
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 2, No. 10, 2011

112| P a g e
www.ijacsa.thesai.org

Conceptual Level Design of Semi-structured

Database System: Graph-semantic Based Approach

Anirban Sarkar

Department of Computer Applications

National Institute of Technology, Durgapur
West Bengal, India

Abstract—This paper has proposed a Graph – semantic

based conceptual model for semi-structured database

system, called GOOSSDM, to conceptualize the different

facets of such system in object oriented paradigm. The

model defines a set of graph based formal constructs,

variety of relationship types with participation constraints

and rich set of graphical notations to specify the

conceptual level design of semi-structured database

system. The proposed design approach facilitates modeling

of irregular, heterogeneous, hierarchical and non-

hierarchical semi-structured data at the conceptual level.

Moreover, the proposed GOOSSDM is capable to model

XML document at conceptual level with the facility of

document-centric design, ordering and disjunction

characteristic. A rule based transformation mechanism of

GOOSSDM schema into the equivalent XML Schema

Definition (XSD) also has been proposed in this paper. The

concepts of the proposed conceptual model have been

implemented using Generic Modeling Environment

(GME).

Keywords- Semi-structured Data; XML; XSD; Conceptual

Modeling; Semi-structured Data Modeling; XML Modeling.

I. INTRODUCTION

The increasingly large amount of data processing on the
web based applications has led a crucial role of semi-
structured database system. In recent days, semi-structured
data has become prevalent with the growing demand of such
web based software systems. Semi-structured data though is
organized in semantic entity but does not strictly conform to
the formal structure to strict types. Rather it possess irregular
and partial organization [1]. Further semi-structured data
evolve rapidly and thus the schema for such data is large,
dynamic, is not strict to type and also is not considered the
participation of instances very strictly.

The eXtensible Markup Language (XML) is increasingly
finding acceptance as a standard for storing and exchanging
structured and semi-structured information over internet [12].
The Document Type Definition (DTD) or XML Schema
Definition (XSD) language can be used to define the schema
which describes the syntax and structure of XML documents
[9]. However, the XML schemas provide the logical
representation of the semi-structured data and it is hard to
realize the semantic characteristics of such data. Thus it is

important to devise a conceptual representation of semi-
structured data for designing the information system based on
such data more effectively. A conceptual model of semi-
structured data deals with high level representation of the
candidate application domain in order to capture the user ideas
using rich set of semantic constructs and interrelationship
thereof. Such conceptual model will separate the intention of
designer from the implementation and also will provide a
better insight about the effective design of semi-structured
database system. The conceptual design of such system further
can be implemented in XML based logical model.

To adopt the rapidly data evolving characteristics, the
conceptual model of semi-structured data must support several
properties like, representation of irregular and heterogeneous
structure, hierarchical relations along with the non –
hierarchical relationship types, cardinality, n – array relation,
ordering, representation of mixed content etc. [13]. Beside
these, it is also important to realize the participation
constraints of the instances in association with some relation
or semi-structured entity type. The participation of instances in
semi-structured data model is not strict. In early years, Object
Exchange Model has been proposed to model semi-structured
data [2], where data are represented using directed labeled
graph. The schema information is maintained in the labels of
the graph and the data instances are represented using nodes.
However, the separation of the structural semantic and content
of the schema is not possible in this approach. In recent past,
several researches have been made on conceptual modeling of
semi-structured data as well as XML. Many of these
approaches [3, 4, 5, 6, 7, 8] have been extended the concepts
of Entity Relationship (ER) model to accommodate the facet
of semi-structured data at conceptual level. The major
drawbacks of these proposals are in representation of
hierarchical structure of semi-structured data. Moreover, only
two ER based proposals [7, 8] support the representation of
mixed content in conceptual schema. In [7], a two level
approach has been taken to represent the hierarchical relations.
In first level the conceptual schema is based on extended
concept of ER model and in second level, hierarchical
organizations of parts of the overall conceptual schema are
designed. In general, ER model are flat in nature [14] and thus
unable to facilitate the reuse capability and representation of
hierarchical relationship very efficiently. On the other hand,
ORA-SS [11] proposed to realize the semi-structured data at
conceptual level starting from its hierarchical structure. But
the approach does not support directly the representation of

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 2, No. 10, 2011

113| P a g e
www.ijacsa.thesai.org

no-hierarchical relationships and mixed content in conceptual
level semi-structured data model.

Very few attempts have been made to model the semi-
structured data using Object Oriented (OO) paradigm. ORA-
SS [11] support the object oriented characteristic partially. The
approaches proposed in [9, 10, 12] are based on UML. These
approaches support object oriented paradigm comprehensively
and bridge the gap between OO software design and semi-
structured data schemata. However, the UML and extensions
to UML represent software elements using a set of language
elements with fixed implementation semantics (e.g. methods,
classes). Henceforth, the proposed approaches using extension
of UML, in general, are logically inclined towards
implementation of semi-structured database system. This may
not reflect the facet of such system with high level of
abstraction to the user. In other word, semi-structured data
model with UML extension cannot be considered as
semantically rich conceptual level model. In [16] a graph
semantic based web data model has been proposed and is
appropriate for modeling structured web database system. The
approach has not considered semi-structured characteristics of
web databases.

In this paper, a graph semantic based conceptual model for
semi-structured database system, called Graph Object
Oriented Semi-Structured Data Model (GOOSSDM), has been
proposed. The model is comprehensively based on object
oriented paradigm. Among others, the proposed model
supports the representation of hierarchical structure along with
non-hierarchical relationships, mixed content, ordering,
participation constraints etc. The proposed GOOSSDM
reveals a set of concepts to the conceptual level design phase
of semi-structured database system, which are understandable
to the users, independent of implementation issues and provide
a set of graphical constructs to facilitate the designers of such
system. The schema in GOOSSDM is organized in layered
approach to provide different level of abstraction to the users
and designers. In this approach a rule based transformation
mechanism also has been proposed to represent the equivalent
XML Schema Definitions (XSD) from GOOSSDM schemata.
The correctness of such transformation has been verified using
the structural correlation mechanism described in [15].
Moreover, the concepts of proposed GOOSSDM have been
implemented using Generic Modeling Environment (GME)
[14] which is a meta-configurable modeling environment. The
GME implementation can be used as prototype CASE tools
for modeling semi-structured databases using GOOSSDM.

The preliminary version of this work has been published in
[17] which has been now enriched and completed with
comprehensive formalization and CASE tools.

II. GOOSSDM: THE PROPOSED MODEL

The GOOSSDM extends the object oriented paradigm to
model semi-structured data. It contains all the details those are
necessary to specify the irregular and heterogeneous structure,
hierarchical and non-hierarchical relations, n – array
relationships, cardinality and participation constraint of
instances. The proposed data model allows the entire semi-
structured database to be viewed as a Graph (V, E) in layered
organization. At the lowest layer, each vertex represents an

occurrence of an attribute or a data item, e.g. name, day, city
etc. Each such basic attribute is to be represented as separate
vertex. A set of vertices semantically related is grouped
together to construct an Elementary Semantic Group (ESG). So
an ESG is a set of all possible instances for a particular
attribute or data item. On next, several related ESGs are group
together to form a Contextual Semantic Group (CSG). Even the
related ESGs with non-strict participations or loosely related
ESGs are also constituent of related CSG – the constructs of
related data items or attributes to represent one semi-structured
entity or object. The edges within CSG are to represent the
containment relation between different ESG in the said CSG.
The most inner layer of CSG is the construct of highest level of
abstraction or deeper level of the hierarchy in semi-structured
schema formation. This layered structure may be further
organized by combination of one or more CSGs as well as
ESGs to represent next upper level layers and to achieve further
lower level abstraction or higher level in the semi-structure
data schema hierarchy. From the topmost layer the entire
database appears to be a graph with CSGs as vertices and edges
between CSGs as the association amongst them. The CSGs of
topmost layer will act as roots of semi-structured data model
schemata.

A. Modeling Constructs in GOOSSDM

Since from the topmost layer, a set of vertices V is decided
on the basis of level of data abstraction whereas the set of
edges E is decided on basis of the association between
different semantic groups. The basic components for the
model are as follows,

A set of t distinct attributes A = {a1, a2, …., at} where,
each ai is an attribute or a data item semantically distinct.

(a) Elementary Semantic Group (ESG): An elementary
semantic group is an encapsulation of all possible instances or
occurrences of an attribute, that can be expressed as graph

ESG (V, E), where the set of edges E is a null set and the set
of vertices V represent the set of all possible instances of an

attribute xi ∈ A. ESG is a construct to realize the elementary

property, parameter, kind etc. of some related concern.
Henceforth there will be set of t ESGs and can be represented
as EG = {ESG1, ESG2, …., ESGt}. The graphical notation for
the any ESG is Circle.

(b) Contextual Semantic Group (CSG): A lowest layer
contextual semantic group is an encapsulation of set of ESGs
or references of one or more related ESGs to represent the
context of one entity of semi-structured data. Let, the set of n
CSGs can be represented as CG = {CSG1, CSG2, …, CSGn}.

Then any lowest layer CSGi ⊆ CG can be represented as a

graph (VCi, ECi) where vertices VCi EG and the set of edges
ECi represents the association amongst the vertices. For any
CSG, it is also possible to designate one or more encapsulated
ESGs as determinant vertex which may determine an
unordered or ordered set of instances of constituent ESGs or
CSGs. The graphical notation for any CSG is square and
determinant vertex is Solid Circle.

Composition of multiple CSGs can be realized in two
ways. Firstly, the simple Association (Discussed in subsection
II.B) may be drawn between two or more associated CSGs

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 2, No. 10, 2011

114| P a g e
www.ijacsa.thesai.org

either of same layer or of adjacent layers to represent the non-
hierarchical and hierarchical data structure respectively. The
associated CSG will be connected using Association
Connector. Those CSGs may share a common set of ESGs or
referred ESGs.

Secondly, lower layer CSGs may maintain an Inheritance
or Containment relationship (Discussed in subsection 2.B)
with the adjacent upper layer CSG to represent the different
level of abstraction. Thus, the upper layer CSG can be formed
by inheritance or composition of one or more lower layer
CSGs along with encapsulation of zero or more related ESGs

or reference of ESGs. Then any upper layer CSGi CG can be

represented as a graph (VCi, ECi) where vertices VCi CG EG

 Reference (EG) and the set of edges ECi represents the
association amongst the vertices.

(c) Annotation: Annotation is a specialized form of CSG and

can be expressed as G(V, E), where |V| = 1 and E = .
Annotation can contain only text content as tagged value.
Annotation can be containment in or associated with any other
CSG. Further the cardinality constraint for Annotation
construct is always 1:1 and ordering option can be 1 or 0,
where 1 means content will be in orderly form with other
constituent ESG and 0 means text content can be mixed with
other constituent ESGs. The annotation construct will realize
the document-centric semi-structured data possibly with mixed
content. This concept is extremely important for mapping
semi-structured data model in XML. Graphically Annotation
can be expressed using Square with Folded Corner.

The summary of GOOSSDM constructs and their
graphical notations have been given in Table I.

TABLE I. SUMMARY OF GOOSSDM CONSTRUCTS AND THEIR GRAPHICAL

NOTATIONS

GOOSSDM

Constructs

Description Graphical

Notation

ESG Elementary Semantic Group

Determinant

ESG

Determinant vertex of any CSG

which will determine the other

member vertices in the CSG

CSG Contextual Semantic Group

Annotation Specialized form of CSG. Contain

only Text Content.

Association

Connector

Connect multiple associated CSGs

B. Relationship Types in GOOSSDM

The proposed GOOSSDM provides a graph structure to
represent semi-structured data. The edges of the graph
represent relationships between or within the constructs of the
model. In the proposed model, four types of edges have been
used to represent different relationships. The type of edges and
their corresponding meanings are as follows,

(a) Containment: Containments are defined between
encapsulated ESGs including determinant ESG and parent
CSG, or between two constituent CSGs and parent CSG, or

 between CSG and referential constructs. The Containment

relationship is constrained by the parameters tuple <p, >,
where p determines the participation of instances in

containment and determines the ordering option of
constituent ESGs or CSGs. With any CSG, this represents a
bijective mapping between determinant ESG and other ESGs
or composed CSG with participation constraint. Graphically
association can be expressed using Solid Directed Edge from
the constituent constructs to its parent labeled by constraint
specifications. The possible values for p are as follows,
(i) 1:1 – Represents ESG with mandatory one instantiation or
total participation in the relationship and is default value of p.
(ii) 0:1 – Represents ESG with optional one instantiation in the
relationship.
(iii) 1:M – Represents ESG with mandatory multiple
instantiation in the relationship.
(iv) 0:M – Represents ESG with optional multiple
instantiation in the relationship.
(v) 0:X – Represents ESGs with optional exclusive
instantiation in the relationship. If a CSG contain single such
ESG then it will act like 0:1 option. Otherwise one such ESG
will optionally instantiate among all ESGs with p value 0:X.
(vi) 1:X – Represents ESG with mandatory exclusive
instantiation in the relationship. If a CSG contain single such
ESG then it will act like 1:1 value option. Otherwise it is
mandatory that one such ESG will instantiate among all ESGs
with p value 1:X.

The possible values for are as follows,
(i) 1 – Represents that for any CSG, the constituent ESGs
and CSGs are ordered and order must be maintained from left

to right in the list of ESGs with value 1.

(ii) 0 – This is default value of and represents that for any
CSG, the constituent ESGs and CSGs are not ordered.

(b) Association: Associations are defined between related
CSGs of same layer of adjacent layers. The Association

relationship is constrained by the parameters tuple <P, >,

where P determines the cardinality of Association and
determines the ordering option of associated CSGs.
Graphically association can be expressed using Solid
Undirected Edge. Any CSG wish to participate in association
will be connected with association relationship. On next,
multiple associated CSGs will be connected through
Association Connector. For semi-structured it is sometime
important to have specific context of some association. Such
context can be represented using Associated CSG defined on
Association Connector. Association Connector facilitates the n
– array relationship. Graphically association can be expressed
using Solid Undirected Edge, Association connector can be
expressed using Solid Diamond and Associated CSG can be
connected with Association Connector using Dotted
Undirected Edges with Participation constraint specifications.
The values for P can be 1:1 or 0:1 or 1:N or 0:N or 0:X or 1:X

with corresponding meaning and possible values for can be
1 or 0 with corresponding meaning.

(c) Link: Links are used to represent the inheritance
relationships between two CSGs. Graphically link can be
expressed using Solid Directed Edge with Bold Head from the
generalized CSG to the specialized one.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 2, No. 10, 2011

115| P a g e
www.ijacsa.thesai.org

(d) Reference: In semi-structured data model, it is important to
represent the symmetric relationship between ESGs or CSGs.
Reference can be used to model such concepts. Reference
relations are defined either between ESG and referred ESG or
between CSG and referred CSG. Graphically reference can be
expressed using Dotted Directed Edge.

The summary of GOOSSDM relationship types and their
graphical notations have been given in Table II.

TABLE II. SUMMARY OF GOOSSDM RELATIONSHIP TYPES AND THEIR

GRAPHICAL NOTATIONS

GOOSSDM

Relationships

Description Graphical

Notation

Containment Defined between Parent CSG and

constituent ESGs and CSGs

Association Defined between CSGs of same

layer or adjacent layers.

CSG Association Defined between association and

associated CSG

Link Defined between two adjacent

layer parent CSG and inherited

CSG

Reference Defined either between ESG and

referred ESG or between CSG and

referred CSG.

III. TRANSFORMATION OF GOOSSD INTO XSD

In general, the proposed GOOSSDM can be useful to
realize the semi-structured data schema at conceptual level.
The logical structure of such schema can be represented using
the artifacts of XSD. Moreover, XSD is currently the de facto
standard for describing XML documents. An XSD schema
itself can be considered as an XML document. Elements are the
main building block of any XML document. They contain the
data and determine the elementary structures within the
document. Otherwise, XSD also may contain sub-element,
attributes, complex types, and simple types. XSD schema
elements exhibit hierarchical structure with single root element.

A systematic rule based transformation of GOOSD
schemata to XSD is essential to express the semi-structured
data at logical level more effectively. For the purpose, a set of
rules have been proposed to generate the equivalent XSD from
the semantic constructs and relationship types of a given
GOOSSDM schemata. Based on the concepts of GOOSSDM
constructs and relationship types the transformation rules are as
follows,

Rule1: An ESG will be expressed as an element in XSD. For
example, ESGCity can be defined on attribute City to realize
Customer city. Any DESG construct must be expressed with
typed ID in XSD. The equivalent representation in XSD can be
as given in Figure 1.

Figure1. Representation of ESG

Rule 2: A CSG will be expressed as a complexType in XSD.
For example, CSGCustomer can be defined to realize the detail of

Customer. The equivalent representation in XSD can be as
given in Figure 2.

Rule 3: Any Annotation construct will be expressed as a
complexType in XSD with suitable mixed value. On

containment to other CSG, if value is 0 then it will be treated
as mixed content in the resulted XML document. Otherwise if

 value is 1 then it will be treated as annotation text in resultant
XML document in orderly form. An example of annotation
constructs has been shown in Figure 3.

Figure 2. Representation of CSG

Figure 3. Representation of Annotation Construct

Rule 4: A Reference of ESG and CSG will be expressed as a
complexType in XSD. For example, a reference of ESGCity can
be defined on attribute City to realize a referential attribute on
Customer city. The equivalent representation in XSD can be as
given in Figure 4.

Figure 4. Representation of Reference of ESG.

Rule 5: CSGs of topmost layer will be treated as root in XSD
declaration.

Rule 6: Any lowest layer CSG with containment of some ESGs
will be expressed as a complexType with elements declaration
in XSD. Further the participation constraint (p value in
GOOSSDM concept) can be expressed using minOccurs and

maxOccurs attribute in XSD. The ordering constraint (value
in GOOSSDM concept) can be expressed using compositor

type of XSD. If value is 1 then compositor type will be
sequence otherwise all. For ordered set ESGs, the order will be
maintained from left to right. If any subset of ESGs contains
the p value X:1 then those ESGs will be composite using
choice compositor type in XSD. An example of XSD
representation of lowest layer CSG has been shown in Figure 5.

Rule 7: Any upper layer CSG with containment of ESGs,
reference of ESGs and adjacent lower layer CSGs will be

<p, >

<P, >

<P, >

Customer

<xs:complexType name="Customer"/>

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 2, No. 10, 2011

116| P a g e
www.ijacsa.thesai.org

Figure 5. Representation of Lower layer CSG

Figure 6. Representation of Upper layer CSG.

expressed as a complexType in XSD. An example of XSD
representation of upper layer CSG with containment relation
has been shown in Figure 6.

Rule 8: Any upper layer CSG with Link relationship with
adjacent lower layer CSGs will be expressed as a complexType
with inheritance in XSD. Upper layer CSG will be the child of
lower layer CSG. An example of XSD representation of upper
layer CSG with inheritance with adjacent lower layer CSG has
been shown in Figure 7.

 Rule 9: Any upper layer CSG with Association relationship
with adjacent lower layer CSGs will be expressed as a
complexType with nesting in XSD. Upper layer CSG will be
treated as root element.

Rule 10: Association relationship between any two CSGs in the
same layer will be expressed as a complexType with nesting in
XSD. Rightmost CSG will be treated as the root element and
on next nesting should be done in right to left order of the CSG
in the same layer.

Rule 11: N – array Association relationship within a set of
CSGs spread over several layer will be expressed as a
complexType with nesting in XSD. Topmost layer CSG will be
treated as the root element in XSD. Then, in the adjacent lower
layer the rightmost CSG should be treated as nested element
within the root element. Further the nesting should be done in

right to left order of the CSG in the same layer and on next
moving on the adjacent lower layers.

Figure 7. Representation of Link Relationship

Rule 12: With several Association relationships (composition
of n – array and simple relationship) within a set of CSGs
spread over several layer will be expressed as a complexType
with nesting in XSD. Topmost layer CSG will be treated as the
root element in XSD. Then, if available, the directly associated
CSGs in each adjacent lower layer will be nested till it reaches

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 2, No. 10, 2011

117| P a g e
www.ijacsa.thesai.org

Figure 8. Representation of Associated CSGs spread over several layers (ESG layer is hidden).

to the lowermost layer of available associated CSG. On next,
the CSGs of adjacent lower layer of the root element will be
nested from right to left order in the same layer along with the
nesting of directly associated CSGs (if available) in each
corresponding adjacent layers. An example has been shown in
Figure 9 for XSD representation of GOOSSDM schemata
where associated CSGs are spread over three layers and contain
both n – array and simple associations.

Figure 9. Irregular Structure in Visit Records XML

IV. CASE STUDY

Let consider an example of Visit Record of Patient where a
Patient can visit to a Doctor either at Hospital Department or
at Clinic [7]. Any patient can visit several times to different
doctors. The Figure 9 shows an irregularly structured XML
representation of visit records of two patients. Patient 1 visited
twice to two different Doctors, one at Hospital Department and
another at Clinic. Patient 2 visited once to one Doctor common
to Patient 1 but at different Clinic. All though in the document,
the Date of Visit, Doctor and option of Hospital Department
and Clinic are in order. The XML document of Figure 9
represents the semi-structured data for such Visit Record
database. The suitable GOOSSDM schemata for such data and
its equivalent XSD have been shown in Figure 10. The
equivalent XSD of GOOSSDM schemata of Figure 10 can be
generated using the rules described in Section III.

V. CORRECTNESS OF GOOSSDM TRANSFORMATION

The set of proposed transformation rules described in
Section III facilitates the systematic transformation of
conceptual level semi-structured data model like GOOSSDM
to the equivalent XSD in logical level. The correctness of the
model transformation can be proved using the structural
correspondence approach described in Narayanan et al [15]. In
every model transformation, there is a correlation or
correspondence between parts of the input model and parts of
the output model. One can specify these correlations in terms
of the abstract semantics of the source and target model
constructs. The approach of Narayanan et al. describes that, if a
transformation has resulted in the desired output models, there
will be a verifiable structural correspondence between the
source and target model instances that is decidable. Moreover,
the transformation can be accepted as correct, if a node in the

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 2, No. 10, 2011

118| P a g e
www.ijacsa.thesai.org

source model and its corresponding node in the target model
satisfy some correspondence conditions.

Figure 10. Corresponding GOOSSDM schemata and Equivalent XSD of

Figure 9

In case of GOOSSDM, the meta-model level identifiable
correspondence structures are listed in Table III and the table
can be treated as the look-up table for the cross links between
the source model (GOOSSDM) and target model (XSD).

Further, the proposed set of rules will realize the
correctness condition in model transformation. In our proposed
approach, the correspondence rules must ensure that semantics
and syntax for every constructs in the GOOSSDM model and
its instance being transformed into the XSD model elements.

Several examples have been illustrated for the proposed
transformation rules to verify the correctness of
correspondence mapping of GOOSSDM schemata to the
equivalent XSD.

TABLE III. LOOK-UP TABLE FOR STRUCTURAL CORRESPONDANCE

GOOSSDM

Constructs

Graphical

Notation

Equivalent XSD Representation

ESG xs:Element

Determinant

ESG

 xs:ID

CSG xs:complexType

Annotation

xs:complexType with suitable Mixed

value

Association

Connector

 xs:complexType with nesting from right

to left order

Containment xs:complexType with element

declaration

Association xs:complexType with nesting

CSG

Association

 xs:complexType with nesting from right

to left order

Link xs:extension declaration

Reference ref declaration in xs:element

P value 1:1 or 0:1 or

1:N or 0:N

or 0:X or

1:X

minOccurs and maxOccurs delcarations

 value 1 or 0 Compositor type : all or sequence

VI. FEATURES OF GOOSSDM

The proposed GOOSSDM is an extension of
comprehensive object oriented model for Semi-structured
Database System and which can be viewed as a Graph (V, E) in
layered organization. It contains set of semantically enriched
constructs and relationship types to describe all the details
those are necessary to specify the artifacts of the system
containing semi-structured data. Moreover, using proposed set
of rules, the proposed model schemata can be systematically
transformed into equivalent XSD, which represents the logical
schema for semi-structured data. Apart from these, one of the
major advantages of the model is that it defines each level of
structural detail on the constructs which are independent of the
implementation issues. Moreover, the graph structure maintains
the referential integrity inherently. The features of the proposed
model are as follows,

<p, >

<P, >

<P, >

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 2, No. 10, 2011

119| P a g e
www.ijacsa.thesai.org

(a) Explicit Separation of structure and Content: The model
provides a unique design framework to specify the design for
the semi-structured database system using semantic definitions
of different levels (from elementary to composite) of data
structure through graph. The model reveals a set of structures
like ESG, CSG, Annotation, Association Connector etc. along
with a set of relationships like Containment, Association,
Link, Reference etc. between the structures, which are not
instance based or value based. So, the nature of contents that
corresponded with the instances and the functional constraint
on the instances has been separated from the system’s
structural descriptions.

(b) Abstraction: In the proposed GOOSSDM, the concepts of
layers deploy the abstraction in semi-structured data schema.
The upper layer views will hide the detail structural
complexity from the users. Such a representation is highly
flexible for the user to understand the basic structure of semi-
structure database system and to formulate the alternative
design options.

(c) Reuse Potential: The proposed model is based on Object
oriented paradigm. It is supported with inheritance mechanism
using the Link relationship. Henceforth, there is no binding in
the model to reuse some CSG constructs of any layer. On
reuse of CSG, the specialized CSG must be shown in adjacent
upper layer of the parent CSG. Moreover, lowest layer ESG or
lower layer can be shared and reused with different CSGs of
the upper layers using Containment relationship.

(d) Disjunction Characteristic: The instances of semi-
structured data schema are likely to be less homogeneous than
structured data. Disjunction relationships facilitate the
possibility of non-homogeneous instances. The proposed
GOOSSDM supports disjunction relationship using the
participation constraint attribute p or P (by setting p or P value
either 0:X or 1:X). The Containment relationships between
constituent ESGs or CSGs with the parent CSG can be
disjunctive or Association relationships between two or more
CSGs can be disjunctive. Figure 5 and Figure 10 respective
explain such disjunctions.

(e) Hierarchical and Non-hierarchical Structure: The
proposed model explicitly supports both hierarchical and non-
hierarchical representation in semi-structure data modeling at
conceptual level. Associated CSGs of different or same layers
form the hierarchical or non-hierarchical structure in semi-
structured data model. At the logical level modeling of semi-
structured data using XSD supports only hierarchical structure.
For the purpose, the set of rules have been proposed to
transform more generous conceptual level schema to
hierarchical logical schema.

(f) Ordering: Ordering is one important concept in modeling
of semi-structured data. One or more attributes or relationships
in semi-structured data schema can be ordered. Our proposed
model supports ordering in two ways using the relationship

ordering constraint attribute. Firstly, the ordering may be
enforced between parent CSG and any set of constituent ESGs

and CSGs by specifying the value on containment
relationship. Secondly, the ordering can be enforced on the
any set of Association relationships within CSG.

(g) Irregular and Heterogeneous structure: By characteristic
the semi-structured data is irregular and heterogeneous. The
proposed GOOSSDM supports disjunction characteristic,
ordering and representation of both hierarchical and non-
hierarchical structure in the same schema. With all these
facets, the proposed model can efficiently model the irregular
and heterogeneous semi-structured data. Modeling of irregular
structure using GOOSSDM has been shown in Figure 10.

(h) Participation constraint: Instances participations in the
semi-structured data schema are not followed strictly.
Participations of instances can be optional or mandatory or
even exclusive for such schema. This can affect the
participation of constituent ESGs and CSGs in the parent CSG
or may affect the participation of CSGs in some association
relationship either of simply type or n-array type. All these
participation constraint can be modeled in proposed
GOOSSDM by specifying the value for participation
constraint attribute p or P.

(i) Document-centric and Mixed Content: In real world,
document texts are mixed with semi-structured data. The
feature is more important and frequent in XML documents.
Thus it is an essence that, the conceptual model for semi-
structured data must support modeling of such feature. In the
proposed model, the Annotation construct facilitates to model
document centric design of semi-structured data at conceptual
level. Moreover, the modeling of the Annotation construct in
the GOOSDM schema allows the instances of CSG and ESG
to be mixed with the text content. The presence of this
construct along with the other defined constructs and
relationships, the proposed GOOSSDM is also capable to
model XML document at conceptual level.

VII. IMPLEMENTATION OF GOOSSDM USING GME

The Generic Modeling Environment (GME) provides meta-
modeling capabilities and where a domain model can be
configured and adapted from meta-level specifications
(representing the Conceptual modeling) that describe the
domain concept. It is common for a model in the GME to
contain several numbers of different modeling elements with
hierarchies that can be in many levels deep. The GME supports
the concept of a viewpoint as a first-class modeling construct,
which describes a partitioning that selects a subset of
conceptual modeling components as being visible.

Moreover, GME support the programmatic access of the
metadata of GME models. Most usual techniques for such
programmatic access is to write GME interpreter for some
metamodel. The interpreter will be able to interpret any domain
model based on that predefined metamodel. GME interpreters
are not standalone programs, they are components (usually
Dynamic Link Libraries) that are loaded and executed by GME
upon a user's request. Most GME components are built for the
Builder Object Network (BON), an inbuilt framework in GME
and provide a network of C++ objects. Each of these represents
an object in the GME model database. C++ methods provide
convenient read/write access to the objects' properties,
attributes, and relations described in GME metamodel.

In the context of GOOSSDM, the lower layers can be
conceptualized using levels in GME. The semi-structured data

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 2, No. 10, 2011

120| P a g e
www.ijacsa.thesai.org

Figure11. Meta-Level Specifications of GOOSSDM model using GME

Figure 12. GOOSSDM Schema of Patient and Doctor Example using GME

definitions for any given GME model can be configured using
meta-level specifications of GOOSSDM. The interpreter will
generate the equivalent XML Schema Definitions for any given
GME model configured using meta-level specifications of
GOOSSDM to represent the semi-structured data at logical
level.

The meta-level specifications of GOOSSDM using GME
have been shown in Figure 11. The GOOSSDM schema
specification of Patient and Doctor example (Figure 9 and
Figure 10) using GOOSSFM meta-level specifications has been
shown in Figure 12. The BON based interpreter for
GOOSSDM can run from the GME interface to interpret any
GOOSSDM schema and to generate the equivalent XSD Code.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 2, No. 10, 2011

121| P a g e
www.ijacsa.thesai.org

VIII. CONCLUSION

In this paper, a model has been introduced for the
conceptual level design of semi-structured data using graph
based semantics. This is a comprehensive object oriented
conceptual model and the entire semi-structure database can be
viewed as a Graph (V, E) in layered organization. The graph
based semantics in GOOSSDM model extracts the positive
features of both Object and Relational data models and also it
maintains the referential integrity inherently. Further the
layered organization of the model facilitates to view the semi-
structured data schema from different level of abstraction.

The proposed GOOSSDM contains detailed set of
semantically enriched constructs and relationships those are
necessary to specify the facets of semi-structured database
system at conceptual level. Moreover, a set of rules also have
been proposed to systematically transform any GOOSSDM
schema to its equivalent XSD structure. The expressive powers
of the set of transformation rules have been illustrated with
suitable examples and case study. Moreover, the proposed
model also facilitates the designer to provide alternative design
of same schema by changing the ordering scheme, which in
result can be transformed in different XSDs with different
nesting patterns. It provides better understandability to the
users and high flexibility to the designers for creation and / or
modification of semi-structured data as well as XML document
at conceptual level. The proposed approach is also independent
from any implementation issues.

It is also important to note that with the concept of
Annotation construct the proposed GOOSSDM facilitate the
document – centric design of semi-structured data at conceptual
level. Also the proposed model supports irregular,
heterogeneous, hierarchical and no-hierarchical structure in
data. Moreover, the set of proposed rules are capable to
transform systematically the GOOSSDM schema into
hierarchical XSD schema. Due to these features, the proposed
approach is also capable to design XML document at
conceptual level.

The proposed approach also has been automated through
the GME based meta-model configuration of GOOSSDM. The
meta-level specification of GOOSSDM along with interpreter
can be used as a CASE tool for the model by the semi-
structured database designer. The tools facilitates the automatic
generation of XML Schema Definitions from the conceptual
level graphical model, using the set of proposed rule set.

Future studies will concentrate on developing a graphical
query language for the proposed approach.

REFERENCES

[1] S. Abiteboul, P. Buneman, and D. Suciu, “Data on the Web: From
Relations to Semistructured Data and XML”, Morgan Kaufman, 1999.

[2] Jason McHugh, Serge Abiteboul, Roy Goldman, Dallas Quass, Jennifer

Widom "Lore: a database management system for semistructured data",
Vol. 26 , Issue 3, PP: 54 - 66, 1997

[3] A. Badia, "Conceptual modeling for semistructured data", In Proc. of
the Third International Conference on Web Information Systems

Engineering, PP: 170 – 177, 2002.

[4] M. Mani. “EReX: A Conceptual Model for XML”, In Proc. of the
Second International XML Database Symposium, PP 128-142, 2004.

[5] G. Psaila, “ERX: A Conceptual Model for XML Documents”, In Proc. of

the ACM Symposium on Applied Computing, PP: 898-903, 2000.

[6] A. Sengupta, S. Mohan, R. Doshi, “XER - Extensible Entity Relationship
Modeling”, In Proc. of the XML 2003 Conference, PP: 140-154, 2003.

[7] Martin Necasky, "XSEM: a conceptual model for XML", In Proc. of 4
th

ACM International Asia-Pacific conference on Conceptual Modeling,
Vol. 67, PP: 37 - 48, 2007.

[8] B. F. Lósio, A. C. Salgado, L. R. GalvÐo, "Conceptual modeling of

XML schemas", In Proc.of the 5
th
 ACM International Workshop on Web

Information and Data Management, PP: 102 – 105, 2003.

[9] H. X. Liu, Y. S. Lu, Qing Yang, "XML conceptual modeling with
XUML", In Proc. of the 28

th
 International Conference On Software

Engineering, PP: 973 – 976, 2006.

[10] C. Combi, B. Oliboni, "Conceptual modeling of XML data", In Proc. of
the ACM Symposium On Applied Computing, PP: 467 – 473, 2006.

[11] X. Wu, T. W. Ling, M. L. Lee, G. Dobbie, "Designing semistructured

databases using ORA-SS model", In Proc. of the 2
nd

 International
Conference on Web Information Systems Engineering, Vol. 1, PP: 171 –

180, 2001.

[12] R. Conrad, D. Scheffner, J. C. Freytag, "XML conceptual modeling using
UML", In Proc. of the 19

th
 International Conference On Conceptual

Modeling, PP: 558-574, 2000.

[13] M. Necasky, “Conceptual Modeling for XML: A Survey”, Tech. Report
No. 2006-3, Dep. of Software Engineering, Faculty of Mathematics and

Physics, Charles University, Prague, 2006.

[14] Á. Lédeczi, A. Bakay, M. Maroti, P. Volgyesi, G. Nordstrom, J.
Sprinkle, G. Karsai, “Composing Domain-Specific Design

Environments”, IEEE Computer, pp. 44-51, November 2001.

[15] A. Narayanan, G. Karsai, “Specifying the correctness properties of

model transformations”, Proc. of 3
rd

 Int. workshop on Graph and model
transformations (Int. Conf. on Software Engineering), PP 45-52, 2008.

[16] Abhijit Sanyal, Anirban Sarkar, Sankhayan Choudhury, “Automating

Web Data Model: Conceptual Design to Logical Representation”, 19
th

Intl. Conf. on Software Engineering and Data Engineering (SEDE 2010),

PP 94 – 99, 2010.

[17] Anirban Sarkar, Sesa Singha Roy, “Graph Semantic Based Conceptual
Model of Semi-structured Data: An Object Oriented Approach”, 11

th

International Conference on Software Engineering Research and Practice
(SERP 11), Vol. 1, PP 24 – 30, USA, July 18 – 21, 2011.

AUTHORS PROFILE

Anirban Sarkar is presently a faculty member in the

Department of Computer Applications, National Institute of

Technology, Durgapur, India. He received his PhD degree

from National Institute of Technology, Durgapur, India in

2010. His areas of research interests are Database Systems

and Software Engineering. His total numbers of

publications in various international platforms are about 25.

