
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 2, No. 11, 2011

148 | P a g e
www.ijacsa.thesai.org

A new approach of designing Multi-Agent Systems
With a practical sample

Sara Maalal

Team of Systems‟ Architecture, Laboratory of computing,

Systems and Renewable Energy

National and High School of Electricity and Mechanic

ENSEM BP 8118, Oasis

Casablanca, Maroc

Malika Addou

Team of Systems‟ Architecture Laboratory of computing,

Systems and Renewable Energy

Hassania School of Public

Works EHTP BP 8108, Oasis

Casablanca, Maroc

Abstract—Agent technology is a software paradigm that permits

to implement large and complex distributed applications [1]. In

order to assist analyzing, conception and development or

implementation phases of multi-agent systems, we’ve tried to

present a practical application of a generic and scalable method

of a MAS with a component-oriented architecture and agent-

based approach that allows MDA to generate source code from a

given model. We’ve designed on AUML the class diagrams as a

class meta-model of different agents of a MAS. Then we

generated the source code of the models developed using an open

source tool called AndroMDA. This agent-based and evolutive

approach enhances the modularity and genericity developments

and promotes their reusability in future developments. This

property distinguishes our design methodology of existing

methodologies in that it is constrained by any particular agent-
based model while providing a library of generic models [2].

Keyword- Software agents; Multi-agents Systems (MAS); Analysis;

Software design; Modeling; Models; Diagrams; Architecture;

Model Driven Architecture (MDA); Agent Unified Modeling

Language (AUML); Agent Modeling Language (AML).

I. INTRODUCTION

Currently the computer systems are increasingly complex,
often distributed over several sites and consist of software
interacting with each other or with humans. The need for model
human behavior in specific computer programs has prompted
officials to use technology that affected the last decade and
whose movements are very remarkable. In this context,
designing multi-agent systems (MAS) is complex because they
require the inclusion of several parts of the system which can
often be approached from different angles. We must identify
and analyze all system problems to find models for multi-
agents to implement and integrate them into a coherent system.
This is the software engineering and well justifies the use of a
method of analysis, design and development of multi-agents
systems [2].

This paper describes a practical example of a new generic
model designed for modeling multi-agent systems and based on
a class diagram, defining the different types of agents and
meeting our needs for development and testing of MAS
applications.

II. MULTI-AGENT SYSTEMS

A. Definitions

 - An agent is a computer system within an environment and
with an autonomous behavior made for achieving the
objectives that were set during its design [3].

 - A multi-agents system is a system that contains a set of
agents that interact with communications protocols and are able
to act on their environment. Different agents have different
spheres of influence, in the sense that they have control (or at
least can influence) on different parts of the environment.
These spheres of influence may overlap in some cases; the fact
that they coincide may cause dependencies reports between
agents [4].

The MAS can be used in several application areas such as
e-commerce, economic systems, distributed information
systems, organizations...

B. Types of agent

Starting from the definitions cited above, we can identify
the following agent types [5]:

 The reactive agent is often described as not being
"clever" by itself. It is a very simple component that
perceives the environment and is able to act on it. Its
capacity meets mode only stimulus-action that can be
considered a form of communication.

 The cognitive agent is an agent more or less intelligent,
mainly characterized by a symbolic representation of
knowledge and mental concepts. It has a partial
representation of the environment, explicit goals, it is
capable of planning their behavior, remember his past
actions, communicate by sending messages, negotiate,
etc..

 The intentional agent or BDI (Belief, Desire and
Intention) is an intelligent agent that applies the model
of human intelligence and human perspective on the
world using mental concepts such as knowledge,
beliefs, intentions, desires, choices, commitments. Its
behavior can be provided by the award of beliefs,
desires and intentions.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 2, No. 11, 2011

149 | P a g e
www.ijacsa.thesai.org

 The rational agent is an agent that acts in a manner
allowing it to get the most success in achieving the
tasks they were assigned. To this end, we must have
measure of performance, if possible objective
associated with a particular task that the agent should
run.

 The adaptive agent is an agent that adapts to any
changes that the environment can have. He is very
intelligent as he is able to change its objectives and its
knowledge base when they change.

 The communicative agent is an agent that is used to
communicate information to all around him. This
information can be made of his own perceptions as it
may be transmitted by other agents.

Figure 1. Types of agents

III. THE DESIGN METHODOLOGIES – STATE OF THE ART

Building high quality software for real-world applications is
a difficult task because of the large number and the flexibility
of components but also because of the complexity of
interconnections required. The role of software engineering is
precisely that of providing methodologies that can facilitate
control of this complexity. A methodology by definition can
facilitate the process of engineering systems. It consists of
guides that cover the entire lifecycle of software development.
Some are technical guides; others are managing the project [6].

We‟ll name “method” the approach to use a rigorous
process for generating a set of models that describe various
aspects of software being developed using a well- defined
notation.

To this end, several software engineering paradigms have
been proposed, such as object-oriented design patterns, various
software architectures. These paradigms fail especially when it
concerns the development of complex distributed systems for
two reasons: the interactions between the various entities are
defined in a too rigid way and there is no mechanism complex
enough to represent the organizational structure system [7]. The
paradigm of agents and multi-agent systems can be a good
answer to these problems, because the agent-oriented
approaches significantly increase our ability to model, design
and build complex distributed systems [8].

There are many methodologies for analysis and design of
multi-agent systems. We cite below some examples of existing
methodologies [2]:

 The AAII methodology was developed based on the
experience accumulated during the construction of BDI
systems. In this methodology, we have a set of
templates that, when they have been fully elaborated,
define the specifications of agents such as desires,
beliefs and intentions [9].

 The first version of Gaia methodology, which modeled
agents from the object-oriented point of view, was
revisited 3 years later by the same authors in order to
represent a MAS as an organized society of individuals
[10]. In fact, the agent entity, which is a central
element of the meta-model of Gaia, can play one or
more roles. A role is a specific behavior to be played
by an agent (or kind of agents), defined in term of
permissions, responsibilities, activities, and interactions
with other roles. When playing a role, an agent updates
its behavior in terms of services that can be activated
according to some specific pre- and post- conditions. In
addition, a role is decomposed in several protocols
when agents need to communicate some data. The
environment abstraction specifies all the entities and
resources a multi-agent system may interact with,
restricting the interactions by means of the permitted
actions [1].

The Gaia methodology gives the possibility to design
MAS using an organizational paradigm and to traverse
systematically the path that begins by setting out the
demands of the problem and to lead to a fairly detailed
and immediate implementation [9]. Gaia permits to
design a hierarchical non-overlapping structure of
agents with a limited depth. From the organizational
point of view, agents form teams as they belong to a
unique organization, they can explicitly communicate
with other agents within the same organization by
means of collaborations, and organizations can
communicate between them by means of interactions.
If inter-organization communication is omitted,
coalitions and congregations may also be modeled [1].

However, this methodology is somewhat limited since
we can describe MAS with different architectures of
agents [9].

 The main contribution of MESSAGE was the
definition of meta-models for specification of the
elements that can be used to describe each of the
aspects that constitute a multi-agent system (MAS)
from five viewpoints: organization, agents, goals/tasks,
interactions and domain. MESSAGE adopted the
Unified Process and centered on analysis and design
phases of development [11].

 INGENIAS starts from the results of MESSAGE and
provides a notation to guide the development process
of a MAS from analysis to implementation [12] [13].

It is both a methodology and a set of tools for
development of multi-agent systems (MAS). As a
methodology, it tries to integrate results from other
proposals and considers the MAS from five
complementary viewpoints: organization, agent,

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 2, No. 11, 2011

150 | P a g e
www.ijacsa.thesai.org

tasks/goals, interactions, and environment. It is
supported by a set of tools for modeling (graphical
editor), documentation and code generation (for
different agent platforms). The INGENIAS
methodology does not explicitly model social norms,
although they are implicit in the organizational
viewpoint. Organizational dynamics are not considered
i.e., how agents can join or leave the system, how they
can form groups dynamically, what their life-cycle is,
etc [14]. The authors have developed an agent-oriented
software tool called INGENIAS Development Kit
(IDK) [15]. It allows to edit consistent models
(according to INGENIAS specification) and to
generate documented code in different languages such
as JADE [16], Robocode, Servlets or Gracias Agents
[1].

 Multi-agent systems Software Engineering (MaSE) is a
start-to-end methodology that covers from the analysis
to the implementation of a MAS [17]. The main goal of
MaSE is to guide a designer through the software life-
cycle from a documented specification to an
implemented agent system, with no dependency of a
particular MAS architecture, agent architecture,
programming language, or message-passing system.

 AUML (Agent Unified Modeling Language) is an
evolving standard for a design methodology to support
MAS. It is based on the UML methodology used with
object oriented systems. This notation was proposed to
adapt the UML‟s one in order to describe the agent-
oriented modeling [18].

 AUML provides tools for:

Specification protocol of interaction between

agents,

Representation of the internal behaviour of an

agent,

Specification of roles, package interface agent,

mobility, etc [2].

 The Agent Modeling Language (AML) is a semiformal

visual modeling language for specifying, modeling and
documenting systems that incorporate concepts drawn
from multi-agents systems (MAS) theory [19].

 ASPECS (Agent-oriented Software Process for
Engineering Complex Systems) provides a holonic
perspective to design MAS [20]. Considering that
complex systems typically exhibit a hierarchical
configuration, on the contrary to other methodologies,
it uses holons instead of atomic entities. Holons, which
are agents recursively composed by other agents,
permit to design systems with different granularities
until the requested tasks are manageable by individual
entities.

The goal of the proposed meta-model of ASPECS is to
gather the advantages of organizational approaches as
well as of those of the holonic vision in the modeling
of complex system [1].

All these methodologies presented above are still quite
recent. They are mainly focused on the analysis phase, whereas
design and implementation phases are missing or are redirected
to agent-oriented methodologies, which do not offer enough
tools to model organizational concepts. Therefore, there is still
a gap between analysis and design, which must be specified
clearly, correctly and completely [14].

Finally, the maturity of methodologies can be analyzed by
the number of systems that have adopted them. Most of
analyzed methodologies have associated applications that show
their feasibility. These methodologies have been applied in
different fields such as medical informatics [21], manufacturing
[20] [22], and e-commerce [23]. MaSE and INGENIAS are the
most used ones. Unfortunately, the number of real world
applications that use agent-oriented methodologies is still low
[1].

IV. THE MDA APPROACH

The MDA (Model Driven Architecture) proposes a
methodological framework and architecture for systems
development that focuses first on the functionality and
application behavior, without worrying about the technology
with which the application will be implemented. The
implementation of the application goes through the
transformation of business models in specific models to a target
platform (Fig.2). One research was done in this area as the
dissertation of Jarraya T. [24]

Figure 2. The MDA approach

The business process independent of automation,
which comes from the expression of need, is
described as a "CIM" (Computation Independent
Model). The detailed functional analysis, the heart of
the process is concentrated in the "PIM" (Platform
Independent Model), which, as its name suggests, is strictly
independent of the technical architecture and the target
language. The "PSM" (Platform Specific Model) is the
model for engineering design obtained by transformation
of PIM by projection on the target technical architecture. It is
this model that is based on code generation [5].

The benefits to businesses on the MDA are primarily:

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 2, No. 11, 2011

151 | P a g e
www.ijacsa.thesai.org

 The fact that architectures based on MDA are ready
for technological developments.

 The ease of integrating applications and systems
around a shared architecture

 Broader interoperability for not being tied to a
platform.

One of the main tools of MDA, we have AndroMDA who
takes as its input a business model specified in the Unified
Modeling Language (UML) and generates significant portions
of the layers needed to build, for example, a Java application
[25]. AndroMDA's ability to automatically translate high-level
business specifications into production quality code results in
significant time savings when implementing Java applications.
The diagram below maps various application layers to, for
examples, Java technologies supported by AndroMDA [5].

Figure 3. Application layers supported by AndroMDA

 Presentation Layer: AndroMDA currently offers two
technology options to build web based presentation
layers: Struts and JSF. It accepts UML activity
diagrams as input to specify page flows and generates
Web components that conform to the Struts or JSF
frameworks.

 Business Layer: The business layer generated by
AndroMDA consists primarily of services that are
configured using the Spring Framework. These
services are implemented manually in AndroMDA-
generated blank methods, where business logic can be
defined. These generated services can optionally be
front-ended with EJBs, in which case the services
must be deployed in an EJB container (e.g.,JBoss).
Services can also be exposed as Web Services,

providing a platform independent way for clients to
access their functionality. AndroMDA can even
generate business processes and workflows for the
jBPM workflow engine (part of the JBoss product
line).

 Data Access Layer: AndroMDA leverages the
popular object-relational mapping tool
called Hibernate to generate the data access layer for
applications. AndroMDA does this by generating Data
Access Objects (DAOs) for entities defined in the
UML model. These data access objects use the
Hibernate API to convert database records into objects
and vice-versa. AndroMDA also supports Enterprise
Java Beans EJB3/Seam [26] for data access layer (pre-
release).

 Data Stores: Since AndroMDA generated
applications use Hibernate to access the data, you can
use any of the databases supported by Hibernate.

The generation process of AndroMDA is as follows [5] :

Figure 4. Generation process of AndroMDA

 Preparation of the project in MagicDraw

 Preparing use cases

 Preparation of class diagram

 Preparation of state charts

 Code Generation

 Generating the database

 Deploy the application

V. PROPOSED APPROACH

Our approach is based on model driven architecture (MDA)
which aims to establish the link between the existing agent
architectures and models or meta-model multi-agent systems
that we build based on AUML. Our idea is to offer a design
methodology based on agents AUML notation for establishing
a generic class diagram that the designer can use to design his
system [3]. This diagram is considered as a meta-model which

http://struts.apache.org/
https://javaserverfaces.dev.java.net/
http://www.springframework.org/
http://www.jboss.org/jbossas/
http://www.jboss.com/products/jbpm
http://www.hibernate.org/

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 2, No. 11, 2011

152 | P a g e
www.ijacsa.thesai.org

is not generated by any tool and must be defined by the
modeler himself.

Figure 5. An AUML generic class diagram for a MAS

Our approach has a lot of benefits, it allows:

 Reducing costs and development times for new
applications.

 Improving quality of applications.

 Reducing complexity of application development.

 Ability to generate all the necessary components

described.

 Modularity and reusability of the developments.

 Coercion by the MDA model.

 Generating a library of generic models.

A. Description of the AUML generic Class Diagram

 The diagram is conceived in three layers, each one is
represented by a relationship between classes: A first part
which is a relation between agent and its environment, a second
part of specialisation of the agent class, and at the last part, a
specialisation of the cognitive agent class [3].

 1- The first part
 The first part consists of two important classes:

- Environment,

- Agent

 Environment is an important class on the diagram

because it influences all the system. Environment‟s
data is represented by two sections, Attributes and

Perceptions. Attributes can be all the information that
an environment should have, plus the following
common information:

 Deterministic when the next state of the

environment is determined in a unique way

by the current state and action of the agent,

so the environment is deterministic. If the

outcome is uncertain (especially if, as a result

of action of the agent, the environment can

evolve in different ways), we are in the non-

deterministic case.

 Static if the environment cannot change its

state without the intervention of the agent.
The environment is dynamic if its state can

change without the action of the agent in the

time interval between two perceptions of the

agent.

 Continuous if any portion of an environment

state to another requires passing through a

sequence of intermediate states, otherwise

the environment is discrete.
Perception is a section where the designer should
determinate all environment perceptions, example:
number of agents.

Environment contains several functions allowing to
start running, to perceive information from agents
linked to it and to modify its state after each action
from those agents, that is respectively Run(),
Perceive() and ModifState().

 Agent is the main class on the diagram that allows the

designer to express all agent properties. The

constructor of Agents takes three sections: Roles,

Attributes and Perception. Roles are agent

functionalities. Attributes are all information that an

agent should possess. And finally Perception which is

a section where the designer should determinate all

agents‟ perceptions about his environment or the other

agents.

Agent contains several functions who allows starting

running and perceiving information from environment

or agents linked to it and to execute all its actions, that

is respectively Run(), Perceive() and Act().
 The first part consists also of two important association

classes:

-Action, between agent and his environment.

-Interaction, between agents.

 Action is an association class between agent and

environment. It lists all possible actions that an agent

can execute on his environment.

 Interaction is a reflexive association class between

agents. Agent can request information by the

getInformation() function and send it by the inform()

function. Agent may also deal with some constraints

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 2, No. 11, 2011

153 | P a g e
www.ijacsa.thesai.org

that it is possible to inform by the function

informaboutConstraintes(). The acceptance of

partnership is added also to the main functionalities

of Agent by the function acceptPartnerShip().

 2- The second part
 The second part represents a specialisation relation of the

Agent class. It consists of three important classes:

- Reactive agent,

- Cognitive agent,

- Communicative agent.

 Reactive agent is a type of agent. It possesses the

same properties of the Agent class.

 Cognitive agent is another specialization of the Agent

class. In this class, the designer should determinate the

representations of the agent that he must have during

its execution. The class possesses also one important

function “Decide()” where agent can decide to execute

an action or not according to his goals.

 Communicative agent is the last specialization of the

Agent class. Like Cognitive agent class,

Communicative agent class has representations but
possesses a different function called “Communicate()”

where agent must use to communicate his information

to the other agents.

 3- The third part

 The third part represents a specialization relation of the
Cognitive agent class. It consists of three important classes:

- Adaptive agent,

- Intentional agent,

- Rational agent.

 Adaptive agent is a type of cognitive agent. It

possesses the same properties of the Agent class, the

knowledge base and the “Decide()” function. As

mentioned in the types of agent section above, an
adaptive agent is able to change its objectives and its

knowledge base as and when these changes. This

functionality is expressed by the

“Change_information()” function.

 Intentional agent or BDI Agent is designed from the

"Belief-Desire-Intention” model. It is a type of

cognitive agent. In the same case of Adaptive Agent

class, this class possesses the same properties of the

Agent class, the knowledge base and the “Decide()”

function.

In this class, the designer should determinate the
agent‟s beliefs represented by the Beliefs section. The

beliefs of an agent are the information that the agent

has on the environment and other agents that exist in

the same environment. Beliefs may be incorrect,

incomplete or uncertain, and because of that, they are

different from knowledge of the agent, which is

information still true. Beliefs can change over time as

the agent by its ability to perceive or interact with

other agents, collects more information.

The designer should also determinate the agent‟s

intentions represented by the Intentions section. The

intentions of an agent are the actions it has decided to

do to accomplish his goals.

To choose the correct agent‟s beliefs from the

incorrect ones, this class offers the

“Revise_beliefs(Pres, Belief)” function which is based

on the agent‟s knowledge base and his beliefs. Then,
the “Generate_desires(Belief, int)” function comes to

generate all the agent‟s desires that he may be able to

accomplish at once. The desires of an agent

representing all things the agent would like to see

made. An agent may have conflicting desires, in

which case he must choose between her desires a

subset that is consistent. This subset consists of his

desires is identified with the beliefs and the intentions

of the agent.

Another function comes after that, the “Filter(Belief,

Generate_desires, int)” which filters all those elements
above and gives the consistent beliefs, desires and

intentions of the intentional agent.

Finally, the agent can select his actions according to

this filtration and execute them by the

“Actions_selection(Filter)” function.

 Rational agent is the last specialisation of the
Cognitive Agent class. Like Intentional Agent class,
Rational Agent class has the Beliefs and the Intentions
sections but possesses just one function called
“Mesure_performance(Percept, Belief)” where agent
must use to execute his actions as efficient as possible.
This function is based both on his perceptions and his
beliefs.

B. The generic UML Class Diagram

This generic AUML class diagram was subsequently
converted into a generic class diagram based on UML notation.
This transformation will allow the designer to easily use
AndroMDA to generate the source code equivalent to its UML
diagram [1].

The passage from AUML to UML was performed by
following the steps below:

1. Keep the same titles of classes and associations

which constitute the AUML diagram.

2. Assign roles, perceptions, intentions, beliefs and
representations of each agent, and any possible
additional attributes, in the attributes part of the
UML class.

3. Combine all methods or functions in the
operations part of the UML class.

We can obtain, in the end, the following result shown in
Fig. 6:

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 2, No. 11, 2011

154 | P a g e
www.ijacsa.thesai.org

Figure 6. An UML generic class diagram for a MAS

Our approach can present one desadvantage. It is the
complexity of generating a good code source by AndroMDA.
The model developed at the design phase, should be reliable in
order to build the application and realize its implementation
without errors [5].

V. APPLICATION EXAMPLE

A. Description

 Our proposed AUML class diagram was used for design of
one multi-agent system for a Chat Application. This example is
designed as follows [5]:

 Three reactive agents: These agents will be the chatters,
the interest that these are reactive agents relies on the fact

that an agent doesn't react before the declaration of the

name of the receiver by the user of the application.

Therefore an agent will react to get ready to catch the

name and the message and to send it to the appropriate

person. He will react also to clear the sent and the received

message from their area in his interface.

 We can respectively obtain the following AUML and UML
diagrams corresponding to this example, shown in the Figures
7 and 8:

B. Realization

To validate our model for this example, we‟ve tried to

download AndroMDA with all the required dependencies

(including all profiles referenced by models). Then, we

generated our project « ChatAgents » by running « mvn

org.andromda.maven.plugins:andromdaapp-maven

plugin:3.4-SNAPSHOT:generate ». The result of this

command is as follows:

Figure 7. AUML Class diagram for a chat application

Figure 8. UML Class diagram for a chat application

When we examine the various folders and files created by

the andromdapp plug-in, we will notice files called pom.xml in

various folders under ChatAgents. These files make up several

Maven projects. In fact, the ChatAgents directory contains a

hierarchy of Maven projects as shown below [5].

 ChatAgents: This is the master project that controls
the overall build process and common properties.

 mda: The mda project is the most important sub-

project of the application. It houses the ChatAgents

UML model under the src/main/uml directory. The

mda project is also where AndroMDA is configured

to generate the files needed to assemble the
application.

 common: The common sub-project collects resources

and classes that are shared among other sub-projects.

These include value objects and embedded values.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 2, No. 11, 2011

155 | P a g e
www.ijacsa.thesai.org

Figure 9 : ChatAgents project generation

 ChatAgents

 |

 |-- mda

 |

 |-- common

 |

 |-- core

 |

 |-- web

 |

 +-- app

 core: The core sub-project collects resources and

classes that use the Spring framework, optionally

making use of Hibernate and/or EJBs under the hood.

These include entity classes, data access objects,

hibernate mapping files, and services.

 web: The web sub-project collects those resources

and classes that make up the presentation layer.

 app: The app sub-project collects those resources and

classes that are required to build the .ear bundle.

By opening the file “ChatAgents.xml” in MagicDraw, we
will be able to build various graphs of our model to
generate then the source code of the entire
application. Note that AndroMDA can't read MagicDraw 17
models directly. Therefore, you can export it to another file
format: EMF-UML2.

After import of AndroMDA profiles to use for our
application, we designed our class diagram as shown in Fig.10
as follows [5]:

The result of exporting our “ChatAgents” model to EMF-
UML2 format is located in the
folder C:/ChatAgents/mda/src/main/uml in explorer. Below his
content:

 ChatAgents.xml: the MagicDraw 17 model file.

 ChatAgents.uml: ChatAgents model in EMF/UML2

format. It's the file that will be processed by

AndroMDA.

 10 files ending with .profile.uml: the different

profiles used by ChatAgents.uml

Following the definition of our model, the generation
of application code is achieved by executing the command
"mvn install", the result appears as in the figure [5].

Thus, the class “Chat.java” is created and can be
easily accessed and modified by the developer where he has the
ability to implement its operations in the generated code.

We conducted this implementation and got the final result.

VI. CONCLUSION AND FUTURE SCOPE

The purpose of this paper is to demonstrate the feasibility of
our approach to analyze, design and implement multi-agent
systems. With AUML modeling and MDA, we can generate all
the necessary components described by the class meta-model
that we proposed. Which leads us to obtain a generic design
based on SOA more or less reusable components using one of
the most MDA tools used in development is AndroMDA [27].

In the future, we would like to model another application
sample of our model but in a more complex form using
cognitive or adaptive agents and in other platforms like C++,
Web services, etc. It will help us to validate the efficacy of our
proposed approach and lead us to consider it as a generic
approach which can be adopted by every type of information
system and used for any real world application.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 2, No. 11, 2011

156 | P a g e
www.ijacsa.thesai.org

Figure 10 : Class diagram built on MagicDraw 17

Figure 11 : Code generation after definition model

Figure 12. Chat application with three agents

ACKNOWLEDGMENT

I would like to thank to my advisor Ms. M. Addou, Phd. for
his invaluable guidance and many useful suggestions during
my work on this paper. I would also like to express my
gratitude to all those who gave me the possibility to complete
this paper.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 2, No. 11, 2011

157 | P a g e
www.ijacsa.thesai.org

REFERENCES

[1] D. Isern, D.Sanchez, A.Moreno, “Organizational structures supported by
agent-oriented methodologies”, The journal of Systems and Software,

vol. 84, n. 2, Oxford, UK: Elsevier, 2011, pp. 169-184.

[2] S. Maalal, M. Addou, “A Model Design of Multi-Agent Systems”,
Proceedings of the 2nd Edition of the IEEE International Conference on

Multimedia Computing and Systems ICMCS‟11, Ouarzazate Morocco,
p. 674, 2011.

[3] M. Wooldridge, Intelligent Agents, Multi agent systems, In The MIT

Press, “A modern Approach to Distributed Artificial Intelligence”,
(England Massachutts London: MIT Press Cambridge, 1995, p. 27-78)

[4] M. Wooldridge, An Introduction to Multi-Agent Systems, Wiley &

Sons, 2000.

[5] S. Maalal, M. Addou, “A practical application of a method of designing

multi-agent systems based on the AUML language and the MDA
approach”, Proceedings of the Fourth Workshop on Information

Technologies and Communication WOTIC‟11, Casablanca, Morocco,
p.104, 2011.

[6] O. Shehory, A. Sturm, “Evaluation of modeling techniques for agent-

bases systems”, Proceedings of the 5th International Conference on
Autonomous Agents, pp.624-631, 2001.

[7] N. R. Jennings, “On agent-based software engineering”, Artificial

Intelligence, vol. 117, pp. 277-296, 2000.

[8] M. Wooldridge, N. R. Jennings, “Intelligent agent: Theory and practice”,
The Knowledge Engineering Review, Vol. 10, n. 2, pp. 115-152, 1995.

[9] A. M. Florea, D. Kayser, S. Pentiuc, A. El Fallah Segrounichi,
Intelligents agents, Agents Intelligents, Politechnica University of
Bucharest, 2002.

[10] L. Cernuzzi, T. Juan, L.Sterling, F. Zambonelli, “The Gaia methodology:

basic concepts and extensions”, Methodologies and Software
Engeneering for Agent Systems, US: Springer, pp.69-88, 2004.

[11] J. Pavón, , J. Gómez-Sanz., “Agent Oriented Software Engineering with
INGENIAS”, Proceedings of the international Central and Eastern

European conference on Multi-Agent Systems CEEMAS‟03, pp.394-
403, 2003.

[12] R. Fuentes-Fernández, I. García-Magariñio, A.M. Gómez-Rodríguez,

J.C. González-Moreno, “A technique for defining agent-oriented
engineering processes with tool support”, Artificial Intelligence, vol.23,

pp.432-444.

[13] J. Pavón, , J.J. Gómez-Sanz., R. Fuentes, „The INGENIAS methodology
and tools” in Agent-oriented Methodologies, B. Henderson-Sellers and

P. Giorgini Eds. Idea Group, 2005, pp. 236–276.

[14] E. Argente, V. Julian, V. Botti, “Multi-agent system development based
on organizations”, Electronic Notes in Theoretical Computer Science,

vol.150, pp.55-71, 2006.

[15] IDK (INGENIAS Development Kit),
http://sourceforge.net/projects/ingenias/

[16] JADE (Java Agent DEvelopment Framework), http://jade.tilab.com/.

[17] S.A. DeLoach, “The MaSE methodology”, in Methodologies and
Software Engineering for Agent Systems, F. Bergenti, M.P Gleizes, F.

Zambonelli, Eds. The Agent-oriented Software Engineering Handbook.
Kluwer Academic Publishers, 2004, pp. 107–125

[18] S. Lynch, K. Rajendran, “Design Diagrams for Multi-agents Systems”,

Proceedings of the 16th Annual Workshop of the Psychology of

Programming Interest Group PPIG‟04, pp. 66-78, 2004.

[19] R. Cervenka, I. Trencansky, “Agent Modeling Language (AML): A
Comprehensive Approach to Modeling MAS”, Informatica, vol. 29, n. 4,

pp. 391-400, 2005.

[20] M. Cossentino, N. Gaud, V. Hilaire, S.Galland, A. Koukam, „ASPECS:
An Agent-oriented Software Process for Engineering Complex Systems:

How to design agent societies under a holonic perspective”, 2010.

[21] D. Isern, C. Gómez-Alonso, A. Moreno, “Methodological development
of a multi-agent system in the healthcare domain”, Commun, SIWN 3,

pp. 65–68, 2008.

[22] A. Giret, V. Botti, S. Valero, “MAS methodology for HMS”, In the
Second International Conference on Industrial Applications of Holonic

and Multi-Agent Systems HoloMAS, Springer-Verlag, Copenhagen,
Denmark, pp. 39–49, 2005.

[23] J. Ferber, O. Gutknecht, F. Michel, “From agents to organizations: an
organizational view of multi-agent systems”, in Springer-Verlag Berlin

Heidelberg, P. Giorgini, J. Müller, J. Odell, Eds 2003, in the 4th
International Workshop on Agent-oriented Software Engineering IV

(AOSE), Melbourne, Australia, pp. 214–230, 2003.

[24] T. Jarraya, Re-use of interaction protocols and Career-oriented models
for multi-agents development, Réutilisation des protocoles d‟interaction

et Démarche orientée modèles pour le développement multi-agents ,
Ph.D. Thesis, Dept. Computer Engineering, University of Reims

Champagne Ardenne, France, 2006.

[25] N. Bhatia, “Getting Started with AndroMDA for Java”
(www.andromda.org, 2010).

[26] JBoss Seam (http://www.jboss.com/products/seam/).

[27] S. Maalal, M. Addou, “A Model Design of Multi-Agents Systems”, in

the International Conference on Models of Information and
Communication Systems MICS‟10, Rabat, Morocco, 2010, unpublished.

AUTHORS PROFILE

Sara Maalal was born in Rabat the Morocco‟s capital in 1985. She received

his professional master in Computer Engineering and Internet (3I), Option:

Security Networks and Systems, in 2008 from the Faculty of science of

HASSAN II University, Casablanca, Morocco. In 2010 she joined the system

architecture team of the National and High School of Electricity and Mechanic

(ENSEM: Ecole Nationale Supérieure d‟Electricité et de Mécanique),

Casablanca, Morocco.

Her actual main research interests concern Designing and modeling Multi-

Agent Systems.

Ms. Maalal is actually a Software Engineer in a Moroccan multinational

society called Hightech Payment Systems (HPS) which has always proved

itself as a leading payment solutions provider.

Malika Addou received her Ph.D. in Artificial Intelligence from University of

Liege, Liege, Belgium, in 1992. She got her engineer degree in Computer

Systems from the Mohammadia School of Engineers (EMI : Ecole

Mohammadia des ingénieurs), Rabat, Morocco in 1982. She is Professor of

Computer Science at the Hassania School of Public Works (EHTP : Ecole

Hassania des Travaux Publics), Casablanca, since 1982.

Her research focuses on Software Engineering (methods and technologies for

design and development), on Information Systems (Distributed Systems) and

on Artificial Intelligence (especially Multi-Agent Systems technologies).

http://turing.cs.pub.ro/~adina
http://www-galilee.univ-paris13.fr/GALILEE/personnels/kayser.html
mailto:pentiuc@usv.ro

