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Abstract—The clustering or partitioning of a dataset’s records 
into groups of similar records is an important aspect of 
knowledge discovery from datasets. A considerable amount of 
research has been applied to the identification of clusters in very 
large multi-dimensional and static datasets. However, the 
traditional clustering and/or pattern recognition algorithms that 
have resulted from this research are inefficient for clustering 
data streams. A data stream is a dynamic dataset that is 
characterized by a sequence of data records that evolves over 
time, has extremely fast arrival rates and is unbounded. Today, 
the world abounds with processes that generate high-speed 
evolving data streams. Examples include click streams, credit 
card transactions and sensor networks. The data stream’s 
inherent characteristics present an interesting set of time and 
space related challenges for clustering algorithms. In particular, 
processing time is severely constrained and clustering algorithms 
must be performed in a single pass over the incoming data.  This 
paper presents both a clustering framework and algorithm that, 
combined, address these challenges and allows end-users to 
explore and gain knowledge from evolving data streams. Our 
approach includes the integration of open source products that 
are used to control the data stream and facilitate the harnessing 
of knowledge from the data stream. Experimental results of 
testing the framework with various data streams are also 
discussed. 

Keywords-data stream; data mining; cluster analysis; knowledge 
discovery; machine learning; Cassandra database; BIRCH; 
CluStream; distributed systems. 

I. INTRODUCTION 

According to the International Data Corporation (IDC), the 
size of the 2006 digital universe was 0.18 zettabytes1 and the 
IDC has forecasted a tenfold growth by 2011 to 1.8 zettabytes 
[17]. One of the main sources of this vast amount of data are 
streams of high speed and evolving data. Clustering analysis is 
a form of data mining whose application has, relatively 
recently, started to be applied to data streams. The unbounded 
and evolving nature of the data that is produced by the data 
stream, coupled with its varying and high-speed arrival rate, 
require that the data stream clustering algorithm embrace these 
properties: efficiency, scalability, availability, and reliability. 
One of the objectives of this work is to produce a distributed 
framework that addresses these properties and, therefore, 
facilitates the development of data stream clustering 
algorithms for this extreme environment. Another objective is 

                                                        

1
 One zettabyte equals 1021 bytes or one billion terabytes. 

to implement a clustering algorithm that is specifically 
designed to leverage the distributed framework. This paper 
describes that clustering algorithm and the distributed 
framework, which is entirely composed of off-the-shelf open 
source components. The framework is referred to simply as 
CluSandra, while the algorithm, which is deployed onto the 
framework, is referred to as the CluSandra algorithm. 
CluSandra‟s primary pillars are a database system called 
Cassandra [9][15] and a message queuing system (MQS). 
Cassandra, which is maintained by the Apache Software 
Foundation (ASF), is a new breed of database system that is 
referred to as a NoSQL database. At its core, Cassandra is a 
distributed hash table (DHT) designed to tackle massive 
datasets, perform in near-time and provide linear scalability 
[9]. The MQS can be any number of either open source or 
commercial message queuing systems that implement the Java 
Message Service (JMS) API. All experimentation, related to 
this work, was performed using the Apache ActiveMQ [16] 
queuing system.  

The combination of the CluSandra framework and 
algorithm provides a distributed, scalable and highly available 
clustering system that operates efficiently within the severe 
temporal and spatial constraints associated with real-time 
evolving data streams. Through the use of such a system, end-
users can also gain a deeper understanding of the data stream 
and its evolving nature in both near-time and over different 
time horizons.  

A. Data Stream 

A data stream is an ordered sequence of structured data 
records with these inherent characteristics: fast arrival rate, 
temporally ordered, evolves over time, and is unbounded [8]. 
The data stream‟s arrival rate can be in the order of thousands 
of data records per second, the concepts that are derived from 
the data stream evolve at varying rates over time and, because 
the data stream is unbounded, it is unfeasible to store all of its 
records in any form of secondary storage (e.g., DBMS). The 
data stream‟s evolutionary characteristic is referred to as 
concept drift [3]. This type of change may come as a result of 
the changing environment of the problem; e.g., floating 
probability distributions, migrating clusters of data, loss of old 
and appearance of new classes and/or features, class label 
swaps, etc. [20] Examples of data streams include IP network 
traffic, sensor networks, wireless networks, radio frequency 
identification (RFID), customer click streams, telephone 
records, etc. Today, there are many applications whose data is 
best modeled as a data stream and not as a persistent set of 
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tables.  The following are some examples of applications for 
data stream processing [11]: 

 Real-time monitoring of information systems that 
generate vast amounts of data. For example, computer 
network management, telecommunications call 
analysis, internet applications (e.g., Google, eBay, 
recommendation systems, click stream analysis) and 
monitoring of power plants. 

 Generic software for applications based on streaming 
data. For example, finance (fraud detection, stock 
market analysis), sensor networks (e.g., environment, 
road traffic, weather forecasting, electric power 
consumption). 

In this paper, a data stream S is treated as an unbounded 

sequence of pairs s,t , where s is a structured data record (set 
of attributes) and t is a system-generated timestamp attribute 
that specifies when the data record was created. Therefore, t 
may be viewed as the data stream‟s primary key and its values 
are monotonically increasing [7]. The timestamp values of one 
data stream are independent from those of any other data 
stream that is being processed within CluSandra. Since data 
streams comprise structured records, streams comprising 
unstructured data (e.g., audio and video streams) are not 
considered data streams within the context of this paper.  

B. Cluster Analysis 

Cluster analysis or clustering is a process by which similar 
objects are partitioned into groups. That is, all objects in a 
particular group are similar to one another, while objects in 
different groups are quite dissimilar. The clustering problem is 
formally defined as follows: for a given set of data points, we 
wish to partition them into one or more groups of similar 
objects, where the notion of similarity is defined by a distance 
function [21]. Clustering is a very broad topic that lies at the 
intersection of many disciplines such as statistics, machine 
learning, data mining, and linear algebra [12]. It is also used 
for many applications such as pattern recognition, fraud 
detection, market research, image processing, and network 
analysis.  

The focus of this work is on data clustering, which is a 
type of data mining problem. Large multi-dimensional datasets 
are typically not uniformly distributed. By identifying the 
sparse and dense areas of the data space, data clustering 
uncovers the distribution patterns of the dataset [10]. In 
general, data clustering seeks to partition unlabeled data 
records from a large dataset into labeled clusters, which is a 
form of classification. Classification is an important problem 
that has been studied extensively within the context of data 
streams[3][4]. With respect to evolving data streams, 
clustering presents an attractive advantage, because it is easily 
adapted to changes in the data and can, therefore, be used to 
identify features that distinguish different clusters [12]. This is 
ideal for concept drifting data streams. 

There are different data types (e.g., binary, numerical, 
discrete) that need to be taken into account by data clustering 
algorithms; the CluSandra algorithm only processes numerical 
data. Future work can deploy additional algorithms, designed 
to handle other data types, onto the CluSandra framework. 

This work also assumes that the values for all the data records‟ 
attributes are standardized; therefore, there is no preprocessing 
of the data records. Numerical data are continuous 
measurements of a roughly linear scale [12]. When working 
with data records whose attributes are of this data type, the 
records can be treated as n-dimensional vectors, where the 
similarity or dissimilarity between individual vectors is 
quantified by a distance measure. There are a variety of 
distance measures that can be applied to n-dimensional 
vectors; however, the most common distance measure used for 
continuous numerical data is the Euclidean measure:  

                      d(i,j) =  (1) 

where xik and xjk are the kth variables for the n-dimensional 
data records i and j. For example, suppose you have two 2-
dimenisonal data records as follows: (1,3) and (4,1). The 
Euclidean distance between these two records is the following: 

                    = 3.60 (2) 

If the data stream‟s records are viewed as Euclidean 
vectors in Euclidean n-space, the distance between any two 
vectors (records) is the length of the line connecting the two 
vectors‟ tips or points. The lower the resulting value, the 
closer (similar) the two vectors. The CluSandra algorithm 
utilizes Euclidean distance as a measure to determine how 
similar or close a new data record is to a cluster‟s centroid 
(mean). It is also used to find the distance between two 
clusters‟ centroids.  

The next section discusses related work in this area. 
Section III describes the CluSandra framework and Section IV 
describes the cluster query language that was developed. 
Section V presents the experimental results and section VI 
discusses the conclusions and opportunities for future work. 

II. RELATED WORK 

A considerable amount of research has been applied to 
clustering very large multi-dimensional datasets. One of the 
key challenges, which has been the subject of much research, 
is the design of data clustering algorithms that efficiently 
operate within the time and space constraints presented by 
very large datasets. That is, the amount of available memory 
and required I/O time relative to the dataset‟s size. These 
constraints are greatly amplified by the data stream‟s 
extremely fast arrival time and unbounded nature. The 
research work done in [5], [6], and [10] introduced concepts, 
structures and algorithms that made great strides towards 
efficient clustering of data streams. The CluSandra algorithm 
is based on and expands on this work, as described below. 

A. BIRCH 

The CluSandra algorithm is based on the concepts and 
structures introduced by the Balanced Iterative Reducing and 
Clustering (BIRCH) [10] clustering algorithm. It is based on 
the K-means (center-based) clustering paradigm and, 
therefore, targets the spherical Gaussian cluster. K-means 
provides a well-defined objective function, which intuitively 

(xik - x jk )
2

k=1

n

å

(1- 4)2 + (3-1)2
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coincides with the idea of clustering [19]. The simplest type of 
cluster is the spherical Gaussian [19]. Clusters that manifest 
non-spherical or arbitrary shapes, such as correlation and non-
linear correlation clusters, are not addressed by the BIRCH 
and CluSandra algorithms. However, the CluSandra 
framework does not preclude the deployment of algorithms 
that address the non-spherical cluster types.  

BIRCH mitigates the I/O costs associated with the 
clustering of very large multi-dimensional and persistent 
datasets. It is a batch algorithm that relies on multiple 
sequential phases of operation and is, therefore, not well-
suited for data stream environments where time is severely 
constrained. However, BIRCH introduces concepts and a 
synopsis data structure that help address the severe time and 
space constraints associated with the clustering of data 
streams. BIRCH can typically find a good clustering with a 
single pass of the dataset [10], which is an absolute 
requirement when having to process data streams. It also 
introduces two structures: cluster feature (CF) and cluster 
feature tree. The CluSandra algorithm utilizes an extended 
version of the CF, which is a type of synopsis structure. The 
CF contains enough statistical summary information to allow 
for the exploration and discovery of clusters within the data 
stream. The information contained in the CF is used to derive 
these three spatial measures: centroid, radius, and diameter. 
All three are an integral part of the BIRCH and CluSandra 
algorithms. Given N n-dimensional data records (vectors or 

points) in a cluster where i = {1,2,3, …, N}, the centroid , 

radius R, and diameter D of the cluster are defined as 

 (3) 

  (4) 

 (5) 

where  and  are the ith and jth data records in the cluster 

and N is the total number of data records in the cluster. The 
centroid is the cluster‟s mean, the radius is the average 
distance from the objects within the cluster to their centroid, 
and the diameter is the average pair-wise distance within the 
cluster. The radius and diameter measure the tightness or 
density of the objects around their cluster‟s centroid. The 
radius can also be referred to as the “root mean squared 
deviation” or RMSD with respect to the centroid. Typically, 
the first criterion for assigning a new object to a particular 
cluster is the new object‟s Euclidean distance to a cluster‟s 
centroid. That is, the new object is assigned to its closest 
cluster. Note, however, that equations 3, 4 and 5 require 

multiple passes of the data set. Like BIRCH, the CluSandra 
algorithm derives the radius and centroid while adhering to the 
single pass constraint. To accomplish this, the algorithm 
maintains statistical summary data in the CF. This data is in 
the form of the total number of data records (N), linear sum, 
and sum of the squares with respect to the elements of the n-
dimensional data records. This allows the algorithm to 
calculate the radius, as follows: 

 (6) 

For example, given these three data records: (0,1,1), 
(0,5,1), and (0,9,1), the linear sum is (0,15,3), the sum of the 
squares is (0,107,3) and N is 3. The CF, as described in 
BIRCH, is a 3-tuple or triplet structure that contains the 
aforementioned statistical summary data. The CF represents a 
cluster and records summary information for that cluster. It is 
formally defined as  

 (7) 

where N is the total number of objects in the cluster (i.e., the 
number of data records absorbed by the cluster), LS is the 
linear sum of the cluster and SS is the cluster‟s sum of the 
squares:  

 (8) 

 (9) 

It is interesting to note that the CF has both the additive 
and subtractive properties. For example, if you have two 
clusters with their respective CFs, CF1 and CF2, the CF that is 
formed by merging the two clusters is simply CF1 + CF2. 

B. CluStream 

CluStream [5] is a clustering algorithm that is specifically 
designed for evolving data streams and is based on and extends 
the BIRCH algorithm. This section provides a brief overview 
of CluStream and describes the problems and/or constraints 
that it addresses. This section also describes how the 
CluSandra algorithm builds upon and, at the same time, 
deviates from CluStream.  

One of CluStream‟s goals is to address the temporal 
aspects of the data stream‟s single-pass constraint. For 
example, the results of applying a single-pass clustering 
algorithm, like BIRCH, to a data stream whose lifespan is 1 or 
2 years would be dominated by outdated data. CluStream 
allows end-users to explore the data stream over different time 
horizons, which provides a better understanding of how the 
data stream evolves over time. CluStream divides the 
clustering process into two phases of operation that are meant 
to operate simultaneously. The first, which is referred to as the 
online phase, efficiently computes and stores data stream 
summary statistics in a structure called the microcluster. A 
microcluster is an extension of the BIRCH CF structure 
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whereby the CF is given two temporal dimensions. The second 
phase, which is referred to as the offline phase, allows end-
users to perform macroclustering operations on a set of 
microclusters. Macroclustering is the process by which end-
users can explore the microclusters over different time 
horizons. To accomplish this, CluStream uses a tilted time 
frame model for maintaining the microclusters. The tilted time 
frame approach stores snapshots (sets) of microclusters at 
different levels of granularity based on elapsed time. In other 
words, as time passes, the microclusters are merged into 
coarser snapshots. The CluSandra algorithm is based upon and 
extends CluStream and the design of the CluSandra 
framework is based on the concepts of both microclustering 
and macroclustering. However, the general approach taken by 
CluSandra for these two operational phases is quite different 
than that taken by CluStream.  

CluStream‟s microcluster extends the CF structure by 
adding two temporal scalars or dimensions to the CF. The first 
scalar is the sum of the timestamps of all the data records that 
have been absorbed by the cluster and the second is the sum of 
the squares of the timestamps. Thus the CF triplet, as defined 
by BIRCH, is extended as follows: 

 (10) 

Where ST is the sum of the timestamps and SST is the sum of 
the squares of the timestamps. Note that this extended CF 
retains its additive and subtractive properties. From 
henceforth, this extended version of the CF is simply referred 
to as a microcluster. The ST and SST can be applied to 
expression (6) to arrive at the temporal standard deviation of 
the microcluster as follows: 

 (11) 

CluStream‟s microclustering process collects and 
maintains the statistical information in such a manner that the 
offline macroclustering phase can make effective use of the 
information. For example, macroclustering over different time 
horizons and exploring the evolution of the data stream over 
these horizons.  

CluStream defines a fixed set of microclusters that it 

creates and maintains in-memory. This set, M = {M1, M2, …, 

Mq} is the current online working set with q being the 

maximum number of microclusters in the set and each 
microcluster in M being given a unique id. The CluStream 

paper states that the algorithm is very sensitive to any further 
additions to the microcluster snapshot, as this negatively 
impacts q. This type of space constraint is one that CluSandra 
removes by relying on Cassandra to serve as a highly reliable 
and scalable real-time distributed cluster database. Like 
CluStream, the CluSandra algorithm also maintains a working 
set of microclusters in memory; however, the size of this 
working set is dictated by the size of a sliding time window in 
combination with a maximum boundary threshold (MBT).  

CluStream„s updating of the microclusters is similar to that 
of BIRCH. When a new data record is presented by the data 
stream, it is assigned to the closest microcluster Mi in M. After 

finding the closest microcluster Mi, it is then determined if Mi 

can absorb the new record without exceeding its MBT. 
CluStream defines the MBT as, “a factor of t of the RMSD of 
the data points in Mi from the centroid”. This is another way 

of referring to the standard deviation of the cluster times a 
factor t to arrive at the final maximum radius. The 

microcluster Mi is updated whenever it absorbs a new data 

record. If Mi has absorbed only one data record, the RMSD 

cannot be calculated; therefore, for those clusters having 
absorbed only one data record, the MBT is derived as the 

distance from Mi to its closest neighbor times a factor r. The 

CluSandra algorithm uses a similar approach in locating the 
closest microcluster. However, it does not use the nearest 
neighbor approach for those instances where the closest 
microcluster has absorbed only one entry. It instead 
determines if the closest microcluster can absorb the data 
record without exceeding a configurable and fixed maximum 
radius, which is CluSandra‟s MBT.  

If Mi cannot absorb the new data record, CluStream creates 

a new microcluster to host the data record. To conserve 
memory, CluStream requires that either one of the existing 
microclusters in M be deleted or two microclusters be merged. 

Only those microclusters that are determined to be outliers are 
removed from M. If an outlier cannot be found in M, two 

microclusters are merged. The CluSandra algorithm deviates 
from this approach since it simply adds a new microcluster to 
its current working set. Again, the size of CluSandra‟s in-
memory working set is managed according to a temporal 
sliding window and the specified MBT. Any microclusters 
that are no longer active within the current sliding window are 
removed from the working set, but not before being persisted 
to the Cassandra cluster database.  

The temporal scalars (ST, SST) of the microcluster, in 

combination with a user-specified threshold , are used to look 

for an outlier microcluster in M. The ST and SST scalars 

allows CluStream to calculate the mean and standard deviation 

of the arrival times of the data records in M‟s microclusters. 

CluStream assumes that the arrival times adhere to a normal 
distribution. With the mean and standard deviation of the 
arrival times calculated, CluStream calculates a “relevance 
stamp” for each of the microclusters. A microcluster whose 

relevance stamp is less than the threshold  is considered an 

outlier and subject to removal from M. If all the relevance 

stamps are recent enough, then it is most likely that there will 

be no microclusters in M whose relevance stamp is less than . 

If and when this occurs, CluStream merges the two closest 

microclusters in M and assigns the resulting merged 

microcluster a listid that is used to identify the clusters that 
were merged to create this new merged microcluster. So as 
time progresses, one microcluster may end up comprising 
many individual microclusters.  

Unlike BIRCH, CluStream does not utilize a tree structure 
to maintain its microclusters. At certain time intervals, and 
while M is being maintained as described above, M is 

persisted to secondary storage. Each instance of M that is 

persisted is referred to as a snapshot. CluStream employs a 
logarithmic based time interval scheme, which is referred to as 

CF = áN,LS,SS,ST,SSTñ

SST - ST( )
2

( )1/ N -1( )
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a pyramidal time frame, to store the snapshots. This technique 

guarantees that all individual microclusters in M are persisted 

prior to removal from M or being merged with another 

microcluster in M. This allows a persisted and merged 

microcluster (i.e., those having a listid) in a snapshot to be 
broken down (via the microclusters subtractive property) into 
its constituent (individual), finer-grained microclusters during 
the macroclustering portion of the process. The opposite is 
also available, whereby the additive property allows finer-
grained/individual and merged microclusters to be merged into 
more course grained microclusters that cover specified time 
horizons. Snapshots are classified into orders, which can vary 
from 1 to log2(T), where T is the amount of clock time elapsed 
since the beginning of the stream[5]. The number of snapshots 
stored over a period of T time units is  

  (12)  

For example, if  = 2 and the time unit or granularity is 1 
second, then the number of snapshots maintained over 100 
years is as follows: 

 (13) 

The CluSandra algorithm does not operate within the same 
memory constraints as CluStream. During the CluSandra 
algorithm‟s microclustering process, microclusters are not 
merged to accommodate a new microcluster and there is no 
need to search for possible outliers that can be targeted for 

removal from M. When a new microcluster is created, it is 

simply added to the current in-memory working set and 
persisted to the Cassandra cluster database. Also, when a 
microcluster absorbs a data record, the microcluster is 
immediately persisted to the cluster database; there is no 
dependence on a periodic time interval scheme for persisting 

M to secondary storage.  

CluStream does not include a database system of any kind 
for persisting its snapshots and does not fully address the 
transactional integrity associated with snapshot persistence. 

After the in-memory snapshot M has been updated, there may 

exist a relatively lengthy time period before the snapshot is 
persisted to the local file system. This raises the risk that the 
snapshot‟s state may be lost due to process, system or 

hardware failure. Also, CluStream does not address M‟s 

recoverability. If the machine fails and is restarted, CluStream 

cannot reliably recover M‟s state prior to the failure. In other 

words, there is no transactional integrity associated with M’s 

persistence. One of the goals of the CluSandra framework is to 
introduce the necessary components that guarantee the 
transactional integrity of microcluster persistence.  

III. CLUSANDRA FRAMEWORK 

Figure 1 is a level 1 context-level data flow diagram[2]  
(DFD) that represents, at a high-level, the CluSandra 
framework. The framework‟s core components are written 
entirely in version 1.5 of the Java programming language; 
however, the framework supports client components that are 
written in a variety of programming languages. The CluSandra 
framework and algorithm are based on temporal and spatial 

aspects of clustering. The algorithm, which is implemented in 
a MicroClustering Agent (MCA) framework component and 
described in more detail in section D, uses temporal and 
spatial measures (radius, distance) to group the data stream‟s 
records into microclusters. The microclusters are stored in the 
Cassandra database and later accessed by offline processes 
(e.g., aggregator) and/or end-users. A Cluster Query Language 
(CQL) is provided by the framework to facilitate the querying 
and analysis of the microclusters in the database. As 
previously noted, Cassandra is an implementation of a DHT 
that comprises two or more distributed machines configured in 
a peer-to-peer ring network topology. The ring of machines or 
nodes is called a Cassandra cluster. To meet the most 
demanding environments, Cassandra can elastically scale up 
from a one or two node cluster to a cluster comprising 10s, if 
not 100s, of nodes and then back down to one or two nodes. 
Each node in the cluster may also optionally host the 
CluSandra framework‟s other executable components. 

A. StreamReader 

The StreamReader component is responsible for reading 
the data stream‟s structured data records, wrapping those data 
records in a CluSandra-specific DataRecord object, and then 
sending the DataRecords to the CluSandra message queuing 
system (MQS), where they are temporarily stored or buffered 
for subsequent processing. The CluSandra framework 
automatically time stamps the DataRecords when they are 
created, but the StreamReader can also override the 
framework‟s timestamp. This may be required if, for example, 
the raw data stream records are already time-stamped. The 
time stamps are critically important, because they are used to 
record the data stream‟s timeline. The raw data stream record 
that is read by the StreamReader is treated as a 
multidimensional vector containing one or more continuous 
numerical values. This vector is encapsulated by the 
DataRecord object. It is critical for the StreamReader to keep 
up with the data stream‟s arrival rate, which is assumed to be 
in the 1000s of records per second2. However, this should not 
be an issue given the simple and straightforward nature of the 
StreamReader‟s main purpose.  

                                                        

2 It is also quite possible that the StreamReader is the stream 
generator. 

a +1( )* log2 T( )

2+1( )* log2 100*365*24*60*60( ) » 95
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Figure 1. CluSandra data flow diagram 

CluSandra‟s MQS provider is remotely accessed via a 
TCP/IP network; therefore, the StreamReader component 
does not have to reside on the same node as the MQS provider 
nor does it have to reside in a Cassandra cluster node. The 
StreamReader can even be embedded within the component or 
device (e.g., sensor or router) that produces the data stream. 
StreamReaders can be distributed across a population of such 
devices, all writing to the same or different MQS queue, with 
each queue dedicated to a particular data stream. Most MQS 
providers, like ActiveMQ, support clients written in a variety 
of languages. If a StreamReader is not written in the Java 
programming language and would like to take advantage of 
the component that implements the CluSandra algorithm, then 
it requires a transformational component; in other words, a 
Java proxy that can create a Java DataRecord object and place 
it in the MQS for the non-Java StreamReader.  

B. Timeline Index  

The timeline index (TI), which is not depicted in the DFD, 
represents the data stream‟s timeline. It is an important 
temporal-based index that is maintained in the Cassandra 
database and used for maintaining the clusters in the database. 
In the Cassandra vernacular, the TI is a type of secondary 
index. There is one TI defined for each data stream that is 
being processed within the CluSandra framework. The TI is 
implemented as a Cassandra SuperColumnFamily. At an 
abstract level, each entry in the TI represents a second in the 
data stream‟s lifespan. Each entry‟s contents or value is a 
Cassandra SuperColumn whose entries (Columns) form a 
collection or set of row keys to clusters that were or are still 
active during that second in time. A data stream‟s timeline can 
run for any amount of time. During development and testing, 
the stream‟s timeline may extend over a handful of seconds, 

while in production environments, the timeline may extend 
over months, if not years. 

The TI‟s implementation comprises a Cluster Index Table 
(CIT). The CIT includes a row for each day of the year and 
each row comprises 86400 SuperColumns; one SuperColumn 
for each second of that particular day. Each SuperColumn 
contains one or more Columns whose values are keys to 
clusters in the Cluster Table (CT). Also, a SuperColumn can 
be assigned different names from row-to-row, and in this case 
the name of a SuperColumn is a timestamp that corresponds 
to a second for that day. Each row key of the CIT is given a 
value that corresponds to the zeroth second of a particular 
day. The motivation behind the TI‟s implementation is that 
Cassandra is not currently set up to perform well with sorted 
rows and returning ranges within those sorted rows. However, 
it is set up to sort columns and return ranges or slices of 
columns, based on their names. 

C. Message Queuing System  

The message queuing system (MQS) is a critical piece of 
the CluSandra framework. It serves as a reliable asynchronous 
message store (buffer) that guarantees delivery of its queued 
messages (DataRecords). So as a dam is used to control a wild 
raging river and harness it to produce electricity, so is the 
MQS used to control the evolving high-speed data stream so 
that it can be harnessed to produce knowledge. In CluSandra‟s 
case, a MQS queue serves as the stream‟s dam and its 
contents of time-stamped DataRecords form the reservoir. The 
CluSandra framework supports the simultaneous processing 
of many data streams; therefore, there may very well be many 
queues defined within the MQS; one queue for each data 
stream.  
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The primary motivation for having the CluSandra 
framework incorporate a MQS is to control the data stream. 
More precisely, the MQS provides a reliable DataRecord store 
that temporarily buffers and automatically distributes 
DataRecords across one or more instances of the 
microclustering agent (MCA) component. A group of 
identical MCAs that consume DataRecords from the same 
queue is called a swarm. Many swarms can be defined and 
distributed across the framework, with each swarm reading 
from its unique queue. The queue is capable of retaining 
thousands of DataRecords and guarantees their delivery to the 
swarm, which is responsible for ensuring that the number of 
DataRecords in the MQS queue is maintained at an acceptable 
level. The swarm size is, therefore, a function of the data 
stream rate. Data streams with extremely fast arrival rates 
produce very large volumes of DataRecords and require a 
correspondingly large swarm. 

The CluSandra framework is designed to utilize any MQS 
that implements the Java Message Service (JMS) API. The 
vast majority of MQS providers, both open source and 
commercial, implement the JMS. The JMS is an industry 
standard Java messaging interface that decouples applications, 
like the StreamReader, from the different JMS 
implementations. JMS thus facilitates the seamless porting of 
JMS-based applications from one JMS-based queuing system 
to another. Within the context of the JMS, the process that 
places messages in the MQS‟s queues is called the producer, 
the process that reads messages from the queue is called the 
consumer, and both are generically referred to as clients. So 
the StreamReader is a producer, the MCA is a consumer and 
they are both clients.  

The MQS guarantees delivery of DataRecords to the 
swarm. This guarantee means that DataRecords are delivered 
even if the MQS or machine hosting the MQS were to fail and 
be restarted. The MQS achieves this guarantee via a 
combination of message persistence and a broker-to-client 
acknowledgment protocol. These MQSs can be configured to 
persist their messages to either file systems (distributed or 
local) or database management systems (DBMS). For the 
CluSandra framework, the MQS is configured to use a 
distributed or shared file system and not a DBMS. The file 
system provides much better throughput performance than 
does a DBMS.  

These MQS systems are also architected to provide fault-
tolerance via redundancy. For example, you can run multiple 
“message broker” processes across multiple machines, where 
certain message brokers can act as hot or passive standbys for 
failover purposes. The message broker is the core component 
of the MQS and is the component responsible for message 
delivery. One overarching requirement is to ensure that this 
level of reliability and/or fault tolerance be an inherent quality 
of the CluSandra framework. These MQS systems include 
many features, but it is beyond the scope of this paper to list 
all the features.  

D. Microclustering Agent  

The microclustering agent (MCA) is the framework 
component that consumes DataRecords from a particular 
MQS queue and implements a clustering algorithm that 

produces microclusters. This section describes the MCA that 
implements the CluSandra algorithm and is delivered with the 
CluSandra framework.  

Like CluStream, the CluSandra algorithm tackles the one-
pass data stream constraint by dividing the data stream 
clustering process into two operating phases: online and 
offline. Microclustering takes place in real-time, computing 
and storing summary statistics about the data stream in 
microclusters. There is also an optional offline aggregation 
phase of microclustering that merges temporally and spatially 
similar microclusters. Macroclustering is another offline 
process by which end-users create and submit queries against 
the stored microclusters to discover, explore and learn from 
the evolving data stream. As CluStream extended the BIRCH 
CF data structure, so does the CluSandra algorithm extend the 
CluStream‟s CF structure as follows: 

     (14) 

The CFT is used to represent either a microcluster or 
supercluster in the CluSandra data store. The term cluster 
applies to both micro and superclusters. The CT and LAT 
parameters are two timestamp scalars that specify the creation 
time and last absorption time of the cluster, respectively. 
More precisely, CT records the time the cluster was created 
and the LAT records the timestamp associated with the last 
DataRecord that the cluster absorbed. When a microcluster is 
first created, to absorb a DataRecord that no other existing 
microcluster can absorb, both the CT and LAT parameters are 
assigned the value of the DataRecord‟s timestamp. All 
timestamps in CluSandra are measured in the number of 
milliseconds that have elapsed since Unix or Posix epoch 
time, which is January 1,1970 00:00:00 GMT. The IDLIST is 
also new and is used by superclusters.  

Over time, a particular pattern in the data stream may 
appear, disappear and then reappear. This is reflected or 
captured by two microclusters with identical or very similar 
spatial values, but different temporal values. The time horizon 
over which a cluster was active can be calculated by the CT 
and LAT parameters and more detailed statistical analysis can 
be performed based on the other temporal, as well as spatial 
parameters. For example, the temporal density of the 
DataRecords and their spatial density with respect to one 
another and/or their centroid. An inactive microcluster is no 
longer capable of absorbing data records; however, during 
macroclustering, it can be merged with other inactive and 
active microclusters to form a supercluster. The algorithm‟s 
microclustering phase, therefore, works within a specified 
temporal sliding window and updates only those microclusters 
that are within that time window. Such a temporal sliding 
window is required, because of the unbounded nature of the 
data stream.  

As previously mentioned, the MCA consumes sets of 
DataRecords from its assigned MQS queue. The framework 
provides a read template for the MCA that includes this 
functionality; therefore, the one implementing the MCA‟s 
clustering algorithm does not need to concern herself with this 
functionality. The members of a set D of DataRecords are 

consumed, by the read template, in the same order that they 

CFT = áN,LS,SS,ST,SST,CT,LAT, IDLISTñ
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were produced by the StreamReader and the temporal order of 

the DataRecords is maintained by the MQS. The set D can, 

therefore, be viewed as a temporal window of the data stream.  

                   D = {d1, d2, …, dk} (15) 

The maximum number of DataRecords in D is 

configurable. Also, the amount of time the read template 
blocks on a queue, waiting to read the maximum number of 
DataRecords in D, is configurable. The read template 

processes the set D whenever the maximum number has been 

reached or the read time expires and D  . The read time 

should be kept at a relatively high value. So, 0 < k <= m, 

where k is the total number of DataRecords in D and m is the 

maximum. If the read time expires and D = , the MCA 

simply goes back to blocking on the queue for the specified 
read time. 

After the read template has read a set D from the queue, it 

gives it to the clustering algorithm via a specified interface. 
The following describes the CluSandra clustering algorithm 
and from henceforth it is simply referred to as the CA. When 

the CA receives a set D, it begins the process of partitioning 

the DataRecords in D into a set M of currently active 

microclusters. On startup, M is an empty set, but as time 

progresses, M is populated with microclusters. The CA then 

determines the time horizon h associated with D. The range of 

h is Rh and it is defined by the newest and oldest DataRecords 
in D. Therefore, Rh = {to-te,ty}, where te is the configurable 

microcluster expiry time and to and ty represent the oldest and 
newest DataRecords in D, respectively. All microclusters in 

M, whose LAT does not fall within Rh, are considered inactive 

microclusters and removed from M. Thus the CA always 

works within a sliding temporal window that is defined by Rh. 
When the CA completes the processing of D, it writes all new 

and updated microclusters in M to the Cassandra data store, 

gives control back to read template, and starts the partitioning 

process over again when it is given a new set D of 

DataRecords.  

To partition the DataRecords in D, the CA iterates through 

each DataRecord in D and selects a subset S of microclusters 

from M, where all microclusters in S are active based on the 

current DataRecord‟s (dc) timestamp. For example, if the 

timestamp for dc is td, then only those microclusters in M 

whose LAT value falls within the range, {td-te,td} are added to 
S. The value te is the configurable microcluster expiry time. 

Depending on the rate of the data stream and the microcluster 
expiry time, it is possible that S = M and so, S  M . The CA 

uses the Euclidean distance measure to find the microcluster 
in S that is closest to dc. The MBT is then used to determine if 

the closest microcluster Mi in S can absorb dc. The MBT is a 

configurable numeric value that specifies the maximum radius 
of a microcluster. Again, the radius or RMSD is the root mean 
squared deviation of the cluster and is derived according to 

(6). If Mi can absorb dc without breaching the MBT, Mi is 

allowed to absorb dc and is placed back in M, else a new 

microcluster is created to absorb dc and that new microcluster 

is then added to M. If S = , the CA simply creates a new 

microcluster to absorb dc and adds the new microcluster to M.  

One method for deriving a MBT value for the target data 
stream is by sampling the data stream to derive an average 
distance (measure of density) between DataRecords and then 
using some fraction of that average density. If the CA has not 
been assigned a MBT, it will derive the MBT based on the 
first set of data records that it receives from the read template. 

If Mi has previously absorbed only one DataRecord (i.e., 

N=1), the RMSD cannot be calculated. In such a case, the 
MBT is used to determine if the microcluster can absorb the 
DataRecord.  

Depending on the distribution of the data stream, as it 
evolves over time, microclusters of all sizes appear, disappear, 
and may reappear. The number and sizes of the microclusters 
are a factor of not only the data stream‟s evolutionary pattern, 
but also of the MBT and microcluster expiry-time. The 
smaller the MBT, the more microclusters will be produced 
and vice versa. However, the optional offline aggregation 
and/or macroclustering phases can be used to merge those 
microclusters that are deemed similar. The next section 
describes the CluSandra Aggregator component, which is 
responsible for the aggregation and merges those 
microclusters whose radii overlap. Please note that the 
Aggregator does not produce superclusters; it simply merges 
overlapping microclusters.  

E. Aggregating Microclusters 

If there is an MCA swarm distributed across the 
CluSandra framework‟s nodes, then it is very likely for the 
swarm to create microclusters that are very similar, if not 
equal, both temporally and spatially (see figure 2). This 
occurs if two or more MCAs in the swarm process a set of 
DataRecords with equal or overlapping time horizons (he). 
This may also occur as a natural side effect of the clustering 
algorithm.  

 

Figure 2. Overlapping clusters 

If any microclusters temporally and spatially overlap, then 
those microclusters may be viewed as one microcluster. Given 
a two-dimensional vector-space, the figure above illustrates an 
example where three MCAs have created three microclusters 
(dots represent the microclusters‟ centroids) that are so close 
to one another, both spatially and temporally, that they should 
be merged into one microcluster. The merging of these 
microclusters is performed by an offline aggregator 
component that sweeps through the data stream timeline (CIT) 
performing such merges. Microcluster aggregation is a type of 
agglomerative clustering procedure whereby individuals or 

.	.	
.	
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groups of individuals are merged based upon their temporal 
and spatial proximity to one another [13]. Agglomerative 
procedures are probably the most widely used of the 
hierarchical clustering methods [13]. The result of a merger, 
performed by the aggregator, is immutable (see figure 3). This 
aggregator, which is provided as part of the CluSandra 
algorithm package, should not be confused with 
superclustering and macroclustering, which is discussed in the 
following section. 

 

Figure 3. Before and after aggregation 

The microcluster expiry time is used to determine if two 
microclusters temporally overlap. To determine if two 
temporally overlapping microclusters also spatially overlap, 
the aggregator compares the distance between their centroids 
with the sum of their radii. If the distance is less than the sum 
of the radii, then the two microclusters spatially overlap. 
There may even be instances where one microcluster is 
entirely within the other. The aggregator is given a 
configurable property called the overlapFactor. This property 
is used to specify the amount of overlap that is required to 
deem two microclusters similar enough to merge. The radii of 
the microcluster that results from the merge may be greater 
than the radii of the two merged microclusters; therefore, it 
will occupy more space, as well as time and be capable of 
absorbing more surrounding microclusters that temporally 
overlap. So the less the overlapFactor, the greater the 
probability of creating very large clusters that may mask out 
interesting patterns in the data stream.  

To minimize the occurrence of overlapping microclusters, 
all members of a MCA swarm can work from the same or 
shared set of microclusters in the data store. However, this 
would have required coordination between the distributed 
members of the swarm. Unfortunately, this level of 
coordination requires a distributed locking mechanism that 
introduces severe contention between the members of the 
swarm. It is for this reason, that this approach of sharing 
microclusters was not followed. Also, overlapping 
microclusters is a natural side effect of the CluSandra 
clustering algorithm.  

F. Superclusters and Macroclustering 

The CluSandra framework introduces the supercluster, 
which is created when two or more clusters, either micro or 
super, are merged via their additive properties. A supercluster 
can also be reduced or even eliminated via its subtractive 
property. The IDLIST in the CluSandra CFT is a collection or 
vector of microcluster ids (Cassandra row keys) that identify a 

supercluster‟s constituent parts (i.e., microclusters). If the 
IDLIST is empty, then it identifies the cluster as a 
microcluster, else a supercluster.  

Superclusters are created by the end-user during the 
macroclustering process. Superclusters are created based on a 
specified distance measure (similarity) and time horizon. Like 
aggregation, superclustering is another type of agglomerative 
clustering procedure; however, unlike traditional agglomertive 
procedures where the result of a merger is immutable, 
CluSandra‟s superclusters can be undone. What makes this 
possible is the subtractive property of the CFT. When a 
supercluster is created, the earliest CT and LAT of its 
constituent parts are used as the supercluster‟s CT and LAT. 
The CT and LAT thus identify the supercluster‟s lifespan.  

G. The Spring Framework 

The open source Spring Framework [1] is relied upon by 
the CluSandra framework for configuration and to reuse 
Spring‟s components. Except for Cassandra, all CluSandra 
framework components are comprised of one or more Spring 
POJOs (Plain Old Java Objects) that are configured via Spring 
XML configuration files. The Spring Framework, which is 
henceforth referred to simply as Spring, was created for the 
specific purpose of minimizing the development costs 
associated with Java application development. Spring 
provides a number of Java packages whose components are 
meant to be reused and that, in general, hide the complexities 
of Java application development. However, at its core, Spring 
is a modular dependency injection and aspect-oriented 
container and framework. By using Spring, Java developers 
benefit in terms of simplicity, testability and loose coupling.  

The StreamReader and MCA components make heavy use 
of Spring‟s support for the JMS to send and receive 
DataRecords to and from the MQS, respectively. Apache 
ActiveMQ [16] has been selected as the CluSandra 
framework‟s default JMS provider (i.e., MQS). There are 
many open source JMS providers or implementations. 
ActiveMQ was chosen, because of its rich functionality, 
beyond that specified by the JMS specification, and its robust 
support for and integration with Spring.  

As a JMS producer, the StreamReader indirectly uses 
Spring‟s JmsTemplate class to produce DataRecords destined 
for the ActiveMQ message broker. The JmsTemplate is based 
on the template design pattern and it is a convenience class 
that hides much of the complexity of sending messages to a 
JMS message broker. The JmsTemplate is integrated into a 
send template (convenience class) provided by CluSandra; 
therefore, the person implementing the StreamReader does not 
have to concern herself with the implementation of this 
functionality. This send template is similar to the previously 
described read template for the MCA. In general, the use of 
the JmsTemplate by both the send and read templates, in 
combination with the corresponding Spring XML file, helps 
ensure a decoupling between the CluSandra JMS clients and 
whatever JMS provider is being used as the CluSandra MQS.  

IV. CLUSTER QUERY LANGUAGE 

The CluSandra framework includes a query language that 
is used for querying the CluSandra algorithm‟s cluster 

.	.	
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database. The query language, which is referred to as the 
cluster query language or CQL for short, includes the 
following statements: 

 Connect: This statement is used to connect to a particular 
node in the Cassandra cluster.  

 Use: This statement, which must be invoked immediately 
after the Connect, is used to specify the keyspace to use 
within the Cassandra cluster. A Cassandra keyspace is 
analogous to a schema that is found in a relational database.  

 Select: This statement, which is the one most often invoked, 
is used for projecting clusters from the cluster store.  

 Aggregate: This statement is used for invoking the 
aggregator on all or a portion of the cluster database.  

 Merge: This statement is used, as part of the offline 
macroclustering process, to form superclusters.  

 Sum: This is a relatively simple statement that is used to 
return the total number of DataRecords that have been 
absorbed by all the microclusters in the cluster database.  

 Distance: This statement is used for acquiring the distance 
between pairs of clusters.  

 Overlap: This statement is used for acquiring the amount of 
overlap between pairs of clusters or in other words, the 
overlap percentage of the clusters‟ radii.  

CluSandra‟s CQL is not to be confused with the Cassandra 
Query Language, which is also referred to as CQL. 
CluSandra‟s CQL operates in either batch or interactive mode. 
When invoked in batch mode, the user specifies a file that 
contains CQL statements.  

V.  EMPIRICAL RESULTS 

Several experiments were conducted to evaluate the 
accuracy of the CluSandra algorithm, as well as the scalability 
and reliability provided by the CluSandra framework. The 
experiments are considered small-scale where the framework 
comprised a cluster of 2-3 compute nodes. More large-scale 
testing that comprises larger clusters of compute nodes is 
planned for future work.  

A. Test Environment and Datasets 

Experiments designed to test the accuracy of the 
CluSandra algorithm were conducted on an Intel Core i5 with 
8 GB of memory running OS/X version 10.6.8. The 
experiments included a real and synthetic dataset.  

The real dataset was acquired from the 1998 DARPA 
Intrusion Detection Evaluation Program, which was prepared 
and managed by MIT Lincoln Labs. This is the same dataset 
used for The Third International Knowledge Discovery and 
Data Mining Tools Competition (KDD-99 Cup). According to 
[5], this dataset was also used to run experiments on the 
CluStream algorithm. The dataset is contained in a comma-
separated values (CSV) file where each line comprises a TCP 
connection record; there are 4,898,431 records in the file. The 
dataset records two week‟s worth of normal network traffic, 
along with bursts of different types of intrusion attacks, that 
was simulated for a fictitious US military base. The attacks 
fall into four main categories: DOS (denial-of-service), R2L 
(unauthorized access from a remote machine), U2R 
(unauthorized access to local super user privileges), and 

PROBING (surveillance and other probing). Each connection 
record contains 42 attributes, which provide information 
regarding the individual TCP connection between hosts inside 
and outside the fictitious military base. Some example 
attributes are protocol (e.g., Telnet, Finger, HTTP, FTP, 
SMTP, etc), duration of the connection, the number of root 
accesses, number of bytes transmitted to and from source and 
destination. The connection records are not time stamped. Of 
the 43 attributes, 34 are of type continuous numerical. Every 
record in the dataset is labeled as either a normal connection 
or a connection associated with a particular attack. The 
following is a list of all possible labels, with the number in 
parenthesis being the total number of records in the dataset 
having that particular label: back(2203), buffer_overflow(30), 
ftp_write(8), guess_passwd(53), imap(1069), ipsweep(12481), 
land(21), loadmodule(9), multihop(7), neptune(1072017), 
nmap(2316), normal(972781), perl(3), phf(4), pod(264), 
portsweep(10413), rootkit(10), satan(15892), 
smurf(2807886), spy(2), teardrop(979), warezclient(1020), 
warezmaster(20). Together, the normal, smurf and neptune 
records comprise 99% of all records. The StreamReader 
(KddStreamReader) for this experiment reads each connection 
record and creates a DataRecord that encapsulates the 34 
numerical attributes for that record. The KddStreamReader 
then sends the DataRecord the framework‟s MQS for 
processing by the MCA, which in this case is an 
implementation of the CluSandra algorithm. The 
KddStreamReader includes a filter that is configured to read 
all or any combination of records based on the label type. For 
example, the end-user can configure the KddStreamReader to 
process only the neptune records, only the smurf and neptune 
records, or all the records.  

The first series of experiments focused on processing the 
more ubiquitous record types in the dataset. The first 
experiment in the series had the KddStreamReader process 
only the smurf records and assigned the MCA a time window 
that captured the entire stream and an MBT (i.e., maximum 
radius) of 1000; this same time window and MBT were 
maintained throughout this series of experiments. The result 
was one microcluster that had absorbed all 2,807,886 smurf 
records and had a relatively dense radius of 242.34. This 
experiment was executed five times with identical results. The 
second experiment was identical to the first, except that the 
KddStreamReader processed only the neptune records, which 
is the second most ubiquitous record type. The result was, 
once again, one microcluster that had absorbed all 1,072,017 
neptune records, but with an even smaller radius of 103.15. 
The next experiment targeted the normal record, which is the 
third most ubiquitous record. One might expect that the result 
would, once again, be only one microcluster. However, the 
result was a set of 1,048 microclusters with very little to no 
overlap between the microclusters and a high degree of 
variance with respect to their radii and number of absorbed 
DataRecords. This relatively large set of microclusters is to be 
expected, because there exists a high degree of variance 
within a set of normal connections. In other words, in a TCP 
network, the usage across a set of normal connections is 
typically not the same; the connections are being used for a 
variety of different reasons. For example, some connections 
are being used for email (SMTP), file transfer (FTP), and 
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terminal interfaces (Telnet, HTTP). It was also noted that it 
took appreciably longer for this experiment to complete. This 
is due to the specified time window encompassing the data 
stream‟s entire lifespan, which results in a much larger 
number of microclusters in the in-memory working set. The 
StreamReader‟s next target was the ipsweep records. The 
result was one microcluster absorbing all but one ipsweep 
record; the radius of this one microcluster was 145.66. The 
distance between this microcluster and the one that had 
absorbed the remaining ipsweep record was 53,340. It was, 
therefore, assumed that this one neptune record was an outlier. 
Finally, the KddStreamReader was focused on the portsweep 
records. Unlike the previous attack-related experiments, 
where only one or two microclusters were produced, this one 
resulted in 24 microclusters; however, one microcluster 
absorbed 90% of all the portsweep records and it had a radius 
of 569. The other 23 microclusters had radii ranging in the 
900-1000 range with very little overlap. Overall, the results of 
this first series of experiments indicated a high level of 
accuracy for the CluSandra algorithm. Also, in this series of 
experiments, the average throughput rate for the 
KddStreamReader was approximately 28,000 records per 
second.  

In the next series of experiments, the KddStreamReader 
processed combinations of two or more connection record 
types. To start, the KddStreamReader processed only the 
neptune and smurf records, along with the same time window 
and MBT as the previous series of experiments. The result 
was two microclusters; the first having absorbed 2,807,639 
records with a radius of 242.17, while the second absorbed 
1,072,264 records with a radius of 101.52. It was clear that the 
first and second microcluster accurately grouped the smurf 
and neptune records, respectively. There was also no overlap 
between the two microclusters, but it was interesting to see 
that a relatively small number of smurf records were grouped 
into the neptune microcluster. The KddStreamReader was 
then configured to process all smurf, neptune and normal 
records. The result was a set of 1,053 microclusters. The most 
populated microcluster had absorbed 2,804,465 DataRecords 
and had a radius of 232.62. This is clearly the smurf 
microcluster, but note how it had lost approximately 3000 
DataRecords. The second most populated microcluster had 
absorbed 1,438,988 DataRecords and had a radius of 497.34. 
This is clearly the neptune microcluster, but it had gained over 
300,000 DataRecords and its radius had, as would be 
expected, appreciably increased from 101.52. It was 
concluded that a considerable number of normal DataRecords 
had been absorbed by the neptune microcluster. This can be 
addressed by reducing the MBT; however, this will also result 
in an appreciably larger number of denser normal 
microclusters. The third most populated microcluster had 
absorbed 140,885 DataRecords with a radius of 544.89. 
Population-wise, this is approximately one-tenth the size of 
the neptune microcluster.  

To test the accuracy of the sliding time window, the 
window‟s size was reduced to capture the different bursts of 
attacks. It was noted from the analysis of the dataset file that 
the neptune and smurf attacks occur across a handful of 
different bursts. So the size of the sliding time window was 

reduced to 3 seconds, the MBT was kept at 1000, and the 
StreamReader processed only the neptune records. The result 
was 4 very dense microclusters (attacks) that had a radius of 
100 or less, with 18 being the smallest radius. The first 
microcluster absorbed 15 DataRecords and its lifespan 
(duration) was only one second. The second microcluster was 
created 4 seconds later, absorbed approximately 411,000 
DataRecords and its lifespan was 12 seconds. Thus there was 
a gap of 4 seconds, between the first and second microcluster, 
where there were no neptune attacks. The third microcluster 
was created 15 seconds after the second expired, absorbed 
approximately 450,000 DataRecords, and its lifespan was 9 
seconds. Finally, the fourth microcluster was created 4 
seconds after the third expired, absorbed approximately 
211,000 DataRecords and its lifespan was 6 seconds. The test 
was repeated for the smurf connection records and the result 
was one microcluster that had absorbed all the DataRecords 
and had a lifespan of over one minute. The experiment was 
run again, but with a window of 2 seconds. This time, the 
result was 5 very dense microclusters; three had a lifespan of 
1 or 2 seconds, one a lifespan of 12 seconds and the last a 
lifespan of 42 seconds. These experiments proved the 
accuracy of the sliding window.  

The synthetic dataset was generated by a stream generator 
that is loosely based on the Radial Basis Function (RBF) 
stream generator that is found in the University of Waikato‟s 
Massive Online Analysis (MOA) open source Java package 
[8]. This RBF type of generator was used, because it produces 
data streams whose data distribution adhere to a spherical 
Gaussian distribution, which is the distribution that the 
CluSandra algorithm is designed to process. During its 
initialization, the RBF generator creates a set of randomly 
generated centroids. The number of centroids in the set is 
specified by one of the generator‟s configurable parameters. 
Each centroid, which represents a distinct class, is given a 
random standard deviation and a multivariate center that is a 
proper distance from all the other centroids‟ centers. Not 
ensuring a proper distance between centroids leads to 
ambiguous results, because the resulting radial fields 
associated with two or more centroids may overlap. In some 
cases, the amount of overlap is considerable. The number of 
variables or attributes assigned to the centroids‟ centers is also 
specified via a configurable parameter. A new data record is 
generated by first randomly selecting one of the centroids. 
Then a random offset with direction is created from the 
chosen centroid‟s center. The magnitude of the offset is 
randomly drawn from a Gaussian distribution in combination 
with the centroid‟s standard deviation. This effectively creates 
a normally distributed hypersphere of data records, with 
distinct density, around the corresponding centroid [14].  

The first series of experiments, with the synthetic RBF 
generator, configured the generator to produce a data stream 
comprising 200,000 data records with 5 classes and whose 
records had five attributes. The MBT was set to 3.0 and the 
sliding time window captured the entire data stream. On some 
occasions, the result was as expected; i.e., five very dense 
microclusters with radii ranging from 0.18 to 1.4 and whose 
population of absorbed data records was rather evenly 
distributed. On other occasions, the result was more than five 
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microclusters. However, on these occasions, there were 
always five dense microclusters that had no overlap and 
absorbed the vast majority of the data stream‟s records. Of 
those five, there was always one that had absorbed 
substantially less data records than the other four. Using the 
CQL, it was noted that there was a considerable amount of 
overlap between this one microcluster and the other sparsely 
populated „extra‟ microclusters. When the CluSandra 
framework‟s aggregator was run with an overlap factor of 1.0, 
that one microcluster absorbed all the extra sparsely populated 
microclusters. There was also a rather even distribution of 
data records across all five microclusters. A second series of 
experiments was executed that was identical to the first; the 
one exception being that the generator was configured to 
produce 7 classes, instead of 5. The results were consistent 
with those of the previous series of experiments. 

VI. CONCLUSIONS AND FUTURE WORK 

This work presents a distributed framework and algorithm 
for clustering evolving data streams. The Java-based 
framework, which is named the CluSandra framework, 
exhibits the following characteristics:  

 It is entirely composed of proven open source 
components that can be deployed on a variety of 
commodity hardware and operating systems; 
therefore, it is very economical to implement. 

  

 It is leveraged by clustering processes to address the 
severe time and space constraints presented by the 
data stream. In other words, the functionality required 
to address these constraints is offloaded from 
clustering process to the framework, and it is the 
framework that controls the data stream.  

 It provides a distributed platform through which 
ensembles of clustering processes can be seamlessly 
distributed across many processors. This results in 
high levels of reliability, scalability, and availability 
for the clustering processes.  

 It allows its hosted ensembles of clustering processes 
to elastically scale up and down to meet the most 
demanding dynamic data stream environments. 

 

 It provides convenience classes or objects whose 
purpose is to facilitate the implementation of 
clustering algorithms and their subsequent 
deployment onto the framework.  

 It provides an effective mechanism through which the 
hosted clustering processes can reliably and 
efficiently store their byproduct of real-time statistical 
summary information (i.e., microclusters) in a cluster 
database. 

 It provides a Cluster Query Language (CQL) that is 
used to perform near-time or offline analytics against 
the cluster database. The CQL offloads the offline 
analytics from the clustering algorithm and provides a 
mechanism for the implementation of a variety of 
offline analytical processes. The CQL can also be 

used by offline processes to monitor, in near-time, 
clusters in the database and raise alerts whenever 
clusters of a particular nature appear and/or disappear.  

 It lays down the foundation for a data management 
system whose focus is on clustering high speed and 
evolving data streams.  

The algorithm developed is named the CluSandra 
algorithm and it is based upon concepts, structures, and 
algorithms introduced in [10] and [5]. The algorithm‟s 
implementation serves as an example of a clustering process 
that is designed to leverage the services and functionality 
provided by the CluSandra framework. The algorithm is more 
closely related to CluStream with its concept of viewing the 
data stream as a changing process over time and its 
functionality being divided between two operational phases: 
real-time statistical data collection and offline analytical 
processing. However, it deviates from CluStream primarily in 
how it addresses these operational phases. Unlike CluStream, 
it only performs the real-time statistical data collection, in the 
form of microclustering, leaving the offline analytical 
processing to end-users and/or processes that leverage the 
CQL. This results in a simpler and higher performing 
algorithm; primarily, because the agglomeration of 
microclusters is not performed by the algorithm. It also 
provides added flexibility to the end-user and/or offline 
analytical processes, because it affords the opportunity to 
analyze the collected data prior to agglomeration. Also, due to 
its reliance on the framework, the CluSandra algorithm can 
reliably and efficiently persist its microclusters to a cluster 
database; this is addressed in neither [10] nor [5]. The end 
result is the development of a clustering algorithm that 
exhibits these characteristics: configurable, distributable, 
elastically scalable, highly available and reliable, and simpler 
to implement.  

The following are topics for future work: 

 The implementation of clustering algorithms designed 
to address other data types and distributions, besides 
numerical and Gaussian, and their deployment onto 
the framework.  

 The introduction of an integration framework, such as 
[18], that allows for the quick implementation of 
messaging design patterns meant to further control the 
data stream and facilitate the implementation of multi-
staged data stream processing. For example, patterns 
to address data processing steps such as cleansing, 
standardization and transformation, and patterns used 
for routing data records based on their content.  

 The implementation of a graphical user interface that 
leverages the CQL and provides a visual 
representation of the data in the cluster database.  

 Additional research and development on algorithms 
that automate the calculation of an optimal MBT for 
the target data stream.   
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