
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 2, No. 11, 2011

87 | P a g e
www.ijacsa.thesai.org

CluSandra: A Framework and Algorithm for Data
Stream Cluster Analysis

Jose R. Fernandez
Department of Computer Science

University of West Florida
Pensacola, FL, USA

Eman M. El-Sheikh
Department of Computer Science

University of West Florida
Pensacola, FL, USA

Abstract—The clustering or partitioning of a dataset’s records
into groups of similar records is an important aspect of
knowledge discovery from datasets. A considerable amount of
research has been applied to the identification of clusters in very
large multi-dimensional and static datasets. However, the
traditional clustering and/or pattern recognition algorithms that
have resulted from this research are inefficient for clustering
data streams. A data stream is a dynamic dataset that is
characterized by a sequence of data records that evolves over
time, has extremely fast arrival rates and is unbounded. Today,
the world abounds with processes that generate high-speed
evolving data streams. Examples include click streams, credit
card transactions and sensor networks. The data stream’s
inherent characteristics present an interesting set of time and
space related challenges for clustering algorithms. In particular,
processing time is severely constrained and clustering algorithms
must be performed in a single pass over the incoming data. This
paper presents both a clustering framework and algorithm that,
combined, address these challenges and allows end-users to
explore and gain knowledge from evolving data streams. Our
approach includes the integration of open source products that
are used to control the data stream and facilitate the harnessing
of knowledge from the data stream. Experimental results of
testing the framework with various data streams are also
discussed.

Keywords-data stream; data mining; cluster analysis; knowledge
discovery; machine learning; Cassandra database; BIRCH;
CluStream; distributed systems.

I. INTRODUCTION

According to the International Data Corporation (IDC), the
size of the 2006 digital universe was 0.18 zettabytes1 and the
IDC has forecasted a tenfold growth by 2011 to 1.8 zettabytes
[17]. One of the main sources of this vast amount of data are
streams of high speed and evolving data. Clustering analysis is
a form of data mining whose application has, relatively
recently, started to be applied to data streams. The unbounded
and evolving nature of the data that is produced by the data
stream, coupled with its varying and high-speed arrival rate,
require that the data stream clustering algorithm embrace these
properties: efficiency, scalability, availability, and reliability.
One of the objectives of this work is to produce a distributed
framework that addresses these properties and, therefore,
facilitates the development of data stream clustering
algorithms for this extreme environment. Another objective is

1
 One zettabyte equals 1021 bytes or one billion terabytes.

to implement a clustering algorithm that is specifically
designed to leverage the distributed framework. This paper
describes that clustering algorithm and the distributed
framework, which is entirely composed of off-the-shelf open
source components. The framework is referred to simply as
CluSandra, while the algorithm, which is deployed onto the
framework, is referred to as the CluSandra algorithm.
CluSandra‟s primary pillars are a database system called
Cassandra [9][15] and a message queuing system (MQS).
Cassandra, which is maintained by the Apache Software
Foundation (ASF), is a new breed of database system that is
referred to as a NoSQL database. At its core, Cassandra is a
distributed hash table (DHT) designed to tackle massive
datasets, perform in near-time and provide linear scalability
[9]. The MQS can be any number of either open source or
commercial message queuing systems that implement the Java
Message Service (JMS) API. All experimentation, related to
this work, was performed using the Apache ActiveMQ [16]
queuing system.

The combination of the CluSandra framework and
algorithm provides a distributed, scalable and highly available
clustering system that operates efficiently within the severe
temporal and spatial constraints associated with real-time
evolving data streams. Through the use of such a system, end-
users can also gain a deeper understanding of the data stream
and its evolving nature in both near-time and over different
time horizons.

A. Data Stream

A data stream is an ordered sequence of structured data
records with these inherent characteristics: fast arrival rate,
temporally ordered, evolves over time, and is unbounded [8].
The data stream‟s arrival rate can be in the order of thousands
of data records per second, the concepts that are derived from
the data stream evolve at varying rates over time and, because
the data stream is unbounded, it is unfeasible to store all of its
records in any form of secondary storage (e.g., DBMS). The
data stream‟s evolutionary characteristic is referred to as
concept drift [3]. This type of change may come as a result of
the changing environment of the problem; e.g., floating
probability distributions, migrating clusters of data, loss of old
and appearance of new classes and/or features, class label
swaps, etc. [20] Examples of data streams include IP network
traffic, sensor networks, wireless networks, radio frequency
identification (RFID), customer click streams, telephone
records, etc. Today, there are many applications whose data is
best modeled as a data stream and not as a persistent set of

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 2, No. 11, 2011

88 | P a g e
www.ijacsa.thesai.org

tables. The following are some examples of applications for
data stream processing [11]: 

 Real-time monitoring of information systems that
generate vast amounts of data. For example, computer
network management, telecommunications call
analysis, internet applications (e.g., Google, eBay,
recommendation systems, click stream analysis) and
monitoring of power plants.

 Generic software for applications based on streaming
data. For example, finance (fraud detection, stock
market analysis), sensor networks (e.g., environment,
road traffic, weather forecasting, electric power
consumption).

In this paper, a data stream S is treated as an unbounded

sequence of pairs s,t , where s is a structured data record (set
of attributes) and t is a system-generated timestamp attribute
that specifies when the data record was created. Therefore, t
may be viewed as the data stream‟s primary key and its values
are monotonically increasing [7]. The timestamp values of one
data stream are independent from those of any other data
stream that is being processed within CluSandra. Since data
streams comprise structured records, streams comprising
unstructured data (e.g., audio and video streams) are not
considered data streams within the context of this paper.

B. Cluster Analysis

Cluster analysis or clustering is a process by which similar
objects are partitioned into groups. That is, all objects in a
particular group are similar to one another, while objects in
different groups are quite dissimilar. The clustering problem is
formally defined as follows: for a given set of data points, we
wish to partition them into one or more groups of similar
objects, where the notion of similarity is defined by a distance
function [21]. Clustering is a very broad topic that lies at the
intersection of many disciplines such as statistics, machine
learning, data mining, and linear algebra [12]. It is also used
for many applications such as pattern recognition, fraud
detection, market research, image processing, and network
analysis.

The focus of this work is on data clustering, which is a
type of data mining problem. Large multi-dimensional datasets
are typically not uniformly distributed. By identifying the
sparse and dense areas of the data space, data clustering
uncovers the distribution patterns of the dataset [10]. In
general, data clustering seeks to partition unlabeled data
records from a large dataset into labeled clusters, which is a
form of classification. Classification is an important problem
that has been studied extensively within the context of data
streams[3][4]. With respect to evolving data streams,
clustering presents an attractive advantage, because it is easily
adapted to changes in the data and can, therefore, be used to
identify features that distinguish different clusters [12]. This is
ideal for concept drifting data streams.

There are different data types (e.g., binary, numerical,
discrete) that need to be taken into account by data clustering
algorithms; the CluSandra algorithm only processes numerical
data. Future work can deploy additional algorithms, designed
to handle other data types, onto the CluSandra framework.

This work also assumes that the values for all the data records‟
attributes are standardized; therefore, there is no preprocessing
of the data records. Numerical data are continuous
measurements of a roughly linear scale [12]. When working
with data records whose attributes are of this data type, the
records can be treated as n-dimensional vectors, where the
similarity or dissimilarity between individual vectors is
quantified by a distance measure. There are a variety of
distance measures that can be applied to n-dimensional
vectors; however, the most common distance measure used for
continuous numerical data is the Euclidean measure:

 d(i,j) = (1)

where xik and xjk are the kth variables for the n-dimensional
data records i and j. For example, suppose you have two 2-
dimenisonal data records as follows: (1,3) and (4,1). The
Euclidean distance between these two records is the following:

 = 3.60 (2)

If the data stream‟s records are viewed as Euclidean
vectors in Euclidean n-space, the distance between any two
vectors (records) is the length of the line connecting the two
vectors‟ tips or points. The lower the resulting value, the
closer (similar) the two vectors. The CluSandra algorithm
utilizes Euclidean distance as a measure to determine how
similar or close a new data record is to a cluster‟s centroid
(mean). It is also used to find the distance between two
clusters‟ centroids.

The next section discusses related work in this area.
Section III describes the CluSandra framework and Section IV
describes the cluster query language that was developed.
Section V presents the experimental results and section VI
discusses the conclusions and opportunities for future work.

II. RELATED WORK

A considerable amount of research has been applied to
clustering very large multi-dimensional datasets. One of the
key challenges, which has been the subject of much research,
is the design of data clustering algorithms that efficiently
operate within the time and space constraints presented by
very large datasets. That is, the amount of available memory
and required I/O time relative to the dataset‟s size. These
constraints are greatly amplified by the data stream‟s
extremely fast arrival time and unbounded nature. The
research work done in [5], [6], and [10] introduced concepts,
structures and algorithms that made great strides towards
efficient clustering of data streams. The CluSandra algorithm
is based on and expands on this work, as described below.

A. BIRCH

The CluSandra algorithm is based on the concepts and
structures introduced by the Balanced Iterative Reducing and
Clustering (BIRCH) [10] clustering algorithm. It is based on
the K-means (center-based) clustering paradigm and,
therefore, targets the spherical Gaussian cluster. K-means
provides a well-defined objective function, which intuitively

(xik - x jk)
2

k=1

n

å

(1- 4)2 + (3-1)2

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 2, No. 11, 2011

89 | P a g e
www.ijacsa.thesai.org

coincides with the idea of clustering [19]. The simplest type of
cluster is the spherical Gaussian [19]. Clusters that manifest
non-spherical or arbitrary shapes, such as correlation and non-
linear correlation clusters, are not addressed by the BIRCH
and CluSandra algorithms. However, the CluSandra
framework does not preclude the deployment of algorithms
that address the non-spherical cluster types.

BIRCH mitigates the I/O costs associated with the
clustering of very large multi-dimensional and persistent
datasets. It is a batch algorithm that relies on multiple
sequential phases of operation and is, therefore, not well-
suited for data stream environments where time is severely
constrained. However, BIRCH introduces concepts and a
synopsis data structure that help address the severe time and
space constraints associated with the clustering of data
streams. BIRCH can typically find a good clustering with a
single pass of the dataset [10], which is an absolute
requirement when having to process data streams. It also
introduces two structures: cluster feature (CF) and cluster
feature tree. The CluSandra algorithm utilizes an extended
version of the CF, which is a type of synopsis structure. The
CF contains enough statistical summary information to allow
for the exploration and discovery of clusters within the data
stream. The information contained in the CF is used to derive
these three spatial measures: centroid, radius, and diameter.
All three are an integral part of the BIRCH and CluSandra
algorithms. Given N n-dimensional data records (vectors or

points) in a cluster where i = {1,2,3, …, N}, the centroid ,

radius R, and diameter D of the cluster are defined as

 (3)

 (4)

 (5)

where and are the ith and jth data records in the cluster

and N is the total number of data records in the cluster. The
centroid is the cluster‟s mean, the radius is the average
distance from the objects within the cluster to their centroid,
and the diameter is the average pair-wise distance within the
cluster. The radius and diameter measure the tightness or
density of the objects around their cluster‟s centroid. The
radius can also be referred to as the “root mean squared
deviation” or RMSD with respect to the centroid. Typically,
the first criterion for assigning a new object to a particular
cluster is the new object‟s Euclidean distance to a cluster‟s
centroid. That is, the new object is assigned to its closest
cluster. Note, however, that equations 3, 4 and 5 require

multiple passes of the data set. Like BIRCH, the CluSandra
algorithm derives the radius and centroid while adhering to the
single pass constraint. To accomplish this, the algorithm
maintains statistical summary data in the CF. This data is in
the form of the total number of data records (N), linear sum,
and sum of the squares with respect to the elements of the n-
dimensional data records. This allows the algorithm to
calculate the radius, as follows:

 (6)

For example, given these three data records: (0,1,1),
(0,5,1), and (0,9,1), the linear sum is (0,15,3), the sum of the
squares is (0,107,3) and N is 3. The CF, as described in
BIRCH, is a 3-tuple or triplet structure that contains the
aforementioned statistical summary data. The CF represents a
cluster and records summary information for that cluster. It is
formally defined as

 (7)

where N is the total number of objects in the cluster (i.e., the
number of data records absorbed by the cluster), LS is the
linear sum of the cluster and SS is the cluster‟s sum of the
squares:

 (8)

 (9)

It is interesting to note that the CF has both the additive
and subtractive properties. For example, if you have two
clusters with their respective CFs, CF1 and CF2, the CF that is
formed by merging the two clusters is simply CF1 + CF2.

B. CluStream

CluStream [5] is a clustering algorithm that is specifically
designed for evolving data streams and is based on and extends
the BIRCH algorithm. This section provides a brief overview
of CluStream and describes the problems and/or constraints
that it addresses. This section also describes how the
CluSandra algorithm builds upon and, at the same time,
deviates from CluStream.

One of CluStream‟s goals is to address the temporal
aspects of the data stream‟s single-pass constraint. For
example, the results of applying a single-pass clustering
algorithm, like BIRCH, to a data stream whose lifespan is 1 or
2 years would be dominated by outdated data. CluStream
allows end-users to explore the data stream over different time
horizons, which provides a better understanding of how the
data stream evolves over time. CluStream divides the
clustering process into two phases of operation that are meant
to operate simultaneously. The first, which is referred to as the
online phase, efficiently computes and stores data stream
summary statistics in a structure called the microcluster. A
microcluster is an extension of the BIRCH CF structure

x0

x0 =

xi
i=1

N

å

N

R =

xi - x0()
2

i=1

N

å

N

D =

xi - x j()
2

j=1

N

å
i=1

N

å

N N -1()

xi x j

xi
2 - xiå()

2

/ Nå()1/ N -1()

CF = áN,LS,SSñ

LS = xi
i=1

N

å

SS = xi
2

i=1

N

å

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 2, No. 11, 2011

90 | P a g e
www.ijacsa.thesai.org

whereby the CF is given two temporal dimensions. The second
phase, which is referred to as the offline phase, allows end-
users to perform macroclustering operations on a set of
microclusters. Macroclustering is the process by which end-
users can explore the microclusters over different time
horizons. To accomplish this, CluStream uses a tilted time
frame model for maintaining the microclusters. The tilted time
frame approach stores snapshots (sets) of microclusters at
different levels of granularity based on elapsed time. In other
words, as time passes, the microclusters are merged into
coarser snapshots. The CluSandra algorithm is based upon and
extends CluStream and the design of the CluSandra
framework is based on the concepts of both microclustering
and macroclustering. However, the general approach taken by
CluSandra for these two operational phases is quite different
than that taken by CluStream.

CluStream‟s microcluster extends the CF structure by
adding two temporal scalars or dimensions to the CF. The first
scalar is the sum of the timestamps of all the data records that
have been absorbed by the cluster and the second is the sum of
the squares of the timestamps. Thus the CF triplet, as defined
by BIRCH, is extended as follows:

 (10)

Where ST is the sum of the timestamps and SST is the sum of
the squares of the timestamps. Note that this extended CF
retains its additive and subtractive properties. From
henceforth, this extended version of the CF is simply referred
to as a microcluster. The ST and SST can be applied to
expression (6) to arrive at the temporal standard deviation of
the microcluster as follows:

 (11)

CluStream‟s microclustering process collects and
maintains the statistical information in such a manner that the
offline macroclustering phase can make effective use of the
information. For example, macroclustering over different time
horizons and exploring the evolution of the data stream over
these horizons.

CluStream defines a fixed set of microclusters that it

creates and maintains in-memory. This set, M = {M1, M2, …,

Mq} is the current online working set with q being the

maximum number of microclusters in the set and each
microcluster in M being given a unique id. The CluStream

paper states that the algorithm is very sensitive to any further
additions to the microcluster snapshot, as this negatively
impacts q. This type of space constraint is one that CluSandra
removes by relying on Cassandra to serve as a highly reliable
and scalable real-time distributed cluster database. Like
CluStream, the CluSandra algorithm also maintains a working
set of microclusters in memory; however, the size of this
working set is dictated by the size of a sliding time window in
combination with a maximum boundary threshold (MBT).

CluStream„s updating of the microclusters is similar to that
of BIRCH. When a new data record is presented by the data
stream, it is assigned to the closest microcluster Mi in M. After

finding the closest microcluster Mi, it is then determined if Mi

can absorb the new record without exceeding its MBT.
CluStream defines the MBT as, “a factor of t of the RMSD of
the data points in Mi from the centroid”. This is another way

of referring to the standard deviation of the cluster times a
factor t to arrive at the final maximum radius. The

microcluster Mi is updated whenever it absorbs a new data

record. If Mi has absorbed only one data record, the RMSD

cannot be calculated; therefore, for those clusters having
absorbed only one data record, the MBT is derived as the

distance from Mi to its closest neighbor times a factor r. The

CluSandra algorithm uses a similar approach in locating the
closest microcluster. However, it does not use the nearest
neighbor approach for those instances where the closest
microcluster has absorbed only one entry. It instead
determines if the closest microcluster can absorb the data
record without exceeding a configurable and fixed maximum
radius, which is CluSandra‟s MBT.

If Mi cannot absorb the new data record, CluStream creates

a new microcluster to host the data record. To conserve
memory, CluStream requires that either one of the existing
microclusters in M be deleted or two microclusters be merged.

Only those microclusters that are determined to be outliers are
removed from M. If an outlier cannot be found in M, two

microclusters are merged. The CluSandra algorithm deviates
from this approach since it simply adds a new microcluster to
its current working set. Again, the size of CluSandra‟s in-
memory working set is managed according to a temporal
sliding window and the specified MBT. Any microclusters
that are no longer active within the current sliding window are
removed from the working set, but not before being persisted
to the Cassandra cluster database.

The temporal scalars (ST, SST) of the microcluster, in

combination with a user-specified threshold , are used to look

for an outlier microcluster in M. The ST and SST scalars

allows CluStream to calculate the mean and standard deviation

of the arrival times of the data records in M‟s microclusters.

CluStream assumes that the arrival times adhere to a normal
distribution. With the mean and standard deviation of the
arrival times calculated, CluStream calculates a “relevance
stamp” for each of the microclusters. A microcluster whose

relevance stamp is less than the threshold  is considered an

outlier and subject to removal from M. If all the relevance

stamps are recent enough, then it is most likely that there will

be no microclusters in M whose relevance stamp is less than .

If and when this occurs, CluStream merges the two closest

microclusters in M and assigns the resulting merged

microcluster a listid that is used to identify the clusters that
were merged to create this new merged microcluster. So as
time progresses, one microcluster may end up comprising
many individual microclusters.

Unlike BIRCH, CluStream does not utilize a tree structure
to maintain its microclusters. At certain time intervals, and
while M is being maintained as described above, M is

persisted to secondary storage. Each instance of M that is

persisted is referred to as a snapshot. CluStream employs a
logarithmic based time interval scheme, which is referred to as

CF = áN,LS,SS,ST,SSTñ

SST - ST()
2

()1/ N -1()

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 2, No. 11, 2011

91 | P a g e
www.ijacsa.thesai.org

a pyramidal time frame, to store the snapshots. This technique

guarantees that all individual microclusters in M are persisted

prior to removal from M or being merged with another

microcluster in M. This allows a persisted and merged

microcluster (i.e., those having a listid) in a snapshot to be
broken down (via the microclusters subtractive property) into
its constituent (individual), finer-grained microclusters during
the macroclustering portion of the process. The opposite is
also available, whereby the additive property allows finer-
grained/individual and merged microclusters to be merged into
more course grained microclusters that cover specified time
horizons. Snapshots are classified into orders, which can vary
from 1 to log2(T), where T is the amount of clock time elapsed
since the beginning of the stream[5]. The number of snapshots
stored over a period of T time units is

 (12)

For example, if  = 2 and the time unit or granularity is 1
second, then the number of snapshots maintained over 100
years is as follows:

 (13)

The CluSandra algorithm does not operate within the same
memory constraints as CluStream. During the CluSandra
algorithm‟s microclustering process, microclusters are not
merged to accommodate a new microcluster and there is no
need to search for possible outliers that can be targeted for

removal from M. When a new microcluster is created, it is

simply added to the current in-memory working set and
persisted to the Cassandra cluster database. Also, when a
microcluster absorbs a data record, the microcluster is
immediately persisted to the cluster database; there is no
dependence on a periodic time interval scheme for persisting

M to secondary storage.

CluStream does not include a database system of any kind
for persisting its snapshots and does not fully address the
transactional integrity associated with snapshot persistence.

After the in-memory snapshot M has been updated, there may

exist a relatively lengthy time period before the snapshot is
persisted to the local file system. This raises the risk that the
snapshot‟s state may be lost due to process, system or

hardware failure. Also, CluStream does not address M‟s

recoverability. If the machine fails and is restarted, CluStream

cannot reliably recover M‟s state prior to the failure. In other

words, there is no transactional integrity associated with M’s

persistence. One of the goals of the CluSandra framework is to
introduce the necessary components that guarantee the
transactional integrity of microcluster persistence.

III. CLUSANDRA FRAMEWORK

Figure 1 is a level 1 context-level data flow diagram[2]
(DFD) that represents, at a high-level, the CluSandra
framework. The framework‟s core components are written
entirely in version 1.5 of the Java programming language;
however, the framework supports client components that are
written in a variety of programming languages. The CluSandra
framework and algorithm are based on temporal and spatial

aspects of clustering. The algorithm, which is implemented in
a MicroClustering Agent (MCA) framework component and
described in more detail in section D, uses temporal and
spatial measures (radius, distance) to group the data stream‟s
records into microclusters. The microclusters are stored in the
Cassandra database and later accessed by offline processes
(e.g., aggregator) and/or end-users. A Cluster Query Language
(CQL) is provided by the framework to facilitate the querying
and analysis of the microclusters in the database. As
previously noted, Cassandra is an implementation of a DHT
that comprises two or more distributed machines configured in
a peer-to-peer ring network topology. The ring of machines or
nodes is called a Cassandra cluster. To meet the most
demanding environments, Cassandra can elastically scale up
from a one or two node cluster to a cluster comprising 10s, if
not 100s, of nodes and then back down to one or two nodes.
Each node in the cluster may also optionally host the
CluSandra framework‟s other executable components.

A. StreamReader

The StreamReader component is responsible for reading
the data stream‟s structured data records, wrapping those data
records in a CluSandra-specific DataRecord object, and then
sending the DataRecords to the CluSandra message queuing
system (MQS), where they are temporarily stored or buffered
for subsequent processing. The CluSandra framework
automatically time stamps the DataRecords when they are
created, but the StreamReader can also override the
framework‟s timestamp. This may be required if, for example,
the raw data stream records are already time-stamped. The
time stamps are critically important, because they are used to
record the data stream‟s timeline. The raw data stream record
that is read by the StreamReader is treated as a
multidimensional vector containing one or more continuous
numerical values. This vector is encapsulated by the
DataRecord object. It is critical for the StreamReader to keep
up with the data stream‟s arrival rate, which is assumed to be
in the 1000s of records per second2. However, this should not
be an issue given the simple and straightforward nature of the
StreamReader‟s main purpose.

2 It is also quite possible that the StreamReader is the stream
generator.

a +1()* log2 T()

2+1()* log2 100*365*24*60*60() » 95

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 2, No. 11, 2011

92 | P a g e
www.ijacsa.thesai.org

Figure 1. CluSandra data flow diagram

CluSandra‟s MQS provider is remotely accessed via a
TCP/IP network; therefore, the StreamReader component
does not have to reside on the same node as the MQS provider
nor does it have to reside in a Cassandra cluster node. The
StreamReader can even be embedded within the component or
device (e.g., sensor or router) that produces the data stream.
StreamReaders can be distributed across a population of such
devices, all writing to the same or different MQS queue, with
each queue dedicated to a particular data stream. Most MQS
providers, like ActiveMQ, support clients written in a variety
of languages. If a StreamReader is not written in the Java
programming language and would like to take advantage of
the component that implements the CluSandra algorithm, then
it requires a transformational component; in other words, a
Java proxy that can create a Java DataRecord object and place
it in the MQS for the non-Java StreamReader.

B. Timeline Index

The timeline index (TI), which is not depicted in the DFD,
represents the data stream‟s timeline. It is an important
temporal-based index that is maintained in the Cassandra
database and used for maintaining the clusters in the database.
In the Cassandra vernacular, the TI is a type of secondary
index. There is one TI defined for each data stream that is
being processed within the CluSandra framework. The TI is
implemented as a Cassandra SuperColumnFamily. At an
abstract level, each entry in the TI represents a second in the
data stream‟s lifespan. Each entry‟s contents or value is a
Cassandra SuperColumn whose entries (Columns) form a
collection or set of row keys to clusters that were or are still
active during that second in time. A data stream‟s timeline can
run for any amount of time. During development and testing,
the stream‟s timeline may extend over a handful of seconds,

while in production environments, the timeline may extend
over months, if not years.

The TI‟s implementation comprises a Cluster Index Table
(CIT). The CIT includes a row for each day of the year and
each row comprises 86400 SuperColumns; one SuperColumn
for each second of that particular day. Each SuperColumn
contains one or more Columns whose values are keys to
clusters in the Cluster Table (CT). Also, a SuperColumn can
be assigned different names from row-to-row, and in this case
the name of a SuperColumn is a timestamp that corresponds
to a second for that day. Each row key of the CIT is given a
value that corresponds to the zeroth second of a particular
day. The motivation behind the TI‟s implementation is that
Cassandra is not currently set up to perform well with sorted
rows and returning ranges within those sorted rows. However,
it is set up to sort columns and return ranges or slices of
columns, based on their names.

C. Message Queuing System

The message queuing system (MQS) is a critical piece of
the CluSandra framework. It serves as a reliable asynchronous
message store (buffer) that guarantees delivery of its queued
messages (DataRecords). So as a dam is used to control a wild
raging river and harness it to produce electricity, so is the
MQS used to control the evolving high-speed data stream so
that it can be harnessed to produce knowledge. In CluSandra‟s
case, a MQS queue serves as the stream‟s dam and its
contents of time-stamped DataRecords form the reservoir. The
CluSandra framework supports the simultaneous processing
of many data streams; therefore, there may very well be many
queues defined within the MQS; one queue for each data
stream.

StreamReaderData Stream
Message Queuing

System

Data Records
Time Stamped

Data Records

Time Stamped

Data Records

Cassandra

Data Store

MicroClusters

MicroClustering

Agents

SuperClusters
MicroClusters

MacroClustering

Queries

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 2, No. 11, 2011

93 | P a g e
www.ijacsa.thesai.org

The primary motivation for having the CluSandra
framework incorporate a MQS is to control the data stream.
More precisely, the MQS provides a reliable DataRecord store
that temporarily buffers and automatically distributes
DataRecords across one or more instances of the
microclustering agent (MCA) component. A group of
identical MCAs that consume DataRecords from the same
queue is called a swarm. Many swarms can be defined and
distributed across the framework, with each swarm reading
from its unique queue. The queue is capable of retaining
thousands of DataRecords and guarantees their delivery to the
swarm, which is responsible for ensuring that the number of
DataRecords in the MQS queue is maintained at an acceptable
level. The swarm size is, therefore, a function of the data
stream rate. Data streams with extremely fast arrival rates
produce very large volumes of DataRecords and require a
correspondingly large swarm.

The CluSandra framework is designed to utilize any MQS
that implements the Java Message Service (JMS) API. The
vast majority of MQS providers, both open source and
commercial, implement the JMS. The JMS is an industry
standard Java messaging interface that decouples applications,
like the StreamReader, from the different JMS
implementations. JMS thus facilitates the seamless porting of
JMS-based applications from one JMS-based queuing system
to another. Within the context of the JMS, the process that
places messages in the MQS‟s queues is called the producer,
the process that reads messages from the queue is called the
consumer, and both are generically referred to as clients. So
the StreamReader is a producer, the MCA is a consumer and
they are both clients.

The MQS guarantees delivery of DataRecords to the
swarm. This guarantee means that DataRecords are delivered
even if the MQS or machine hosting the MQS were to fail and
be restarted. The MQS achieves this guarantee via a
combination of message persistence and a broker-to-client
acknowledgment protocol. These MQSs can be configured to
persist their messages to either file systems (distributed or
local) or database management systems (DBMS). For the
CluSandra framework, the MQS is configured to use a
distributed or shared file system and not a DBMS. The file
system provides much better throughput performance than
does a DBMS.

These MQS systems are also architected to provide fault-
tolerance via redundancy. For example, you can run multiple
“message broker” processes across multiple machines, where
certain message brokers can act as hot or passive standbys for
failover purposes. The message broker is the core component
of the MQS and is the component responsible for message
delivery. One overarching requirement is to ensure that this
level of reliability and/or fault tolerance be an inherent quality
of the CluSandra framework. These MQS systems include
many features, but it is beyond the scope of this paper to list
all the features.

D. Microclustering Agent

The microclustering agent (MCA) is the framework
component that consumes DataRecords from a particular
MQS queue and implements a clustering algorithm that

produces microclusters. This section describes the MCA that
implements the CluSandra algorithm and is delivered with the
CluSandra framework.

Like CluStream, the CluSandra algorithm tackles the one-
pass data stream constraint by dividing the data stream
clustering process into two operating phases: online and
offline. Microclustering takes place in real-time, computing
and storing summary statistics about the data stream in
microclusters. There is also an optional offline aggregation
phase of microclustering that merges temporally and spatially
similar microclusters. Macroclustering is another offline
process by which end-users create and submit queries against
the stored microclusters to discover, explore and learn from
the evolving data stream. As CluStream extended the BIRCH
CF data structure, so does the CluSandra algorithm extend the
CluStream‟s CF structure as follows:

 (14)

The CFT is used to represent either a microcluster or
supercluster in the CluSandra data store. The term cluster
applies to both micro and superclusters. The CT and LAT
parameters are two timestamp scalars that specify the creation
time and last absorption time of the cluster, respectively.
More precisely, CT records the time the cluster was created
and the LAT records the timestamp associated with the last
DataRecord that the cluster absorbed. When a microcluster is
first created, to absorb a DataRecord that no other existing
microcluster can absorb, both the CT and LAT parameters are
assigned the value of the DataRecord‟s timestamp. All
timestamps in CluSandra are measured in the number of
milliseconds that have elapsed since Unix or Posix epoch
time, which is January 1,1970 00:00:00 GMT. The IDLIST is
also new and is used by superclusters.

Over time, a particular pattern in the data stream may
appear, disappear and then reappear. This is reflected or
captured by two microclusters with identical or very similar
spatial values, but different temporal values. The time horizon
over which a cluster was active can be calculated by the CT
and LAT parameters and more detailed statistical analysis can
be performed based on the other temporal, as well as spatial
parameters. For example, the temporal density of the
DataRecords and their spatial density with respect to one
another and/or their centroid. An inactive microcluster is no
longer capable of absorbing data records; however, during
macroclustering, it can be merged with other inactive and
active microclusters to form a supercluster. The algorithm‟s
microclustering phase, therefore, works within a specified
temporal sliding window and updates only those microclusters
that are within that time window. Such a temporal sliding
window is required, because of the unbounded nature of the
data stream.

As previously mentioned, the MCA consumes sets of
DataRecords from its assigned MQS queue. The framework
provides a read template for the MCA that includes this
functionality; therefore, the one implementing the MCA‟s
clustering algorithm does not need to concern herself with this
functionality. The members of a set D of DataRecords are

consumed, by the read template, in the same order that they

CFT = áN,LS,SS,ST,SST,CT,LAT, IDLISTñ

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 2, No. 11, 2011

94 | P a g e
www.ijacsa.thesai.org

were produced by the StreamReader and the temporal order of

the DataRecords is maintained by the MQS. The set D can,

therefore, be viewed as a temporal window of the data stream.

 D = {d1, d2, …, dk} (15)

The maximum number of DataRecords in D is

configurable. Also, the amount of time the read template
blocks on a queue, waiting to read the maximum number of
DataRecords in D, is configurable. The read template

processes the set D whenever the maximum number has been

reached or the read time expires and D  . The read time

should be kept at a relatively high value. So, 0 < k <= m,

where k is the total number of DataRecords in D and m is the

maximum. If the read time expires and D = , the MCA

simply goes back to blocking on the queue for the specified
read time.

After the read template has read a set D from the queue, it

gives it to the clustering algorithm via a specified interface.
The following describes the CluSandra clustering algorithm
and from henceforth it is simply referred to as the CA. When

the CA receives a set D, it begins the process of partitioning

the DataRecords in D into a set M of currently active

microclusters. On startup, M is an empty set, but as time

progresses, M is populated with microclusters. The CA then

determines the time horizon h associated with D. The range of

h is Rh and it is defined by the newest and oldest DataRecords
in D. Therefore, Rh = {to-te,ty}, where te is the configurable

microcluster expiry time and to and ty represent the oldest and
newest DataRecords in D, respectively. All microclusters in

M, whose LAT does not fall within Rh, are considered inactive

microclusters and removed from M. Thus the CA always

works within a sliding temporal window that is defined by Rh.
When the CA completes the processing of D, it writes all new

and updated microclusters in M to the Cassandra data store,

gives control back to read template, and starts the partitioning

process over again when it is given a new set D of

DataRecords.

To partition the DataRecords in D, the CA iterates through

each DataRecord in D and selects a subset S of microclusters

from M, where all microclusters in S are active based on the

current DataRecord‟s (dc) timestamp. For example, if the

timestamp for dc is td, then only those microclusters in M

whose LAT value falls within the range, {td-te,td} are added to
S. The value te is the configurable microcluster expiry time.

Depending on the rate of the data stream and the microcluster
expiry time, it is possible that S = M and so, S  M . The CA

uses the Euclidean distance measure to find the microcluster
in S that is closest to dc. The MBT is then used to determine if

the closest microcluster Mi in S can absorb dc. The MBT is a

configurable numeric value that specifies the maximum radius
of a microcluster. Again, the radius or RMSD is the root mean
squared deviation of the cluster and is derived according to

(6). If Mi can absorb dc without breaching the MBT, Mi is

allowed to absorb dc and is placed back in M, else a new

microcluster is created to absorb dc and that new microcluster

is then added to M. If S = , the CA simply creates a new

microcluster to absorb dc and adds the new microcluster to M.

One method for deriving a MBT value for the target data
stream is by sampling the data stream to derive an average
distance (measure of density) between DataRecords and then
using some fraction of that average density. If the CA has not
been assigned a MBT, it will derive the MBT based on the
first set of data records that it receives from the read template.

If Mi has previously absorbed only one DataRecord (i.e.,

N=1), the RMSD cannot be calculated. In such a case, the
MBT is used to determine if the microcluster can absorb the
DataRecord.

Depending on the distribution of the data stream, as it
evolves over time, microclusters of all sizes appear, disappear,
and may reappear. The number and sizes of the microclusters
are a factor of not only the data stream‟s evolutionary pattern,
but also of the MBT and microcluster expiry-time. The
smaller the MBT, the more microclusters will be produced
and vice versa. However, the optional offline aggregation
and/or macroclustering phases can be used to merge those
microclusters that are deemed similar. The next section
describes the CluSandra Aggregator component, which is
responsible for the aggregation and merges those
microclusters whose radii overlap. Please note that the
Aggregator does not produce superclusters; it simply merges
overlapping microclusters.

E. Aggregating Microclusters

If there is an MCA swarm distributed across the
CluSandra framework‟s nodes, then it is very likely for the
swarm to create microclusters that are very similar, if not
equal, both temporally and spatially (see figure 2). This
occurs if two or more MCAs in the swarm process a set of
DataRecords with equal or overlapping time horizons (he).
This may also occur as a natural side effect of the clustering
algorithm.

Figure 2. Overlapping clusters

If any microclusters temporally and spatially overlap, then
those microclusters may be viewed as one microcluster. Given
a two-dimensional vector-space, the figure above illustrates an
example where three MCAs have created three microclusters
(dots represent the microclusters‟ centroids) that are so close
to one another, both spatially and temporally, that they should
be merged into one microcluster. The merging of these
microclusters is performed by an offline aggregator
component that sweeps through the data stream timeline (CIT)
performing such merges. Microcluster aggregation is a type of
agglomerative clustering procedure whereby individuals or

.	.	
.	

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 2, No. 11, 2011

95 | P a g e
www.ijacsa.thesai.org

groups of individuals are merged based upon their temporal
and spatial proximity to one another [13]. Agglomerative
procedures are probably the most widely used of the
hierarchical clustering methods [13]. The result of a merger,
performed by the aggregator, is immutable (see figure 3). This
aggregator, which is provided as part of the CluSandra
algorithm package, should not be confused with
superclustering and macroclustering, which is discussed in the
following section.

Figure 3. Before and after aggregation

The microcluster expiry time is used to determine if two
microclusters temporally overlap. To determine if two
temporally overlapping microclusters also spatially overlap,
the aggregator compares the distance between their centroids
with the sum of their radii. If the distance is less than the sum
of the radii, then the two microclusters spatially overlap.
There may even be instances where one microcluster is
entirely within the other. The aggregator is given a
configurable property called the overlapFactor. This property
is used to specify the amount of overlap that is required to
deem two microclusters similar enough to merge. The radii of
the microcluster that results from the merge may be greater
than the radii of the two merged microclusters; therefore, it
will occupy more space, as well as time and be capable of
absorbing more surrounding microclusters that temporally
overlap. So the less the overlapFactor, the greater the
probability of creating very large clusters that may mask out
interesting patterns in the data stream.

To minimize the occurrence of overlapping microclusters,
all members of a MCA swarm can work from the same or
shared set of microclusters in the data store. However, this
would have required coordination between the distributed
members of the swarm. Unfortunately, this level of
coordination requires a distributed locking mechanism that
introduces severe contention between the members of the
swarm. It is for this reason, that this approach of sharing
microclusters was not followed. Also, overlapping
microclusters is a natural side effect of the CluSandra
clustering algorithm.

F. Superclusters and Macroclustering

The CluSandra framework introduces the supercluster,
which is created when two or more clusters, either micro or
super, are merged via their additive properties. A supercluster
can also be reduced or even eliminated via its subtractive
property. The IDLIST in the CluSandra CFT is a collection or
vector of microcluster ids (Cassandra row keys) that identify a

supercluster‟s constituent parts (i.e., microclusters). If the
IDLIST is empty, then it identifies the cluster as a
microcluster, else a supercluster.

Superclusters are created by the end-user during the
macroclustering process. Superclusters are created based on a
specified distance measure (similarity) and time horizon. Like
aggregation, superclustering is another type of agglomerative
clustering procedure; however, unlike traditional agglomertive
procedures where the result of a merger is immutable,
CluSandra‟s superclusters can be undone. What makes this
possible is the subtractive property of the CFT. When a
supercluster is created, the earliest CT and LAT of its
constituent parts are used as the supercluster‟s CT and LAT.
The CT and LAT thus identify the supercluster‟s lifespan.

G. The Spring Framework

The open source Spring Framework [1] is relied upon by
the CluSandra framework for configuration and to reuse
Spring‟s components. Except for Cassandra, all CluSandra
framework components are comprised of one or more Spring
POJOs (Plain Old Java Objects) that are configured via Spring
XML configuration files. The Spring Framework, which is
henceforth referred to simply as Spring, was created for the
specific purpose of minimizing the development costs
associated with Java application development. Spring
provides a number of Java packages whose components are
meant to be reused and that, in general, hide the complexities
of Java application development. However, at its core, Spring
is a modular dependency injection and aspect-oriented
container and framework. By using Spring, Java developers
benefit in terms of simplicity, testability and loose coupling.

The StreamReader and MCA components make heavy use
of Spring‟s support for the JMS to send and receive
DataRecords to and from the MQS, respectively. Apache
ActiveMQ [16] has been selected as the CluSandra
framework‟s default JMS provider (i.e., MQS). There are
many open source JMS providers or implementations.
ActiveMQ was chosen, because of its rich functionality,
beyond that specified by the JMS specification, and its robust
support for and integration with Spring.

As a JMS producer, the StreamReader indirectly uses
Spring‟s JmsTemplate class to produce DataRecords destined
for the ActiveMQ message broker. The JmsTemplate is based
on the template design pattern and it is a convenience class
that hides much of the complexity of sending messages to a
JMS message broker. The JmsTemplate is integrated into a
send template (convenience class) provided by CluSandra;
therefore, the person implementing the StreamReader does not
have to concern herself with the implementation of this
functionality. This send template is similar to the previously
described read template for the MCA. In general, the use of
the JmsTemplate by both the send and read templates, in
combination with the corresponding Spring XML file, helps
ensure a decoupling between the CluSandra JMS clients and
whatever JMS provider is being used as the CluSandra MQS.

IV. CLUSTER QUERY LANGUAGE

The CluSandra framework includes a query language that
is used for querying the CluSandra algorithm‟s cluster

.	.	
.	

.	

(a)	Before	aggrega on		 (b)	A er	aggrega on		

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 2, No. 11, 2011

96 | P a g e
www.ijacsa.thesai.org

database. The query language, which is referred to as the
cluster query language or CQL for short, includes the
following statements:

 Connect: This statement is used to connect to a particular
node in the Cassandra cluster.

 Use: This statement, which must be invoked immediately
after the Connect, is used to specify the keyspace to use
within the Cassandra cluster. A Cassandra keyspace is
analogous to a schema that is found in a relational database.

 Select: This statement, which is the one most often invoked,
is used for projecting clusters from the cluster store.

 Aggregate: This statement is used for invoking the
aggregator on all or a portion of the cluster database.

 Merge: This statement is used, as part of the offline
macroclustering process, to form superclusters.

 Sum: This is a relatively simple statement that is used to
return the total number of DataRecords that have been
absorbed by all the microclusters in the cluster database.

 Distance: This statement is used for acquiring the distance
between pairs of clusters.

 Overlap: This statement is used for acquiring the amount of
overlap between pairs of clusters or in other words, the
overlap percentage of the clusters‟ radii.

CluSandra‟s CQL is not to be confused with the Cassandra
Query Language, which is also referred to as CQL.
CluSandra‟s CQL operates in either batch or interactive mode.
When invoked in batch mode, the user specifies a file that
contains CQL statements.

V. EMPIRICAL RESULTS

Several experiments were conducted to evaluate the
accuracy of the CluSandra algorithm, as well as the scalability
and reliability provided by the CluSandra framework. The
experiments are considered small-scale where the framework
comprised a cluster of 2-3 compute nodes. More large-scale
testing that comprises larger clusters of compute nodes is
planned for future work.

A. Test Environment and Datasets

Experiments designed to test the accuracy of the
CluSandra algorithm were conducted on an Intel Core i5 with
8 GB of memory running OS/X version 10.6.8. The
experiments included a real and synthetic dataset.

The real dataset was acquired from the 1998 DARPA
Intrusion Detection Evaluation Program, which was prepared
and managed by MIT Lincoln Labs. This is the same dataset
used for The Third International Knowledge Discovery and
Data Mining Tools Competition (KDD-99 Cup). According to
[5], this dataset was also used to run experiments on the
CluStream algorithm. The dataset is contained in a comma-
separated values (CSV) file where each line comprises a TCP
connection record; there are 4,898,431 records in the file. The
dataset records two week‟s worth of normal network traffic,
along with bursts of different types of intrusion attacks, that
was simulated for a fictitious US military base. The attacks
fall into four main categories: DOS (denial-of-service), R2L
(unauthorized access from a remote machine), U2R
(unauthorized access to local super user privileges), and

PROBING (surveillance and other probing). Each connection
record contains 42 attributes, which provide information
regarding the individual TCP connection between hosts inside
and outside the fictitious military base. Some example
attributes are protocol (e.g., Telnet, Finger, HTTP, FTP,
SMTP, etc), duration of the connection, the number of root
accesses, number of bytes transmitted to and from source and
destination. The connection records are not time stamped. Of
the 43 attributes, 34 are of type continuous numerical. Every
record in the dataset is labeled as either a normal connection
or a connection associated with a particular attack. The
following is a list of all possible labels, with the number in
parenthesis being the total number of records in the dataset
having that particular label: back(2203), buffer_overflow(30),
ftp_write(8), guess_passwd(53), imap(1069), ipsweep(12481),
land(21), loadmodule(9), multihop(7), neptune(1072017),
nmap(2316), normal(972781), perl(3), phf(4), pod(264),
portsweep(10413), rootkit(10), satan(15892),
smurf(2807886), spy(2), teardrop(979), warezclient(1020),
warezmaster(20). Together, the normal, smurf and neptune
records comprise 99% of all records. The StreamReader
(KddStreamReader) for this experiment reads each connection
record and creates a DataRecord that encapsulates the 34
numerical attributes for that record. The KddStreamReader
then sends the DataRecord the framework‟s MQS for
processing by the MCA, which in this case is an
implementation of the CluSandra algorithm. The
KddStreamReader includes a filter that is configured to read
all or any combination of records based on the label type. For
example, the end-user can configure the KddStreamReader to
process only the neptune records, only the smurf and neptune
records, or all the records.

The first series of experiments focused on processing the
more ubiquitous record types in the dataset. The first
experiment in the series had the KddStreamReader process
only the smurf records and assigned the MCA a time window
that captured the entire stream and an MBT (i.e., maximum
radius) of 1000; this same time window and MBT were
maintained throughout this series of experiments. The result
was one microcluster that had absorbed all 2,807,886 smurf
records and had a relatively dense radius of 242.34. This
experiment was executed five times with identical results. The
second experiment was identical to the first, except that the
KddStreamReader processed only the neptune records, which
is the second most ubiquitous record type. The result was,
once again, one microcluster that had absorbed all 1,072,017
neptune records, but with an even smaller radius of 103.15.
The next experiment targeted the normal record, which is the
third most ubiquitous record. One might expect that the result
would, once again, be only one microcluster. However, the
result was a set of 1,048 microclusters with very little to no
overlap between the microclusters and a high degree of
variance with respect to their radii and number of absorbed
DataRecords. This relatively large set of microclusters is to be
expected, because there exists a high degree of variance
within a set of normal connections. In other words, in a TCP
network, the usage across a set of normal connections is
typically not the same; the connections are being used for a
variety of different reasons. For example, some connections
are being used for email (SMTP), file transfer (FTP), and

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 2, No. 11, 2011

97 | P a g e
www.ijacsa.thesai.org

terminal interfaces (Telnet, HTTP). It was also noted that it
took appreciably longer for this experiment to complete. This
is due to the specified time window encompassing the data
stream‟s entire lifespan, which results in a much larger
number of microclusters in the in-memory working set. The
StreamReader‟s next target was the ipsweep records. The
result was one microcluster absorbing all but one ipsweep
record; the radius of this one microcluster was 145.66. The
distance between this microcluster and the one that had
absorbed the remaining ipsweep record was 53,340. It was,
therefore, assumed that this one neptune record was an outlier.
Finally, the KddStreamReader was focused on the portsweep
records. Unlike the previous attack-related experiments,
where only one or two microclusters were produced, this one
resulted in 24 microclusters; however, one microcluster
absorbed 90% of all the portsweep records and it had a radius
of 569. The other 23 microclusters had radii ranging in the
900-1000 range with very little overlap. Overall, the results of
this first series of experiments indicated a high level of
accuracy for the CluSandra algorithm. Also, in this series of
experiments, the average throughput rate for the
KddStreamReader was approximately 28,000 records per
second.

In the next series of experiments, the KddStreamReader
processed combinations of two or more connection record
types. To start, the KddStreamReader processed only the
neptune and smurf records, along with the same time window
and MBT as the previous series of experiments. The result
was two microclusters; the first having absorbed 2,807,639
records with a radius of 242.17, while the second absorbed
1,072,264 records with a radius of 101.52. It was clear that the
first and second microcluster accurately grouped the smurf
and neptune records, respectively. There was also no overlap
between the two microclusters, but it was interesting to see
that a relatively small number of smurf records were grouped
into the neptune microcluster. The KddStreamReader was
then configured to process all smurf, neptune and normal
records. The result was a set of 1,053 microclusters. The most
populated microcluster had absorbed 2,804,465 DataRecords
and had a radius of 232.62. This is clearly the smurf
microcluster, but note how it had lost approximately 3000
DataRecords. The second most populated microcluster had
absorbed 1,438,988 DataRecords and had a radius of 497.34.
This is clearly the neptune microcluster, but it had gained over
300,000 DataRecords and its radius had, as would be
expected, appreciably increased from 101.52. It was
concluded that a considerable number of normal DataRecords
had been absorbed by the neptune microcluster. This can be
addressed by reducing the MBT; however, this will also result
in an appreciably larger number of denser normal
microclusters. The third most populated microcluster had
absorbed 140,885 DataRecords with a radius of 544.89.
Population-wise, this is approximately one-tenth the size of
the neptune microcluster.

To test the accuracy of the sliding time window, the
window‟s size was reduced to capture the different bursts of
attacks. It was noted from the analysis of the dataset file that
the neptune and smurf attacks occur across a handful of
different bursts. So the size of the sliding time window was

reduced to 3 seconds, the MBT was kept at 1000, and the
StreamReader processed only the neptune records. The result
was 4 very dense microclusters (attacks) that had a radius of
100 or less, with 18 being the smallest radius. The first
microcluster absorbed 15 DataRecords and its lifespan
(duration) was only one second. The second microcluster was
created 4 seconds later, absorbed approximately 411,000
DataRecords and its lifespan was 12 seconds. Thus there was
a gap of 4 seconds, between the first and second microcluster,
where there were no neptune attacks. The third microcluster
was created 15 seconds after the second expired, absorbed
approximately 450,000 DataRecords, and its lifespan was 9
seconds. Finally, the fourth microcluster was created 4
seconds after the third expired, absorbed approximately
211,000 DataRecords and its lifespan was 6 seconds. The test
was repeated for the smurf connection records and the result
was one microcluster that had absorbed all the DataRecords
and had a lifespan of over one minute. The experiment was
run again, but with a window of 2 seconds. This time, the
result was 5 very dense microclusters; three had a lifespan of
1 or 2 seconds, one a lifespan of 12 seconds and the last a
lifespan of 42 seconds. These experiments proved the
accuracy of the sliding window.

The synthetic dataset was generated by a stream generator
that is loosely based on the Radial Basis Function (RBF)
stream generator that is found in the University of Waikato‟s
Massive Online Analysis (MOA) open source Java package
[8]. This RBF type of generator was used, because it produces
data streams whose data distribution adhere to a spherical
Gaussian distribution, which is the distribution that the
CluSandra algorithm is designed to process. During its
initialization, the RBF generator creates a set of randomly
generated centroids. The number of centroids in the set is
specified by one of the generator‟s configurable parameters.
Each centroid, which represents a distinct class, is given a
random standard deviation and a multivariate center that is a
proper distance from all the other centroids‟ centers. Not
ensuring a proper distance between centroids leads to
ambiguous results, because the resulting radial fields
associated with two or more centroids may overlap. In some
cases, the amount of overlap is considerable. The number of
variables or attributes assigned to the centroids‟ centers is also
specified via a configurable parameter. A new data record is
generated by first randomly selecting one of the centroids.
Then a random offset with direction is created from the
chosen centroid‟s center. The magnitude of the offset is
randomly drawn from a Gaussian distribution in combination
with the centroid‟s standard deviation. This effectively creates
a normally distributed hypersphere of data records, with
distinct density, around the corresponding centroid [14].

The first series of experiments, with the synthetic RBF
generator, configured the generator to produce a data stream
comprising 200,000 data records with 5 classes and whose
records had five attributes. The MBT was set to 3.0 and the
sliding time window captured the entire data stream. On some
occasions, the result was as expected; i.e., five very dense
microclusters with radii ranging from 0.18 to 1.4 and whose
population of absorbed data records was rather evenly
distributed. On other occasions, the result was more than five

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 2, No. 11, 2011

98 | P a g e
www.ijacsa.thesai.org

microclusters. However, on these occasions, there were
always five dense microclusters that had no overlap and
absorbed the vast majority of the data stream‟s records. Of
those five, there was always one that had absorbed
substantially less data records than the other four. Using the
CQL, it was noted that there was a considerable amount of
overlap between this one microcluster and the other sparsely
populated „extra‟ microclusters. When the CluSandra
framework‟s aggregator was run with an overlap factor of 1.0,
that one microcluster absorbed all the extra sparsely populated
microclusters. There was also a rather even distribution of
data records across all five microclusters. A second series of
experiments was executed that was identical to the first; the
one exception being that the generator was configured to
produce 7 classes, instead of 5. The results were consistent
with those of the previous series of experiments.

VI. CONCLUSIONS AND FUTURE WORK

This work presents a distributed framework and algorithm
for clustering evolving data streams. The Java-based
framework, which is named the CluSandra framework,
exhibits the following characteristics:

 It is entirely composed of proven open source
components that can be deployed on a variety of
commodity hardware and operating systems;
therefore, it is very economical to implement.

 It is leveraged by clustering processes to address the
severe time and space constraints presented by the
data stream. In other words, the functionality required
to address these constraints is offloaded from
clustering process to the framework, and it is the
framework that controls the data stream.

 It provides a distributed platform through which
ensembles of clustering processes can be seamlessly
distributed across many processors. This results in
high levels of reliability, scalability, and availability
for the clustering processes.

 It allows its hosted ensembles of clustering processes
to elastically scale up and down to meet the most
demanding dynamic data stream environments.

 It provides convenience classes or objects whose
purpose is to facilitate the implementation of
clustering algorithms and their subsequent
deployment onto the framework.

 It provides an effective mechanism through which the
hosted clustering processes can reliably and
efficiently store their byproduct of real-time statistical
summary information (i.e., microclusters) in a cluster
database.

 It provides a Cluster Query Language (CQL) that is
used to perform near-time or offline analytics against
the cluster database. The CQL offloads the offline
analytics from the clustering algorithm and provides a
mechanism for the implementation of a variety of
offline analytical processes. The CQL can also be

used by offline processes to monitor, in near-time,
clusters in the database and raise alerts whenever
clusters of a particular nature appear and/or disappear.

 It lays down the foundation for a data management
system whose focus is on clustering high speed and
evolving data streams.

The algorithm developed is named the CluSandra
algorithm and it is based upon concepts, structures, and
algorithms introduced in [10] and [5]. The algorithm‟s
implementation serves as an example of a clustering process
that is designed to leverage the services and functionality
provided by the CluSandra framework. The algorithm is more
closely related to CluStream with its concept of viewing the
data stream as a changing process over time and its
functionality being divided between two operational phases:
real-time statistical data collection and offline analytical
processing. However, it deviates from CluStream primarily in
how it addresses these operational phases. Unlike CluStream,
it only performs the real-time statistical data collection, in the
form of microclustering, leaving the offline analytical
processing to end-users and/or processes that leverage the
CQL. This results in a simpler and higher performing
algorithm; primarily, because the agglomeration of
microclusters is not performed by the algorithm. It also
provides added flexibility to the end-user and/or offline
analytical processes, because it affords the opportunity to
analyze the collected data prior to agglomeration. Also, due to
its reliance on the framework, the CluSandra algorithm can
reliably and efficiently persist its microclusters to a cluster
database; this is addressed in neither [10] nor [5]. The end
result is the development of a clustering algorithm that
exhibits these characteristics: configurable, distributable,
elastically scalable, highly available and reliable, and simpler
to implement.

The following are topics for future work:

 The implementation of clustering algorithms designed
to address other data types and distributions, besides
numerical and Gaussian, and their deployment onto
the framework.

 The introduction of an integration framework, such as
[18], that allows for the quick implementation of
messaging design patterns meant to further control the
data stream and facilitate the implementation of multi-
staged data stream processing. For example, patterns
to address data processing steps such as cleansing,
standardization and transformation, and patterns used
for routing data records based on their content.

 The implementation of a graphical user interface that
leverages the CQL and provides a visual
representation of the data in the cluster database.

 Additional research and development on algorithms
that automate the calculation of an optimal MBT for
the target data stream.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 2, No. 11, 2011

99 | P a g e
www.ijacsa.thesai.org

REFERENCES

[1] C. Walls, Spring In Action, 2
nd

 ed., Greenwick, CT: Manning
Publications Co., 2008.

[2] R. Pressman, Software Engineering A Practitioners Approach, 7
th
 ed.,

New York: McGraw-Hill, 2009.

[3] P. Domingos, G. Hulten, “Mining high-speed data streams”, in

Knowledge Discovery and Data Mining, 2000, pp.71-80.

[4] P. Domingos, G. Hulten, L. Spencer “Mining time-changing data
streams”, in ACM KDD Conference, 2001, pp.97-106.

[5] C. Aggarwal, J. Han, J. Wang, P.S. Yu, “A framework for clustering

evolving data streams”, in Proceedings of the 29
th
 VLDB Conference,

Berlin, Germany, 2003.

[6] J. Gama, Knowledge Discovery From Data Streams. Boca Raton, FL:

Chapman & Hall/CRC, 2010.

[7] J. Gama, M. Gaber, Learning From Data Streams, Processing
Techniques in Sensor Data, Berlin-Hiedelberg: Springer-Verlag, 2007.

[8] B. Bifet, R. Kirkby, R., Data Stream Mining, University of Waikato,
New Zealand: Centre for Open Software Innovation, 2009 .

[9] E. Hewitt, Cassandra, The Definitive Guide. Sebastopol, CA: O‟Reilly

Media, Inc., 2010.

[10] T. Zhang, R. Ramakrishnan, M. Livny, “BIRCH: an efficient data
clustering method for very large databases”, in ACM SIGMOD, 1996,

pp. 103-114.

[11] G. Hebrail, Introduction to Data Stream Querying and Processing,
International Workshop on Data Stream Processing and Management,

Beijing: 2008.

[12] J. Han, M. Kamber, Data Mining Concepts and Techniques, 2
nd

 ed., San
Francisco, CA: Morgan Kaufmann Publishers, 2006.

[13] B. Everitt, S. Landau, M. Leese, Cluster Analysis, 4
th
 ed., London,

England: Arnold Publishers, 2001.

[14] B. Bifet, R. Kirkby, Massive Online Analysis Manual. University of

Waikato, New Zealand: Centre for Open Software Innovation, 2009.

[15] “The Apache Cassandra Project.” Available:
http://cassandra.apache.org, [Accessed Sept. 2011].

[16] “Apache ActiveMQ.” Available: http://activemq.apache.org, [Accessed

Sept. 2011].

[17] T. White, Hadoop: The Definitive Guide, Sebastopol, CA: O‟Reilly

Media, Inc., 2010.

[18] “Apache Camel.” Available: http://camel.apache.org, [Accessed Sept.
2011].

[19] C. Plant, C. Bohm, Novel Trends In Clustering, Technische Universitat,

Munchen Germany, Ludwig Maximialns Universitat Munchen,
Germany, 2008.

[20] L. Kuncheva, “Classifier ensembles for detecting concept change in

streaming data: overview and perspectives”, in Proceedings of the
Second Workshop SUEMA, ECAI, Partas, Greece, July 2008, pp. 5-9.

[21] C. Aggarwal, J. Han, J. Wang, P.S. Yu, “A framework for projected

clustering of high dimensional data streams”, in Proceedings of the 30
th

VLDB Conference, Toronto, Canada, 2004, pp. 852-863.

AUTHORS‟ PROFILES

Jose R. Fernandez received his MSc (2011) in Computer Science at the

University of West Florida and his BSc (Eng., 1983) in Computer and

Information Sciences at the University of Florida. He has over 25 years of

commercial software engineering experience and has held senior architecture

and management positions at NCR, AT&T, and BEA Systems. He has also

been instrumental in starting several companies whose focus was on the

development of Java Enterprise Edition (JEE) software products. He is

currently a senior consultant with special research interests in machine

learning and data mining.

Eman M. El-Sheikh is the Associate Dean for the College of Arts and

Sciences and an Associate Professor of Computer Science at the University of

West Florida. She received her PhD (2002) and MSc (1995) in Computer

Science from Michigan State University and BSc (1992) in Computer Science

from the American University in Cairo. Her research interests include

artificial intelligence-based techniques and tools for education, including the

development of intelligent tutoring systems and adaptive learning tools,

agent-based architectures, knowledge-based systems, machine learning, and

computer science education.

