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Abstract—We provide various results about the transmission 

capacity of quantum networks. Our primary focus is on 

algorithmic methods to efficiently compute upper-bounds to the 

traffic that the network can handle at most, and to compute 

lower-bounds on the likelihood that a customer has to wait for 

service due to network congestion. This establishes analogous 

assertions as derived from Erlang B or Erlang C models for 

standard telecommunications. Our proposed methods, while 

specifically designed for quantum networks, do neither hinge on 

a particular quantum key distribution technology nor on any 

particular routing scheme. We demonstrate the feasibility of our 

approach using a worked example. Moreover, we explicitly 

consider two different architectures for quantum key 

management, one of which employs individual key-buffers for 

each relay connection, the other using a shared key-buffer for 

every transmission. We devise specific methods for analyzing the 

network performance depending on the chosen key-buffer 

architecture, and our experiments led to quite different results 
for the two variants. 

Keywords-Quantum network; Quantum cryptography; network 

transmission capacity;  queuing network;  system security. 

I.  INTRODUCTION 

It took about two decades ever since quantum key 
distribution (QKD) has been proposed by [1] (the famous 
BB84 protocol) until the first experimental implementations of 
a quantum network were presented by the DARPA [2] and the 
European Union [3]. While the theory behind secure key-
delivery between Alice and Bob is well-understood (see e.g. [4] 
for a proof regarding the security of BB84), the theory of 
network design and performance analysis has apparently seen 
rather limited attention over the last years. The works of [5] 
and [6] both considered the design of a network from the 
topological point of view, and in terms of optimal security and 
performance. In this work, we go the other way, asking for the 
best performance that we can get from a given quantum 
network infrastructure. In particular, we provide algorithmic 
means to answer two questions: 

1. What is the maximal transmission capacity achievable 
in the network (using any classical routing scheme)? 

2. What is the likelihood of local congestion that would 
temporarily disconnect the (logical) channel between 
any two peers in the network? 

The second question can be rephrased into asking how 
likely a customer is to wait when asking the network for a 
secure delivery of payload from one point to another. 

Our results are hence related to the field of communication 
theory, channel capacity and network coding. Particularly the 
latter has led to valuable insights (cf. e.g. [7], [8], [9]) 
regarding the rate at which information can be send through the 
network. Contrary to these (and many other related) 
approaches, we do not employ classical information theory to 
quantify the capacity, but rather work with the directly known 
performances of each link in the network. Similar to our work, 
network outage probabilities are as well discussed in [10], [11], 
[12] and [13], where most research effort, as it seems, has been 
put on wireless networks. So far, the problem appears hardly 
considered in (hard-wired) networks or quantum networks. In 
the quantum computing domain, the work of [14], [15], [16] 
and [17] is closely related. Contrary to ours, however, it 
strongly relies on quantum techniques and is less focused on 
algorithmic methods to analyze a given infrastructure. The 
work of [16] is particularly interesting as it employs 
percolation theory (which is rarely used in the related 
literature). The problem is studied elsewhere in [18], which 
comes up with proposals on how to enhance the existing 
capabilities once they are known. Here, we work out the limits 
similarly to the Erlang B and Erlang C models, so as to be able 
to improve them based on this related research. In the wireless 
domain, the interesting work of [19] deals with spread-
spectrum techniques and uses Poissonian processes for 
determination of the network capacity, but is specific for this 
particular encoding technique. We explicitly avoid such 
restrictions here, but adopt some assumptions on the quantum 
key-management models (following the proposals of [20]; cf. 
also [21] for another discussion related to quantum key- and 
network-management). Finally, we mention the work of [22], 
who attempts to solve the problem of end-to-end quantum 
communication using a three-party protocol. This architecture 
is essentially different from what has been implemented 
nowadays, and thus subject of future considerations. 

Among the sales arguments for quantum key distribution is 
its capability of running over existing fibre-optic lines. This 
claim has been substantiated in the demonstration of the 
SECOQC- and DARPA-Networks [2], [3]. Hence it is fair to 
assume that the topology of the network is fixed and that the 
individual key-generation rates on each link are known (cf. [3] 
for examples). Moreover, following the so-far proposed 
architectures of relay devices in a quantum network (see [2], 
[3],and [20]), it is reasonable to consider a quantum network as 
a system of interconnected buffers, where the secret message is 
repeatedly decrypted and re-encrypted before forwarding it to 
the next hop. The key-buffers in each relay node are constantly 
refilled by QKD protocols running in the background 24/7 and 
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Figure 2 Network with link performances 

 

Figure 1 Trusted relay with re-encryption in each hop 

endlessly generating key-material for later usage. This 
transmission regime, in its simplest form, is known as trusted 
relay, and is widely used in nowadays demonstration networks 
(cf. [2] and [3]). A transmission of a message   from Alice to 
Bob along a sequence of nodes that share keys         is 
displayed in Figure 1. 

Organization of this work: in Section II, we describe the 
graph- and queuing model (Section II.A) used to analyze a 
quantum network. In particular, we will use maximal flows 
(briefly introduced in Section II.B) to compute bounds on the 
payload that the network can handle. Section III is divided into 
two main parts, giving algorithms for computing end-to-end 
transmission capacity (Section III.A) and waiting probability if 
a chosen path through the network is blocked due to congestion 
(Section III.B). In both cases, we show how to use standard 
maximum flow and shortest path algorithms to compute the 
desired quantities easily and efficiently from the known link 
capacities in the underlying graph model. The process is 
illustrated by an example (Section III.C), before conclusions 
follow in Section IV. 

II. MATHEMATICAL MODEL 

We will not burden ourselves with the details of any 
particular quantum key distribution (QKD) facility, but restrict 
our attention to the following model of a quantum network 
(QNet): let a QNet be modeled as an undirected graph   
      with adjacent nodes sharing secret keys thanks to QKD. 
That is, on any line     (with      ) maintain key-buffers 
on either side to store QKD key material for subsequent 
transmissions. These key-buffers are nothing else than queues, 
in which key-bits are inserted on a deterministic basis (we 
assume the QKD-devices to generate key-bits at constant rate). 
key-bits are used up on a random basis, depending on incoming 
payload for secret transmission. Based on this view, we can 
cast the QNet into a standard queuing network. 

A. Quantum Networks as Queuing Networks 

An open queuing network is a system in which a customer 
enters the network at some node, and moves onwards through 
the links, where he occasionally has to wait (queue) until he is 
served at the next node (i.e. he can enter the next node). Central 
questions in queuing theory regard the average time to wait 
until the customer reaches his destination point, or the average 
number of customers lining up in any given queue (link) in the 
network. For a quantum network, we can equally well set up 
such a model, based on the following correspondence: 

1. incoming customers equal newly generated key-bits 

2. leaving customers equal the (one-time) use of key-bits 
for Vernam-encryption of messages 

3. a queue equals a key-buffer (storing bits for subsequent 
usage, or equivalently, hosting customers for 
subsequent service) 

Observe that the generation of key-bits is deterministic, 
while the arrival of messages is non-deterministic. If we 
consider the QNet as a backbone network, then it is reasonable 
to consider the event of an incoming message bit as a Poisson-
distributed random variable. In Kendall-notation, the link 
    in a QNet therefore is nothing else than a      -queue, 
disregarding physical size limits of the key-buffers for now. 
The graph   modeling the QNet thus constitutes a network of 
queues, and we are interested in its stationary distribution (so it 
exists). 

Remark: an alternative view yielding equivalent results is 
by associating incoming payload bits with customers, who get 
served (encrypted) based on how much key-material is 
available in the buffer. In this case, we would have to think of 
the message-queue as the physical incarnation of the queue 
model under consideration. For simplicity, and because real-
life implementations work with a key-buffer too, we shall 
consider the first of these two views, keeping the second view 
in mind whenever needed. 

Sufficient conditions for the existence of stationary 
distributions in queuing networks are well-known, such as 
Jackson's theorem for Jackson-networks or one of its 
generalizations, such as the BCMP-theorem. Openness of the 
network is assured, since the graph   is a mere transportation 
medium and messages necessarily leaving the network at some 
stage. Still, we cannot make any generally valid assertions on 
the routing algorithms implemented within the system. In lack 
of such information, we will try to find upper bounds to the 
transmission capacity by invoking maximum flow theory. This 
has the additional advantage of our results applying to 
conventional routing as well as network coding approaches for 
transmission. 
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Figure 3 Shared vs. individual key-buffers 

 

Figure 4 Forwarding with link-specific keys 

B. Flows 

To illustrate the approach, consider the example network 
topology shown in Figure 2. Assume that after start-up, all key-
buffers are empty and the QKD-protocol on link        start 

producing key-material at constant rate     per time unit. It 

follows that after one unit of time, the maximal transmission 
capacity of the network is determined by the maximum     -
flow, constrained by the existing key-material on each link. As 
all links regenerate key-bits at constant rate, the minimum cut 
will not change over time. Let     be the minimum edge 
cut, then the maximum flow has capacity        
∑    (     )   after the first unit of time. After   units, we have 

the capacity       ∑      (     )                The 

consumption of key-bits happens upon arrival of payload to be 
transmitted secretly from the sender   to the receiver  . Hence, 
we can consider the entire network as one large queue, whose 
internal servicing is done by routing, network coding, or 
otherwise. From outside, we have       as the deterministic 
rate at which key-bits arrive for later consumption, and we are 
back at the      -queue. Considering multiple access-points 
to the network is trivial by switching to a multi-source-multi-
sink flow. Unlike standard queueing disciplines, optimality in 
our context means the incoming amount of key-material 
outweighing the arrival of messages, i.e. an "unstable" queue 
whose expected length is infinite 

C. Key-Buffer Architectures 

It is easy to set up the devices so as to realize a single-path 
transmission as illustrated in Figure 1. However, it would not 
be reasonable to assume nodes to have only two ports, so the 
internal management of quantum keys is slightly more 
involved. Going back to Figure 1, we can instantly fix the 
problem of the message popping up in plaintext within each 
relay node by simply XOR-combining both, the incoming- and 
outgoing key into a single “relay-key” [20]. Figure 4 illustrates 
the idea: for the relay from node A to node B over node R, the 

latter would XOR-combine (-operation)    and    into    . 
Consequently, we would only store     in an individual buffer 
for this link (see Figure 3; right). If the relay is trusted, then it 
may alternatively decrypt the incoming message and re-encrypt 
it before passing it onwards (as shown in Figure 1). 
Consequently, we would have to maintain shared buffers for 
each I/O-port, as displayed in Figure 3 (left) . 
 
 

III. RESULTS 

We are now ready to present our main results. 

A. End-to-End transmission capacity 

Given the (constant) rate   of key-bits generated on link 
    , we can ask for the maximal average rate   of arriving 
messages that we are able to encrypt. Or stated differently: if 

we know the service rate, what is the highest rate of incoming 
customers that we can handle? Obviously, a necessary 
condition is the rate of arriving customers not exceeding the 
service rate. This is almost sufficient, as the following result 
shows: 

Proposition 1. Let a      -queue be given and denote the 
average arriving rate by  . For a given constant service 
rate  , any arrival rate     leads to a stable system. 

So although the case     may be fine for a system with 
deterministic arrival, it is not appropriate for random systems. 

Proof: Denote by   the number of customers in the system 
and by            the probability of being in state  . In a 
stable situation, the total rate out of this state   equals the sum 
of the incoming rates from states     and    , which 
yields for every    , 

                        . 

This recursive formula can be rewritten as 

       (
 

 
)
 

     

and since probabilities sum up to one we get 

  ∑  

 

   

 ∑ (
 

 
)
 

   

 

   

  

This is simply a geometric series, which converges if and 

only if    , as stated.  

 
The above proof also shows that the probabilities    can be 
calculated via            for any     (by using 

  
  

   
   where   

 

 
. 

Putting this to practice within a quantum network is 
straightforward in two steps: 

1. Upon given key-generation rates on each link, use 
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these rates as edge-weights in an undirected graph and 
determine a maximal flow from the source node to the 
sink node. Call the value of this flow  . 

2. By Proposition 1, a payload of up to     bits per 
time unit can be handled by the quantum network in a 
perfectly secure manner (assuming trusted relay). 

B. Waiting probability 

Here, we need to distinguish two architectures in our 
theoretical considerations: let a node     be given, whose 
neighbors are           eg   , where         denotes  ’s 
degree. Either each route passing through   is associated with 
its individual key-buffer (perhaps via logically partitioning the 
overall key-material somehow; cf. the right side of Figure 3), or 
all incoming and outgoing flow draws from the same key-
buffer (Figure 3; left), in which case a very busy line can affect 
the capacities of other routes through  . However, short-term 
traffic peaks are easier to handle with this architecture. We 
consider both variants separately. 

Individual key-buffers 

To estimate the probability that one has to wait to get the 
key-bits needed for encryption anywhere along its way from 
the sender to the receiver, we first focus on the waiting 
probability in one particular node  . Observe that since the 
key-buffers are not shared, distinct links from a node   to any 
of its neighbors act independently. So we can restrict our 
considerations to any (arbitrary) key-buffer within  . Notice, 
however, that a link from   to its neighbor   has to be treated 
differently than the link from   to  , since we are concerned 
with forwarding packets. 

Let        be any node, and denote its neighbors by 
    . Pick any key-buffer within   that refers to the 
connection    , where       . Let the incoming traffic 
per time unit on the route from   to   be            
distributed, and assume the QKD protocol between   and   to 
reproduce an amount of   bits per time unit. Finally, assume 
the key-buffer to be full at the beginning. Let         be a 
sequence of i.i.d. random variables               where    
is the traffic at time unit  . The corresponding filling level of 
the key-buffer at time   can never exceed the capacity   and is 
thus given by 

 

      {              ∑  

 

   

}   (1) 

assuming that we start off with the full key-buffer and re-fill it 
at rate   after the first time-unit (i.e. we do no refill within the 
first time-unit because the buffer is full already). 

We are interested in the probability for the link being 
blocked, i.e. the likelihood of an empty key-buffer at time unit 
 . Hence, we ask for                          . From 

   we deduce    {             ∑   
 
      }     if 

and only if             ∑   
 
      . Hence, 

       {            ∑    

 

   

   }  

   {∑  

 

   

          } 

If the traffic load over different time-units is independent, 

then ∑   
 
                  so that the above probability 

boils down to a mere evaluation of the Poisson distribution 

function    |   ∑
  

  
   ⌈ ⌉  

    and comes to 

                    |      

It is legitimate to ask what happens if the refilling of the 

key-buffer happens on a random basis as well. Call   
  the 

amount of fresh key-material in time-unit  . We can easily 

replace the term         in (1) by ∑   
    

    so as to take this 

randomness into account, but the distribution of     
    

  is 
no longer Poissonian (mostly because the difference is not 
bounded from below). A straightforward way out of this 
dilemma is considering Gaussian approximations to the 
Poissonian densities, which takes us back to the wonderful 
world of distributions closed under convolution. In other 
words, if we approximate               by  

 ̃           the above derivation and result becomes 
obvious. We leave this track aside here and go back to the 
deterministic refilling, giving us the following result: 

Proposition 2. Let        have neighbors     , and 
consider the key-buffer shared with an arbitrary but fixed 
neighbor        of  . Denote by    the size of the 
key-buffer associated with the link     and assume that 
new key-bits are generated at a constant rate  . The 
number of incoming message bits from   to   is assumed 
to be           -distributed. If    , then the 
probability of waiting within   during a transmission is 

         or ar ing  rom   to   gets  elaye  

               |    

   ∑
     

 

  
     

⌈          ⌉  

   

 

 

  where    
  

   
  

Proof: The argument is merely a matter of noticing that it 

takes a period of    
  

   
 time units to entirely empty the key-

buffer, if   bits are used up with   bits growing back per time 
unit (the time for encryption is considered negligible). Hence, 

the average expenditure is    .  



(IJACSA) International Journal of Advanced Computer Science and Applications,  
Vol. 2, No. 11, 2011 

13 | P a g e  
www.ijacsa.thesai.org 

 

Figure 5 Transformation of a node with individual key-buffers 

The alert reader might utter concerns about the stochastic 
independence of incoming traffic over different time-units. 
There are (at least) two ways to justify this assumption: 

 Considering the transmission as a process resting on 
various routing protocols, we can reasonably assume 
the network's routing regime to rearrange, encode and 
decode, and to partition the messages in a way that 
stochastic correlations between packets are negligible. 
Notice that this in no way rules out the possibility of 
linking packets to each other via sequence numbers or 
matching delivery addresses. However, this "weaker" 
type of correlation does not necessarily imply 
dependencies among the payloads of different packets, 
e.g. when a long sequence of independent 
cryptographic key-material is transmitted. 

 In case that the network is merely used for continuous 
shared key establishment (in fact, this is the way in 
which a quantum link is generally supposed to be used 
[3]), we can safely assume incoming traffic packets as 
stochastically independent, for otherwise we would 
have interdependence among key-bits. This is 
undesired for cryptographic keys, particularly for 
quantum keys (as it reduces the key's entropy). 

 While Proposition 2 refers to only a single node, it is 
more interesting to find out how likely a blockage 
along a path from any node to any other node is. In the 
model of individual key-buffers, this problem boils 
down to identifying a path whose blockage probability 
is minimal. We can simply invoke any shortest-path 
algorithm for that matter, if we assume blockages to 
happen independently of each other. Consider a node 
       having neighbors     . 

Observe that Proposition 2 is concerned with the likelihood 
of blockage when forwarding a message from   onwards. 
Hence, we need to cast the undirected network model graph 
into a directed graph by converting an undirected edge into two 
directed edges (with opposite directions). 

Each link     for        maintains its own key-buffer 
with blocking probability       as given by Proposition 2. We 
transform the undirected graph         into a weighted 
directed graph              such that 

1. Each link            is carried over into two links 
               with cost                . 

2. Each node        having a number   |    | of 
neighbors is expanded into a complete graph with   
nodes        , each of is connected by two directed 

edges in either direction. Each edge         is added to 

   with the cost                       
  

according to Proposition 2. The set of edges joining   

to its neighbors in  , i.e. the set {              }  
                         is carried over to    as  
                                       with 
weights all zero. 

Figure 5 illustrates this transformation. 

On   , we can run any shortest-path algorithm, to 
determine the minimum likelihood of blockage using 
single-path routing. For any given sender   and receiver  , 
let their most reliable interconnecting path have "weight"   
in   . Then, regardless of the routing, we have 

   message  ill  e  lo ke              

because   is the weight of the shortest path in   , i.e. the 
most reliable path in  . No matter what the routing actually 
does, it cannot do better than choosing the best path 
possible, hence the value 

              at least one no e is  lo ke   

is a lower-bound to the actual likelihood. 

Shared key-buffers 

In the case of shared key-buffers we assume the 
incoming flows from different nodes to be independent. 
Then the distribution of the total flow trough        at 
time   follows a Poisson distribution with parameter 
   ∑         , where    denotes the incoming traffic flow 

from node   to its neighbor  . Similarly, all neighboring 
links        contribute    bits of fresh key-material to 
the common key-buffer, giving a total refreshing rate of 
  ∑          . With     we can invoke proposition 

Proposition 2 again to calculate the probability of a node 
being blocked in this case. 

A little more care is to be taken when asking for the 
chance of blocking somewhere across the network as a 
whole. In this case, we use a transformation that is normally 
used to calculate maximal flows with vertex capacities. The 
transformation from the undirected graph         (see 
Figure 6a for an example) to the directed weighted graph 
           is now specific for a sender   and receiver  , 
and proceeds as follows (cf. [23]): 

1. Each node   including   and   is replaced by two 
nodes  in  out    , and a directed edge from  in to  out 
is placed to   . This link  in   out gets assigned the 
cost      , where   is the blocking probability 
calculated as described above. 

2. Each undirected edge         is replaced by two 
directed edges  out   in  and  out    in . See Figure 
6b and Figure 6c for an illustration. 

3. The nodes  in and  out are deleted, as well as all edges 
going into  in and out of  out. 

4. Those nodes who remain to be assigned a cost receive 
zero cost. The resulting graph is shown in Figure 6d. 



(IJACSA) International Journal of Advanced Computer Science and Applications,  
Vol. 2, No. 11, 2011 

14 | P a g e  
www.ijacsa.thesai.org 

 

Figure 7 Example network (link performances 𝝁 shown in kbit/sec) 

Once having found the shortest path in    between   and  , 
we can draw exactly the same conclusion as above: if   is the 
weight of this path in   , then the chance of this path being 
blocked for any path-based routing-scheme is lower-bounded 
by      . 

C. Example 

To get a more intuitive understanding of the above results, 
we give a simple example. Consider a modified version of the 
graph from Figure 2, with six nodes but with neither an edge 
between vertices 2 and 3 nor between 2 and 4. We call node 0 
the sender and the receiver shall be node 5 (cf. Figure 7). We 

let   be 5000 kbits and choose the rates   (at which new key-
material is produced) randomly between 280 and 320 kbits and 
let the rate of the incoming message bits be       (see 
Table 1(a)), where   is a positive constant (    in this 
specific example). Under this setting, we get the average 
probabilities      shown in Table 1(a) for the incident of 
waiting between   and    where the average was taken over 
        calculations. 

Using the transformation described above we get that the 
probability of getting stuck is lower bounded by 0.9137 in the 
case of individual key-buffers and by 0.9929 in the case of 
shared key-buffers; again averaged over       trials. This 
means that the individual link performances are indeed sharp 
bounds to the true bandwidth, as even slightly overshooting (by 
    kbit/sec in out example) makes congestions highly 
likely. If we just look at a single evaluation of the two different 
methods mentioned above, we also see that the paths yielding 
the minimal value may differ: while working with the design of 
individual buffers the algorithm takes route         in 
the original graph, it does prefer         under the 
shared buffer design. 

An illustration and interpretation of Proposition 1 is the 
following: with link performance values as given in Figure 7, a 
maximal flow is found at 607.54 kbit/sec. So this is the 
maximal traffic load that the network can handle. 

Better performance is obtained when we double the size of 
the key-buffer in each link. Under the same set up as before, 
but with      Mbit of key-buffer and the  -values as listed 
in Table 1(b), we get the blocking probabilities shown in the 
right column of Table 1(b). The blocking probability for an 
end-to-end communication in this case is          when 
individual key-buffers are used, and          when a shared 
buffer is employed. Finally, Proposition 1 tells that the overall 
end-to-end traffic from 0 to 5 is bounded above by 608.52 
kbit/sec (which is the maximal flow under the respective 
capacities             for each link). 

It is important to observe that Proposition 2 explicitly is 
concerned with situations in which the traffic load exceeds the 
key-(re-)generation rate on the links. The converse case in 
which there is a positive surplus of key-material produced on 
each link is obviously not interesting in terms of congestion 
likelihoods (as the key-buffers cannot run empty in that case). 

 
 

Figure 6 Transformation for shared key-buffer 
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TABLE 1 BLOCKING PROBABILITIES EXAMPLES 

Edge 𝒆  𝒖  𝒗 Traffic 𝝀 [kbit/s] Blocking prob. 𝒑𝒆 

𝟎  𝟏 305.23 0.7062 

𝟎  𝟑 302.32 0.7058 

𝟏  𝟐 304.70 0.7063 

𝟏  𝟑 305.35 0.7067 

𝟏  𝟒 305.77 0.7066 

𝟐  𝟓 304.28 0.7064 

𝟑  𝟒 305.65 0.7068 

𝟒  𝟓 304.22 0.7064 

(a) Key-buffer size 𝑳  𝟓 Mbit 

Edge 𝒆  𝒖  𝒗 Traffic 𝝀 [kbit/s] Blocking prob. 𝒑𝒆 

𝟎  𝟏 306.06 0.6497 

𝟎  𝟑 304.53 0.6493 

𝟏  𝟐 304.29 0.6492 

𝟏  𝟑 305.29 0.6495 

𝟏  𝟒 305.89 0.6499 

𝟐  𝟓 304.34 0.6494 

𝟑  𝟒 305.65 0.6497 

𝟒  𝟓 304.23 0.6493 

(b) Key-buffer size 𝑳  𝟏𝟎 Mbit 

IV. CONCLUSIONS 

Given a quantum network, we have shown how to 
efficiently compute bounds to the transmission capacity and the 
likelihood of blocked paths due to local congestions.  

A. Future Work 

We focused on two specific architectures for key-buffers. 
Our approach and results are extensible towards more general 
ar hite tures (as  e  onsi ere  only t o “extreme”  ases here) 
for the key-buffers as well as for the relay-regime as such (cf. 
[22], who propose a novel three-party quantum communication 
approach). It is well known that classical routing regimes face 
difficulties when trying to attain the upper bounds to the 
transmission capacity as implied by the max-flow approach 
(network coding is one way to resolve this dilemma). 
Consequently, our bounds are not necessarily tight. A closer 
investigation of this is subject of future work. Finally, since 
quantum networks have hardly reached a level of maturity 
beyond prototypes or lab demonstrators, reports on 
comparisons of our results to other competing approaches are 
part of future research. 

B. Summary 

Our analysis is entirely based on the physical topology of 
the network and the known key-generation rates on each link. 
In this work, we focused on single-path (classical) routing 
schemes, leaving analogous research in the field of multipath 
routing and network coding for future work. Our results are 
easy to implement with off-the-shelf algorithms, hence the 
proposed analysis technique is efficient in terms of 
computational, modeling and implementation efforts. 

Despite quantum networks not having evolved beyond 
demonstrator prototypes yet, the possibility of setting up a 
high-security transmission network over existing fibre-optic 
lines is quite interesting. Our research here is meant as a 

starting point towards the construction of such infrastructures 
in an effective and appealing manner for the potential 
customer. Quality of service and service level agreements in 
quantum networks, unfortunately, have by now not seen the 
necessary attention to really bring the QKD technology to the 
market. Although ingenious solutions and brilliant theoretical 
achievements have been made, the "last mile" between lab 
implementation and large-scale practical business 
implementation needs more attention. 
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