
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 2, No. 10, 2011

70 | P a g e
www.ijacsa.thesai.org

Asynchronous Checkpointing and Optimistic

Message Logging for Mobile Ad Hoc Networks

Ruchi Tuli

Affiliation 1 : Research Scholar, Department of Computer

Science

Singhania University, Pacheri Bari (Rajasthan) INDIA

Affiliation 2: Department of Computer Sc. & Engg., P.O

Box 31387, Yanbu University College,
Kingdom of Saudi Arabia

Parveen Kumar

Professor,
Department of Computer Science,

Meerut Institute of Engineering & Technology, Meerut

INDIA

Abstract - In recent years the advancements in wireless

communication technology and mobile computing fueled a steady

increase in both number and types of applications for wireless

networks. Wireless networks can roughly be classified into

cellular networks which use dedicated infrastructure (like base

stations) and ad hoc networks without infrastructure. A Mobile

Ad Hoc Network (MANET) is a collection of mobile nodes that

can communicate with each other using Multihop wireless links

without using any fixed infrastructure and centralized controller.

Since this type of networks exhibits a dynamic topology, that is,

the nodes move very frequently, it is hard to establish some

intermittent connectivity in this scenario. Fault tolerance is one of

the key issues for MANETs. In a cluster federation, clusters are

gathered to provide huge computing power. Clustering methods

allow fast connection and also better routing and topology

management of mobile ad hoc networks (MANET). To work

efficiently on such systems, networks characteristics have to be

taken into account, for e.g. the latency between two nodes of

different clusters is much higher than the latency between two

nodes of the same cluster. In this paper, we present a message

logging protocol well-suited to provide fault tolerance for cluster

federations in mobile ad hoc networks. The proposed scheme is

based on optimistic message logging.

Keywords – MANETs; clusterhead; checkpointing; pessimistic

logging; fault tolerance; Mobile Host.

I. INTRODUCTION

Wireless networks include infrastructure-based networks
and ad hoc networks. Most wireless infrastructure-based
networks are established by a one hop radio connection to a
wired network. On the other hand, mobile ad hoc networks are
decentralized networks that develop through self-organization
[1]. The original idea of MANET started out in the early 1970s.
At this time they were known as packet radio networks. Lately,
substantial progress has been made in technologies like
microelectronics, wireless signal processing, distributed
computing and VLSI (Very Large Scale Integration) circuit
design and manufacturing [2]. This has given the possibility to
put together node and network devices in order to create
wireless communications with ad hoc capability.

MANETs are formed by a group of nodes that can transmit
and receive data and also relay data among themselves.
Communication between nodes is made over wireless links. A

pair of nodes can establish a wireless link among themselves
only if they are within transmission range of each other. An
important feature of ad hoc networks is that routes between two
hosts may consist of hops through other hosts in the network
[3]. When a sender node wants to communicate with a receiver
node, it may happen that they are not within communication
range of each other. However, they might have the chance to
communicate if other hosts that lie in-between are willing to
forward packets for them. This characteristic of MANET is
known as multihopping. An example is shown in figure 1.
Node A can communicate directly (single-hop) with node B,
node C and node D. If A wants to communicate with node E,
node C must serve as an intermediate node for communication
between them. Therefore, the communication between nodes A
and E is multi-hop.

Figure 1 – Multi-hop communication in a mobile ad hoc network

Today wireless bluetooth, personal area networks (PAN),
IEEE 802.11 a/b/g, wireless local area networks (WLAN) and
HIPERLAN/2, are communication standards that include ad
hoc features [4]. Figure 2 shows an example of a mobile ad hoc
network composed of commonly used wireless devices.

Figure 2 – Wireless Mobile Ad hoc Network

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 2, No. 10, 2011

71 | P a g e
www.ijacsa.thesai.org

Checkpoint and message logging protocols are designed for
saving the execution state of mobile application, so that when a
MH recovers from a failure, the mobile application can roll
back to the last saved consistent state, and restart execution
with recovery guarantees. The existing protocols assume that
the MH’s disk storage is not stable and thus checkpoint and log
information are stored at the base stations [5], [6].

Log-based rollback recovery exploits the fact that a process
execution can be modeled as a sequence of deterministic state
intervals, each starting with the execution of a non-
deterministic event. A non-deterministic event can be the
receipt of a message from another process or an event internal
to the process. A message send event is not a non-deterministic
event. Log-based rollback recovery assumes that all non-
deterministic events can be identified and their corresponding
determinants can be logged into the stable storage.

During failure-free operation, each process logs the
determinants of all non-deterministic events that it observes
onto the stable storage. Additionally, each process also takes
checkpoints to reduce the extent of rollback during recovery.
After a failure occurs, the failed processes recover by using the
checkpoints and logged determinants to replay the
corresponding non-deterministic events precisely as they
occurred during the pre-failure execution. Because execution
within each deterministic interval depends only on the
sequence of non-deterministic events that preceded the
interval’s beginning, the pre-failure execution of a failed
process can be reconstructed during recovery up to the first
non-deterministic event whose determinant is not logged. The
deterministic intervals composing the process execution are
called state intervals. The state intervals are partially ordered
by the Lamport’s happen-before relation [7].

Message logging techniques are classified into pessimistic
[8], optimistic [9], [10], [11] and causal [12], [13], [14], [15].
Pessimistic logging protocols assume that a failure can occur
after any non-deterministic event in the computation. This
assumption is “pessimistic” since in reality failures are rare. In
their most straightforward form, pessimistic protocols log to
the stable storage the determinant of each non-deterministic
event before the event affects the computation. A pessimistic
protocol is one in which each process p never sends a message
until it knows that all messages delivered before sending the
previously sent messages are logged. Pessimistic protocols will
never create any inconsistent process (orphans), and so the
reconstruction of the state of a crashed process is very
straightforward. The pessimistic protocols potentially block a
process for each message it receives.

In optimistic logging protocols, processes log determinants
asynchronously to the stable storage. These protocols
optimistically assume that logging will be complete before a
failure occurs. Determinants are kept in a volatile log, and are
periodically flushed to the stable storage. Thus, optimistic
logging does not require the application to block waiting for the
determinants to be written to the stable storage, and therefore
incurs much less overhead during failure-free execution.
However, the price paid is more complicated recovery, garbage
collection, and slower output commit. If a process fails, the
determinants in its volatile log are lost, and the state intervals

that were started by the non-deterministic events corresponding
to these determinants cannot be recovered. Furthermore, if the
failed process sent a message during any of the state intervals
that cannot be recovered, the receiver of the message becomes
an orphan process and must roll back to undo the effects of
receiving the message. Optimistic logging protocols do not
implement the always-no-orphans condition.

Causal logging combines the advantages of both pessimistic
and optimistic logging at the expense of a more complex
recovery protocol. Like optimistic logging, it does not require
synchronous access to the stable storage except during output
commit. Like pessimistic logging, it allows each process to
commit output independently and never creates orphans, thus
isolating processes from the effects of failures at other
processes. Moreover, causal logging limits the rollback of any
failed process to the most recent checkpoint on the stable
storage, thus minimizing the storage overhead and the amount
of lost work. Causal logging protocols make sure that the
always-no-orphans property holds by ensuring that the
determinant of each non-deterministic event that causally
precedes the state of a process is either stable or it is available
locally to that process.

In this paper we focus on optimistic based message logging
for communications in a clustered ad hoc network, since the
checkpointing-only schemes are not suitable for the mobile
environment and also in ad hoc environments in which
unreliable mobile hosts and fragile network connection may
hinder any kind of coordination for checkpointing and
recovery. In order to cope with the storage problem, the task of
logging is assigned to the CH instead of MHs, since each
message heading to a MH is routed through the CH. Also, in
order to reduce the overhead imposed on mobile hosts, cluster
heads take charge of logging and dependency tracking, and
mobile hosts maintain only a small amount of information for
mobility tracking.

The rest of this paper is organized as follows: Section 2
discusses related work and problem formulation. In section 3,
system model is described. Section 4 explains the basic
algorithm and comparison with existing schemes is described
in section 5. Finally section 6 concludes the paper.

II. RELATED WORK AND PROBLEM FORMULATION

A. Related Work

Application failure recovery in the mobile computing
environment has received considerable attention in the recent
years. The schemes that have been proposed employ
checkpointing, logging or a combination of both, recognizing
the inherent limitations of the mobile computing environments.
Since the requirements of a ad hoc network are different from
the mobile computing environment, these issues needs to be
addressed in this area as well.

Prakash and Singhal describe in [16] a checkpointing
algorithm for Mobile Conputing System. Checkpoint collection
is synchronous and non-blocking. A minimum number of
nodes are forced to take checkpoints. Each MH maintains a
dependence vector. MHs maintain causal relationships through
message. This scheme reduces energy consumption by

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 2, No. 10, 2011

72 | P a g e
www.ijacsa.thesai.org

powering down individual components during periods of low
activity.

In [17] T.Park et.al has presented an efficient movement
based recovery scheme. This scheme is a combination of
message logging and independent checkpointing. Main feature
of this algorithm is that a host carrying its information to the
nearby MSS can recover instantly in case of a failure. To
enhance failure-free execution, concept of a 'certain range' is
introduced. An MH moving inside a range , recovery
information remains in host MSS otherwise it moves recovery
information to nearby MSS. Though recovery is ensured,
failure-free execution cost increases. Due to this out of range
concept overheads due to transfer of checkpoint from one MSS
to another MSS increases many fold.

Sapna E. George [18]et.al describes a checkpointing and
logging scheme based on mobility of MHs. A checkpoint is
saved when hand-off count exceeds a predefined optimum
threshold. Optimum threshold is decided as a function of MH's
mobility rate, failure rate and log arrival rate. Recovery
probability is calculated and recovery cost is minimized in this
scheme.

Acharya et al. [6] describes uncoordinated checkpointing,
where multiple MHs can arrive at a global consistent
checkpoint without coordination messages. However, neither it
takes into account how failure recovery is achieved nor does it
address the issue of recovery information management in the
face of MH movement.

In [19] authors proposed an independent checkpointing
scheme which saves the state of processes in the computer to
which a mobile host is currently attached.

The authors in [20] presents a low overhead recovery
scheme based on a communication induced checkpointing,
which allows the processes to take checkpoints asynchronously
and uses communication-induced checkpoint coordination for
the progression of the recovery line. The scheme also uses
selective pessimistic message logging at the receiver to recover
the lost messages. However, the recovery scheme can handle
only a single failure at a time.

P. Kumar and A. Khunteta [22] proposed a minimum-
process coordinated checkpointing algorithm for deterministic
mobile distributed systems, where no useless checkpoints are
taken, no blocking of processes takes place, and anti-messages
of very few messages are logged during checkpointing. In their
algorithm they have tried to reduce the loss of checkpointing
effort when any process fails to take its checkpoint in
coordination with others.

B. Problem Formulation

Cluster federations are hierarchical systems. The latency
between two clusters is much higher than the latency between
two nodes of the same cluster. For efficient execution on such
systems, applications must take into account the topology of
the cluster federation. Communications between nodes of the
same cluster should be favored over communications between
nodes of different clusters.

The objective of the present work is to design an optimistic
based message logging for communications in a clustered ad

hoc network, since the checkpointing-only schemes are not
suitable for the mobile environment and also in ad hoc
environments. In order to cope with the storage problem, the
task of logging is assigned to the CH instead of MHs, since
each message heading to a MH is routed through the CH. In
order to reduce the size of dependency information carried in
each message for asynchronous recovery, only the messages
between the CHs carry the information, and the dependency
between the MHs residing in the same Cluster can be traced
through the message order within the CH. Using the restricted
dependency tracking, no extra overhead is imposed on MHs.
Of course, there is a possibility of unnecessary rollbacks due to
the imprecise dependency information, however, comparing
with the checkpointing-only schemes, the chance of rollback
propagation in the message logging schemes is very low.

III. SYSTEM MODEL

A successful approach for dealing with the maintenance of
mobile ad hoc networks is by partitioning the network into
clusters. In this way the network becomes more manageable.
Clustering is a method which aggregates nodes into groups.
These groups are contained by the network and they are known
as clusters. Clusters are analogous to cells in a cellular network.
However, the cluster organization of an ad hoc network cannot
be achieved offline as in fixed networks [21]. In most
clustering techniques nodes are selected to play different roles
according to a certain criteria. In general, three types of nodes
are defined:

Ordinary nodes :- Ordinary nodes are members of a

cluster which do not have neighbors belonging to a different

cluster.

Gateway nodes:- Gateway nodes are nodes in a non-

clusterhead state located at the periphery of a cluster. These

types of nodes are called gateways because they are able to

listen to transmissions from another node which is in a different

cluster. To accomplish this, a gateway node must have at least

one neighbor that is a member of another cluster.

Clusterheads:- Most clustering approaches for mobile

ad hoc networks select a subset of nodes in order to form a

network backbone that supports control functions. A set of the

selected nodes are called clusterheads and each node in the

network is associated with one. Clusterheads are connected

with one another directly or through gateway nodes. The union
of gateway nodes and clusterheads form a connected backbone.

This connected backbone helps simplify functions such as

channel access, bandwidth allocation, routing power control

and virtual-circuit support.

Clusterheads are analogous to the base station concept in
current cellular systems. They act as local coordinators in
resolving channel scheduling and performing power control.
However, the difference of a clusterhead from a conventional
base station resides in the fact that a clusterhead does not have
special hardware, it is selected among the set of stations and it
presents a dynamic and mobile behavior. Since clusterheads
must perform extra work with respect to ordinary nodes they
can easily become a single point of failure within a cluster. For
this reason, the clusterhead election process should consider for
the clusterhead role, those nodes with a higher degree of

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 2, No. 10, 2011

73 | P a g e
www.ijacsa.thesai.org

relative stability. The main task of a clusterhead is to calculate
the routes for long-distance messages and to forward inter-
cluster packets. Figure 3 shows the system model and different
roles of nodes in a mobile ad hoc network organized by
clusters.

Figure: - 3 System Model

The clustering system considered in this paper follows the
model presented in the figure above The system is organized
into various clusters, each having a clusterhead and ordinary
nodes, which will be termed as Mobile Hosts; a set of dynamic
links can be established between a MH and a Cluster head. The
area covered by a cluster head is called a cell. A MH residing
in a cluster can be connected to the clusterhead servicing the
cluster and the MH can communicate to another MH only
through the cluster head. The links in the dynamic network
support FIFO communication in both directions.

For a MH to leave a cluster and enter into another cluster, it
first has to end its current connection by sending a leave(x)
message to the cluster head, where x is the sequence number of
the last message received from the cluster head, and then
establish a new connection by sending join (MH-id, previous
cluster-id, previous clusterhead-id) message to the new cluster
head in the new cluster. Each cluster head maintains a list of
identifiers, called a Current_Nodelist, with which nodes it
connected at current time

A MH can also disconnect itself from the cluster head
voluntarily without leaving the cluster by sending a disconnect
(x) message to conserve power. When the cluster head receives
a disconnect message from a Node, it marks that node to be
“disconnected” by setting a flag that maintains a list of
voluntarily disconnected MHs, called disconnected_Nodelist
Later on, the MH can reconnect to any cluster by sending a
reconnect (MH-id, previous cluster-id, previous
clusterhead_id) message to the current cluster head. If the MH
is reconnected to a new cluster, the new cluster head informs
the previous cluster head of the reconnection so that the
previous cluster head can perform the proper hand-off
procedures.

IV. PROPOSED ALGORITHM

The ordinary Nodes in the clustered ad hoc networks are
considered highly vulnerable to failures, while the cluster heads
are relatively reliable as they are chosen among the nodes with
a higher degree of relative stability. By reliable CH, we mean
that recovery information for MHs can never be lost due to its
own failure. With this assumption, the volatile memory space

of a CH can be utilized as a stable storage to save checkpoints
and message logs of MHs.

A. Data Structures and Notations

Chki
x = checkpoint sequence number

 i=0…………..n

 j=0…………..n

MHi = No. of Mobile hosts

 i=0…………..n

CH = Cluster head

mi
rcv =No. of messages a mobile host has received

 i=0…………..n

 rcv=0…………..n

Locatei =variable to retrieve information after failure of MH

chk_seq=sequence number of latest checkpoint
cp_loc=current ID of a cluster

cp_ch=current cluster head ID

msg_seq =sequence number of the first message logged after

checkpoint

log_set=IDs of cluster heads that store MH logs

timeToCkpi=Timer to take checkpoint on MH

B. Checkpointing and Message Logging

Each mobile host MH independently takes a checkpoint and
a unique sequence number is assigned to each checkpoint. For
the checkpointing, MH first saves its current state as a
checkpoint and then transfers the checkpoint to CH to which it
is currently connected. Chki

x denotes the xth checkpoint of
MHi. Each checkpoint is identified by a pair of (i, x). MHi then
sends the checkpoint to its current CH, say CHp. Each Mobile
host also maintains a variable mi

rcv, to count the number of
messages a mobile host has received, and the value of mi

rcv is
sent with the checkpoint to the cluster head. On the receipt of a
checkpoint and other related information CH saves it into
stable storage. The value of mi

rcv sent with the checkpoint to
CH is used to decide the correct position of the checkpoint with
respect to logged messages.

Each CHp also maintains the message log for the nodes
residing in that cluster. Since each message that is delivered to
MH in the cluster is routed through CH, logging of messages
incurs little overhead. Let Msgi

x denotes xth message delivered
to MHi . In addition, CHp also logs the messages related to the
mobility of the nodes, such as join, leave, disconnect and
reconnect. Any of these messages sent from MH must also
carry the value of mi

rcv and sequence number is logged with
message.

A node after a failure should be able to locate its latest
checkpoint and the message log for recovery. Each mobile host
also contains a variable Locatei , to retrieve the information
after failure. Locatei contains chk_seq, cp_loc, cp_ch, msg_seq
and log_set. chk_seq stores the sequence number of latest
checkpoint and cp_loc stores the ID of the cluster and cp_ch
stores the ID of the CH that has recorded the latest checkpoint.
Let this cluster be called clusterin and CH be called CHp.
msg_seq denotes the sequence number for the first message
logged after the checkpoint and log_set contains the IDs of the
cluster heads that stores its logs. At every checkpoint, cp_loc is
updated with the current CH, cp_seq is updated with the

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 2, No. 10, 2011

74 | P a g e
www.ijacsa.thesai.org

sequence number of the latest checkpoint and log_set is
cleared. At every logging activity, the IDs of the current CHs
are added to log_set if it is not present already. Locatei is
logged by the CHs which a MH has visited. When a mobile
host joins or reconnects to a new cluster, say CHp, it sends
Locatei with the connection message. Also when mobile host
disconnects itself from or leaves CHp, it sends Locatei with
disconnection message if information in the Locatei has been
changed since the connection was established. CHp on receipt
of Locatei logs it with the message. Each mobile host also
maintains a variable timeToCkpi which defines Time interval
until next checkpoint

C. Algorithm

We describe pseudocode for the checkpointing and message

logging protocol here

D. Checkpointing at MH

If (timeToCkpi = Expire) then

 chk_seqi=chk_seqi+1; //increment checkpoint

sequence number

 Perform checkpointing , Chki
chk_seqi

 Save (i, chk_seqi, mi
rcv,) with Chki

chk_seqi

 // updating the Locate field

 Locatei.chk_seq=chk_seqi;
 Locatei.cp_loc= clusterin;

 Locatei.cp_ch=p;

 Locatei.msg_seq= mi
rcv +1;

 Locate.log_set=NULL;

 Send (Chki
chk_seqi[i, chk_seq, mi

rcv]) to CHp

Else

 Continue computation;

If (CHp=recv Chki
chk_seqi) from MH

 Save (Chki
chk_seqi[i, chk_seq, mi

rcv,]);

Else

 Continue computation

E. Message logging at CH

a) When cluster head delivers a message M, to Mobile

host

 msg_seqi=msg_seqi+1;

 Insert (Mi
msg_seqi [i, msg_seqi]) into Log;

b) When Mobile host receives a message from cluster

head (CHp)

 If(p Locatei.log_set)

 Locatei.log_set=Locatei.log_set p;

c) When Mobile host sends a message to Cluster head

 If (M {join, leave, disconnect, reconnect})
 Send (M [Locatei, mi

r_seq
])

d) When Cluster head receives a message M, from

mobile host

 If (M {join, leave, disconnect, reconnect})
 Insert (M (Locatei, mi

rcv)) into log;

F. Proof of Correctness

Theorem I :- If a MH fails, its state can be reconstructed
independently

Proof :- Let MHi state be [si
0, si

1, si
2….si

l) before failure,
which indicates messages ei

o, ei
x-1, ei

x, ….ei
y, where 1≤y, ei

x is
the first message from the last checkpoint and ei

y is the last
message before failure. Since all the messages delivered to
MHi are logged in CH and Locatei.log_set indicates the order in
which MHi has contacted CH since its last checkpoint. After a
failure MHi should rollback to the latest checkpoint and the
logged messages in the same order and it can reconstruct the
same state intervals as the ones before failure. Because all the
messages sent and received events are recorded, the MHi’s
state can be reconstructed.

V. HANDLING FAILURES AND DISCONNECTIONS

We distinguish here failures and disconnections. Failures
can be categorized as – mobile host falls and is damaged, lost
or stolen, battery is discharged. Disconnections are termed as
hand-off. Since the mobility rate of mobile hosts in ad hoc
networks is very high, so while connected a mobile host can
change its position and can join another cluster. This movement
is termed as disconnection. We will discuss these two issues
separately.

After a MH recovers from a failure, either a mobile host is
in the same cluster or the cluster can be changed. When a MHi
recovers from a failure, it first sends a join(MH-id, previous
cluster-id, previous clusterhead-id) to its current CH, say CHp.
CHp checks it Active_nodelist list and Disconnected_nodelist.
If MHi is found in any of these lists that mean MH after a
failure has recovered in current cell and thus the Loactei must
have been logged in CHp.

Sometimes it may happen that CH is not able to find MHi
either in Active_nodelist list or Disconnected_nodelist, which
means that MH after a failure has moved to another cluster. In
this case, firstly MH sends a join (MH-id, previous cluster-id,
previous clusterhead-id) to its current CH, say CHq. Now, CHq
will broadcast the recovery message, so that previous CH
which has been contacted by MHi can deliver the most recent
Loactei to CHq. After CHq receives the most recent Locatei, it
starts with the recovery procedure. During the recovery of MHi,
new messages heading to MHi can be logged at CHq. However,
these messages are delivered to MHi after consuming all the
messages in the log. Only the MHs which have failed rollback
to the latest checkpoint and replay the logged messages to
ensure the global recovery line and no other MHs need to
rollback.

A node after a disconnection should be able to locate its
latest checkpoint and the message log for recovery. Each
mobile host contains a variable Locatei , to retrieve the
information after failure which we have discussed in section
4.1. For each hand-off or disconnection, a MH within a cluster
transfers the checkpoint and message logs to the current cluster
head, so that the recovery information can be retrieved later
from the cluster head. For a MH, MHi, connected to the cluster
head CHp, in cluster CLi first saves its checkpoints and
message logs and updates the information in Locatei. Let

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 2, No. 10, 2011

75 | P a g e
www.ijacsa.thesai.org

MH_data(i, p) denotes the checkpoints and message logs of MHi
saved by CHp of CLi. When MHi leaves CLi and joins another
cluster head say CHnew of cluster CLk, a hand-off procedure is
initiated by CHnew sending a handoff-request for MHi to CHp.
While the hand-off procedure is performed, the recovery
information is transferred from CHp to CH new. Figure 4 depicts
the sequence of events that take place for the recovery
information transfer.

Figure 4 : Handling failures and disconnections

VI. PERFORMANCE COMPARISON

In [1] authors proposed a communication pattern based
checkpointing scheme to save consistent global states, in which
a checkpoint is taken whenever a message reception is
preceded by a message transmission. An independent
checkpointing scheme which saves the state of processes in the
computer to which a mobile host is currently attached was
proposed by authors in [12]. Neither of the above approaches
needs the checkpointing coordination, however, they may
enforce a large number of checkpoints. [13] proposed a low-
cost synchronous checkpointing scheme, in which a process
can advance its checkpoint asynchronously, however, it may
result in considerable message overhead and an inconsistency.
[10] presents a low overhead recovery scheme based on a
communication induced checkpointing, which allows the
processes to take checkpoints asynchronously and uses
communication-induced checkpoint coordination for the
progression of the recovery line. The scheme also uses
selective pessimistic message logging at the receiver to recover
the lost messages. However, the recovery scheme can handle
only a single failure at a time. In [18] authors describe a
checkpointing and logging scheme based on mobility of MHs.
A checkpoint is saved when hand-off count exceeds a
predefined optimum threshold. Optimum threshold is decided
as a function of MH's mobility rate, failure rate and log arrival
rate. Recovery probability is calculated and recovery cost is
minimized in this scheme.

We have described an optimistic based message logging
scheme since checkpointing-only schemes are not suitable for
ad hoc environments and most of the schemes described above
are based on checkpointing-only approach. Also, we have
followed the asynchronous checkpointing approach, as
asynchronous recovery is desirable in ad hoc environments in
which MH can be disconnected any time from the network and
co-ordination may not be possible.

VII. CONCLUSION

In this paper, we have proposed an optimistic based
message logging approach for cluster based ad hoc networks in
which each MH in the cluster takes checkpoint independently.
Also, each message that is delivered to MH in the cluster is
routed through CH which avoids the overhead of message
logging at MH. MH only carries minimum information and all
the dependency tracking and mobility of MH can be properly
traced by CH. The asynchronous checkpointing scheme relives
the MH from any kind of coordination and they can take their
checkpoints whenever they want.

REFERENCES

[1] C. Prehofer, C. Bettstetter. “Self organization in communication
networks: Principles and design paradigms”. IEEE Communications

Magazine. Vol. 43. Issue 7. 2005. pp. 78-85.

[2] Y. P. Chen, A. L. Liestman, J. Liu. Ad Hoc and Sensor Networks,
Wireless Networks and Mobile Computing. Clustering Algorithms for

Ad hoc Wireless Networks. Vol. 2. Chapter 7: Nova Science Publishers,
Hauppage NY, 2004. pp. 145-164. 7. J. Wu, J. Cao. “Connected k-hop

clustering in ad hoc networks”. ICPP. 2005. pp 373-380.

[3] I. Chatzigiannakis, S. Nikoletseas. “Design and analysis of an efficient

communication strategy for hierarchical and highly changing ad-hoc
mobile networks”. Mobile Networks and Applications. Vol. 9. 2004. pp.

248-263.

[4] M. Frodigh, P. Johansson, P. Larsson. “Wireless Ad Hoc Networking--
The Art of Networking without a Network”. Ericsson Review. Vol. 77.

2000. pp. 248-263.

[5] S. Gadiraju, Vijay Kumar, “Recovery in the mobile wireless
environments using mobile agents”, IEEE Transactions on Mobile

Computing, June 2004, Vol. 3.

[6] A. Acharya , B. R. Badrinath, “Checkpointing distributed applications
on mobile computers”, in Proc. 3rd Int. Conf. Parallel and Distributed

Information Systems, Austin, Texas, 1994, pp. 73–80.

[7] L. Lamport. Time, Clocks, and the Ordering of Events in a Distributed
System. Communications of the ACM, 21(7):558–565, 1978.

[8] D. B. Johnson and W. Zwaenpoel, “Sender-Based Message Logging,” In

Digest of Papers:17th International Symposium on Fault-Tolerant
Computing, pp. 14-19, 1987.

[9] O. P. Damani and V. K. Garg, “How to Recover Efficiently and
Asynchronously when Optimism Fails,” In Proc. the 16th International

Conference on Distributed Computing Systems, pp. 108-115, 1996.

[10] D. B. Johnson and W. Zwaenepoel, “Recovery in distributed systems
using optimistic message logging and checkpointing,” In Proc. the 7th

Annual ACM Symposium on Principles of Distributed Computing, pp.
171-181, 1988.

[11] R. B. Strom and S. Yemeni, “Optimistic recovery in distributed systems,”

ACM Transactions on Computer Systems, Vol.3, No.3, pp. 204-226,
1985.

[12] L. Alvisi, B. Hoppe, and K. Marzullo, “Nonblocking and Orphan-Free

Message Logging Protocols,” In Proc. the 23th Symposium on Fault-
Tolerant Computing, pp. 145-154, 1993.

[13] L. Alvisi and K. Marzullo, “Message Logging: Pessimistic, Optimistic,

Causal and Optimal,”IEEE Transactions on Software Engineering,
Vol.24, No.2, pp. 149-159, 1998.

[14] E.Elnozahy, “On the relevance of Communication Costs of Rollback

Recovery Protocols,” In Proc. the 15th ACM Symposium on Principles
of Distributed Computing, pp. 74-79, 1995.

[15] E. N. Elnozahy and W. Zwaenepoel, “Manet: Transparent rollback-
recovery with low overhead, limited rollback and fast output commit,”

IEEE Transactions on Computers, Vol.41, No.5, pp. 526-531, 1992.

[16] R.Prakash, M.Singhal, (1996) “Low Cost Checkpointing and Failure
Recovery in Mobile Computing Systems”, IEEE Transacrions on

Parallel and Distrinuted Systems, VOL. 7, NO. IO, OCTOBER 1996

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 2, No. 10, 2011

76 | P a g e
www.ijacsa.thesai.org

[17] Taesoon Park, Namyoon Woo, Heon Y. Yeom,(2003) “An Efficient

recovery scheme for fault tolerant mobile computing systems”, Future
Generation Computer System, 19(1): 37-53

[18] Sapna E. George,Ing-Ray Chen,Ying Jin, (2006)“Movement-Based
Checkpointing and Logging for Recovery in Mobile Computing

Systems”, MobiDE, 51-58

[19] D.K. Pradhan, P. Krishna, and N.H. Vaiday. Recoverable mobile
environment : Design and trade-off analysis. In Proc. of the 26th Int’l

Symp. on Fault Tolerant Computing, 1996.

[20] D. Manivannan and M. Singhal. Failure recovery based on quasi-
synchronous checkpointing in mobile computing systems. OSU-CISRC-

796-TR36, Dept. of Computer and Information Science, The Ohio State
University, 1996.

[21] A. B. McDonald, T. F. Znati. “A mobility-based framework for adaptive

clustering in wireless Ad Hoc networks”. IEEE Journal on Selected
Areas in Communications. Vol. 17. 1999. pp. 1466-1487.

[22] Parveen Kumar, Ajay Khunteta, “Anti-message Logging based

coordinated checkpointing protocol for Deterministic Mobile Computing
Systems”, International Journal of Computer Applications (0975-887),

Vol. 3-No. 1, June, 2010.

[23] Parveen Kumar, “A Low-Cost Hybrid Coordinated Checkpointing
Protocol for Mobile Distributed Systems”, Mobile Information Systems

[An International Journal from IOS Press, Netherlands] pp 13-32, Vol. 4,
No. 1, 2007. [Listed in ACM Portal & Science Citation Index Expanded]

[24] Lalit Kumar, Parveen Kumar “A Synchronous Checkpointing Protocol
for Mobile Distributed Systems: A Probabilistic Approach”,

International Journal of Information and Computer Security [], pp 298-

314, Vol. 3 No. 1, 2007. [An International Journal from Inderscience
Publishers, USA, Listed in ACM Portal]

[25] Sunil Kumar, R K Chauhan, Parveen Kumar, “A Minimum-process
Coordinated Checkpointing Protocol for Mobile Computing Systems”,

International Journal of Foundations of Computer science,Vol 19, No. 4,
pp 1015-1038 (2008). [Listed in Science Citation Index Expanded]

[26] Parveen Kumar, Lalit Kumar, R K Chauhan, “A Hybrid Coordinated

Checkpointing Protocol for Mobile Computing Systems”, IETE journal
of research, Vol. 52, Nos 2&3, pp 247-254, 2006. [Listed in Science

Citation Index Expanded]

[27] Lalit Kumar, Parveen Kumar, R.K. Chauhan, “Logging based
Coordinated Checkpointing in Mobile Distributed Computing Systems”,

IETE Journal of Research, vol. 51, no. 6, pp. 485-490, 2005. [Listed in
Science Citation Index Expanded]

[28] Obaida, M. A., Faisal, S. A., & Roy, T. K. (2011). AODV Robust

(AODV R): An Analytic Approach to Shield Ad-hoc Networks from
Black Holes. IJACSA - International Journal of Advanced Computer

Science and Applications, 2(8), 97-102.

[29] Journal, I., Science, A. C., & Hod, M. (2011). A Survey on Attacks and
Defense Metrics of Routing Mechanism in Mobile Ad hoc Networks.

IJACSA - International Journal of Advanced Computer Science and
Applications, 2(3), 7-12.

[30] Indukuri, R. K. R. (2011). Dominating Sets and Spanning Tree based

Clustering Algorithms for Mobile Ad hoc Networks. IJACSA -
International Journal of Advanced Computer Science and Applications,

2(2).

