 
representation language) uses a machine-readable language 
(Backus-Naur Form or BNF syntax) to annotate guidelines 
based on the task-specific ontology.  

Asbru also requires the use of an ontology editor such as 
Protégé for the acquisition of clinical guidelines based on the 
same ontology and GMT (Guideline Markup Tool) to translate 
the guideline into a formal representation written in XML [16]. 

DP Planner’s ontology is also easier and simpler compared 
to O-Plan which has its own detailed ontology structure. The 
O-Plan plan representation is in Task Formalism form and will 
change in different O-Plan agents in which it is situated. This is 
quite complex compared to DP Planner in which the plan 
representation remains in XML form in any situation. 

B. Planning Algorithm Definition 

DP Planner generates a generic plan by retrieving an 
existing plan with similar characteristics to the current planning 
requirements, and adapting the generic plan by reusing existing 
plans to produce a personalized plan. This is akin to a case-
based approach with adaptation. Asgaard employs a similar 
approach to DP Planner whereby it also applies plan adaptation 
in its planning process. 

However, the difference is that Asgaard adopts the 
transformational type of adaptation whereas DP Planner adopts 
a derivational analogy type followed by the transformational 
type. Derivational analogy potentially reduces the search space 
by ignoring the unnecessary choices. This is achieved using the 
DP Planner’s similarity measurement technique. This is only 
suitable in situations when most of the previous plans require 
extensive adaptation and when the cost of saving rationale is 
low [15]. The cost of saving rationale here means the ability to 
fulfill the requirements of a particular plan fragment that was 
defined as a constraint. However, it presupposes that the 
derivational traces exist. In contrast, when this is not possible, 
transformational analogy is the better choice because the plans 
themselves can be used for adaptation. Thus, in DP Planner, 
derivational analogy is applied in generic plan generation while 
transformational analogy is applied in the plan personalization 
in view that the cost of saving rationale is higher. 

In general, Asgaard appears more robust in view that it is a 
fully deployed system, and that it has a monitoring component 
which monitors changes to the user’s situation, while DP 
Planner is not a deployed system and therefore relies on users 
to report any changes. 
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O-Plan on the other hand is based on software agents and 
provides a hierarchical planning architecture to support 
planning and control with temporal and resource constraint 
handling [17]. O-Plan is also designed as a fully deployed 
system. O-Plan’s architecture shows that it has five major 
components which are Domain Information, Knowledge 
Sources, Support Tools, Plan State, and Controller. O-Plan also 
has the agent architecture since it has a Task Assignment, 
Planner and Execution agent. 

In O-Plan, its plan repair algorithm involves two tables (see 
Fig. 22): TOME (Table of Multiple Effect), and GOST (Goal 
Structure Table) [18]. An execution failure occurs when one or 
more of the expected effects at a node-end fail to be asserted. 
Each effect is recorded in the TOME and when an action 
depends on an effect asserted earlier, it is recorded in the 
GOST (Step 1).  

When an execution failure occurs, the TOME will be 
updated and its relation with GOST entries will be found. If it 
is related with any of the GOST entries, then the Knowledge 
Sources is used to fix the problem (Step 2). The Knowledge 
Sources are responsible for determining the consequences of 
unexpected events or of actions that do not execute as intended, 
for deciding what action to take when a problem is detected, 
and for making repairs to the effected plan (Step 3 and 4) [17]. 

 
 

Figure 22.  Solving execution failure in O-Plan [12]. 

When comparing the DP Planner’s approach with that of O-
Plan, it seems that the DP Planner approach is simpler as only 
two stages are needed to solve the failure whereas O-Plan 
requires four stages to solve the failure (see Fig. 23). 

VI. FUTURE WORK 

Presently, the DP Planner is implemented in a local 
environment. Its capabilities can be extended further by 
deploying it in a grid environment with distributed plan 
repositories and planning engines. 

 
Figure 23.  Solving execution failure in DP Planner. 

For this purpose, the open source Globus Tool Kit can be 
utilized to allow sharing of computing power, databases and 
other tools online across corporate, institutional, and 
geographic boundaries autonomously and safely. The Globus 
Tool Kit is used in tandem with the Open Grid Services 
Architecture with Data Access and Integration (OGSADAI) 
which provides a service group registry that can be used to 
identify database services that offer specific data tables [19]. 

In order to communicate with OGSADAI, the DP Planner 
would potentially require middleware software to communicate 
with the DBMS which will store the planning data. Fig. 24 
shows the OGSADAI with Globus in a possible DP Planner 
planning scenario. Here, the planning engines and plan 
repositories are distributed across different locations and each 
of these planning engines accesses the XML database 
containing the plan repository (or medical treatment plans) via 
Xindice (a suggested XML DBMS) while the planning results 
are delivered through the Client Tool Kit middleware whereby 
it provides the communication channel between the requesting 
node and the processing planning engine [20]. 

VII. CONCLUSION 

There are many types of planning systems currently 
available in the literature though most are static in nature. In 
this paper, we presented (1) a plan ontology and representation, 
and (2) a dynamic planning engine which makes use of generic 
plans and plan fragments, based on our plan ontology, as a 
planning template. The processing of the planning engine is 
based on similarity measure, matching, linking, and constraint 
techniques. In the comparative study carried out, it was 
observed that the DP Planner possesses features that rival that 
of other planning systems, in particular that of Asgaard and O-
Plan. It is hoped that the DP Planner will make planning 
initiative more efficient and effective in delivering applicable 
plans to users especially to healthcare providers and patients. 
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Figure 24.  The DP Planner in a grid computing environment. 
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