
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 2, No. 11, 2011

21 | P a g e
www.ijacsa.thesai.org

A Novel Implementation of RISI Controller

Employing Adaptive Clock Gating Technique

M.Kamaraju

Professor & Head, Dept.of ECE

Gudlavalleru Engineering College, Gudlavalleru, INDIA

Praveen V N Desu

M.Tech ES group, Dept of ECE

Gudlavalleru Engineering College, Gudlavalleru, INDIA

Abstract—With the scaling of technology and the need for higher

performance and more functionality power dissipation is

becoming a major issue for controller design. Interrupt based

programming is widely used for interfacing a processor with

peripherals. The proposed architecture implements a mechanism

which combines interrupt controller and RIS (Reduced

Instruction Set) CPU (Central processing unit) on a single die.

RISI Controller takes only one cycle for both interrupt request

generation and acknowledgement. The architecture have a

dynamic control unit which consists of a program flow controller,

interrupt controller and I/O controller. Adaptive clock gating

technique is used to reduce power consumption in the dynamic

control unit. The controller consumes a power of 174µw@1MHz
and is implemented in verilog HDL using Xilinx platform

Keywords- Interrupt; Controller; Clock gating; power.

I. INTRODUCTION

The Interrupt Controller [1-2] is a device commonly found
in computer systems (both single-processor and
multiprocessors) which deals with interrupts generated by the
peripherals and the processors handle the interrupt priorities,
and delegates the execution to a processor.

The general purpose processors provide one or more
interrupt request pins that allows external devices to request
the service provide by CPU. Consider a case in which
processor can handle a large number of interrupts which are
come from external devices. The design requires a separate
interrupt controller which is interfaced to the processor. This
increases the complexity of design. More over the processor
needs some extra- interfacing Circuits which decreases the
performance and increase the power consumption of the
overall system. The proposed architecture combines the
interrupt controller and RIS CPU employs an adaptive clock
gating to reduce the overall power consumption.

Power [18] is the one of the design constraint, which is not
only applied to portable computers and mobile communication
devices but also for high-end systems. Power dissipation
becomes a bottleneck for future technologies.

In the early days designers treat the clock signal should not
be disabled or disturbed. But clock signal is a major source for
power dissipation and it is a dynamic in nature because clock
signal is feed into several blocks in the processor. Because all
the blocks usage varies within and across a processor, all the
blocks not used all the time and gives a chance to reduce the
power consumption of unused blocks. Clock gating is an

efficient technique to reduce the dynamic power dissipation.
By anding the clock signal with gated control signal clock
gating technique disables the clock signal to the block when
the block is unused. Adaptive clock gating technique [4-6] is
one of thetechnique used to reduce the dynamic power of the
clock. In this technique clock gating enable signal generated
by the block itself depending upon the usage and this
technique will reduce the burden on the control unit for
generating clock gating signal.

Interrupt handling mechanism [8] provides how the
interrupt is handled by processor. There are various clock
gating techniques [4][5] to reduce the dynamic clock power
dissipation. The interrupt controller [1][2] takes two cycles
(one cycle for generating the interrupt request and another
cycle for Acknowledgement) to process the interrupt. RISI
Controller takes only one cycle for both interrupt request
generation and acknowledgement. The following section
provides a brief overview of architecture of the RISI
CONTROLLER and explanation about the implementation
and hardware consideration. Along with a brief description
about each block present in the architecture is given. Finally a
few notes on simulation results

II. ARCHITECTURE OF RISI CONTROLLER

The reduced instruction set interrupt controller (RISI
Controller) architecture mainly consists of ALU (Arithmetic
and logical Unit), Port Controller, Interrupt controller and
Register Array and its block diagram is shown in the Fig. 1. It
contains RISCPU, Interrupt controller, Port controller and
Program flow controller. These blocks are connected by
internal buses.

Figure 1. Block diagram of a RISI Controller

The internal architecture of RISI Controller is shown in the

figure2.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 2, No. 11, 2011

22 | P a g e
www.ijacsa.thesai.org

Figure 2.Internal architecture of RISI CONTROLLER

The instruction length of RISI Controller is 16-bit
wide.RISI Controller has three flags namely carry, zero and
interrupt flags. Both zero and carry flags are affected only
during the execution of arithmetic and logical instructions and
these are also useful for determine the flow of execution when
branch and jump instructions take place. CPU checks the
interrupt flag after completion of every instruction to know
whether interrupt is available or not.ALU is capable of
performing the Arithmetic (Like Addition and subtraction) and
Logical operations (like And, Or, Xor and Cmpl). There are no
special purpose registers in the CPU like accumulator and
there is no priority among them.

RISI Controller has multi read port and single write port.
Generally read operations are performing during the positive
edge of the clock and write operation is performing during
negative edge of the clock. Stack is used to store up to four
addresses during interrupt and Branch related instructions.
Port controllers take care of the read and write operation. An
8-bit address value provided on the PORT bus together with a
READ or WRITE strobe signal indicates the accessed port.
The port address is either supplied in the program as an
absolute value or specified indirectly as the contents of any of
the eight registers

There are some specific instructions useful for the
controlling of interrupt controller present in the RISI
CONTROLLER.

III. INTERRUPT CONTROLLER

Modern CPU‟s [15, 16] provide one or more interrupt
request pins that allows external devices to request the service
provide by CPU. Interrupt controller are used to increase the
number of interrupt inputs available to CPU. The block
diagram, of interrupt controller is shown in figure3.

Figure3.Block diagram of Interrupt Controller

Interrupt controller composed with three blocks. They are
Interrupt Register block, Edge interrupt detection unit and
Interruptrequest generation unit. Interrupts are identified by
interrupt detection unit during the negative clock edge of the
clock. Whenever interrupts are detected, check for the
corresponding interrupt input masked or not. Unmasked
interrupt input set the corresponding bit in the interrupt status
register. IRQ generation unit generates the interrupt request by
using the IVR contents. Interrupt request reaches the CPU
send an acknowledgement signal.

Int_inputs are used to monitor the interrupts coming from
various peripherals or external devices. Each interrupt register
has a unique address and identified by using Addr input. To
write the contents of Data input into the interrupt registers
require a high valid_wr input. Intr flag input indicates the
status of interrupt flag present in the CPU.

Interrupt Detection Unit detects the interrupts coming from
peripheral or external devices and actives the logic to generate
enable interrupt to controller. It monitors the interrupt inputs
composed of interrupt signal coming from external devices or
peripherals and rises enabled interrupts according to arrival
signals, Interrupt Request (IRQ) Generation unit contains the
Generation logic of the Interrupts towards the
processor.Interrupt requests generation is also configurable as
either a pulse output for an edge sensitive request or as a level
output that is cleared when the interrupt is acknowledged.
Interrupt Registers handles the interrupt priorities, deciding
which, interrupts are enabled or disabled and managing of
interrupt acknowledgements. It contains the following
Registers

Interrupt Status Register (ISR) indicates which interrupts
are active and the format is shown in the figure 4. All bits in
the ISR are set to zero default. Any bits are set to „1‟ indicates
that the corresponding interrupt is active otherwise no active
interrupts are available

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 2, No. 11, 2011

23 | P a g e
www.ijacsa.thesai.org

Figure 4. Interrupt Status Register

Interrupt Pending Register (IPR) gives the information
about the interrupts that are both active and enabled. By
default all the bits in IPR are set to zero. Any bit set to „1‟
indicates that the corresponding interrupt is waiting for
processing and „0‟ indicate no interrupt isavailable. The IPR is
shown in the figure 5

Figure 5. Interrupt Pending Register

Interrupt Enable register (IER) keeps track which
interrupts are allowed to be handled. Writing a „1‟ to a bit in
this register enable the corresponding interrupt input signal.
Writing a „0‟ to a bit disable or mask the corresponding
interrupt input signal

 Interrupt Acknowledge Register (IAR)is used to disabling
the interrupt request with selected interrupt input. Writing a
„1‟ to a bit location will clear the interrupt request that was
generated by the corresponding interrupt input and Writing „0‟
does nothing. The IAR is shown in the figure 6

Figure 6. Interrupt Acknowledge Register

Interrupt Vector Register (IVR) contains the ordinal value
of the highest priority, enabled, active interrupt input. INT0
(always the LSB)is the highest priority interrupt inputand each
successive input to the left has a correspondingly lower
interrupt priority. If no interrupt inputs are active then the IVR
will contain all ones. The Interrupt Vector Register (IVR) is
shown in the figure 7.

Figure 7.Interrupt Vector Register

Master Enable Register (MER) is used to enabling the
interrupt requests to the processor. Writing a „1‟ to ME bit
enables the IRQ output signal and „0‟ to ME bit disable the
IRQ output signal in other words masking all the interrupt
inputs. The Master Enable Register (MER) is shown in the
figure 8.

Figure 8.Master Enable Register

The following are the important features of Interrupt
controller present in the RISIController. They are i) Priority
between interrupt requests is determined by vector position.
The least Significant Bit (LSB, bit 0) has the highest priority.
ii) Interrupt enable register for selectively disabling or
enabling of individual interrupt inputs. iii) Master enables
register for disabling interrupt request. iv) Easily cascaded
to provide additional interrupt inputs. v) Low power and less
area

IV. IMPLEMENTATION

The RISI CONTROLLER is implemented using Xilinx
platform on Virtex4 FPGA Family in VerilogHDL. The
flowchart for the Interrupt controller is shown in the figure 9.
Application specific instructions [13] were designed for
controlling the interrupt controller along with general purpose
instruction set.

 By using Application specific instructions [13] processor
can perform several operations on interrupt controller. The
operations like masking or unmasking of interrupts disable
interrupt request for the execution of important instructions.
Interrupt controller uses fixed priority algorithm for generating
the interrupt request.

The flow chart for the interrupt controller is shown in the
figure 9 and is explained below. Various peripherals or an
external device wants the services provided by CPU. They
generate an interrupts to interrupt controller. Interrupt coming
from various external devices are identified by edge interrupt
detection unit during the negative half cycle of the clock. Edge
detection unit in the interrupt controller check whether the
interrupts are masked or not. This information is present in the
IER register.

Figure 9. Flow chart for interrupt controller

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 2, No. 11, 2011

24 | P a g e
www.ijacsa.thesai.org

Enable interrupts are obtained by anding the
Interrupt_inputs with the contents of IER register. This
information is stored in the ISR register.

The MER must be programmed based on the intended use
of the Interrupt Controller.There are two bits in the MER: the
Hardware Interrupt Enable (HIE) and the Master IRQ Enable
(ME). The ME bit must be set to enable the interrupt request
output.Check whether the Msb bit (ME) in MER register is set
or not. If ME bit in the MER register is not set the interrupt
requests are not generated. Check the status of the interrupt
flag. If the flag bit is set Interrupt request is generated and wait
for acknowledgement which is coming from the processor.
Next interrupt request is generated only when the
acknowledgement is received otherwise; wait until the
acknowledgement is received.

By the execution of the following code the RISI Controller
disables the interrupt request and enables it again after some
time. The simulation results regarding the execution of the
program1 are shown in the results section

Program 1

MID 00 ----- Disables the interrupt Request

MOV R4, 5F ----- Load the immediate data5F into register R4

MOV R5, 5F ----- Load the immediate data 5F into register R5

ADD R4, R5 -----Add the contents of R5with R4 and result is

 Stored in R4

MIE 80 ----- Enables the interruptrequest

RISIController is capable to handle 8 interrupt inputs at a

time. Interrupt controller uses positive clock cycle for interrupt
request generation whereas negative clock cycle used for
receiving an interrupt Acknowledgement which is coming
from CPU.

V. RESULTS

All the modules of RISI CONTROLLER are simulated and
verified using the Xilinx tools. The simulation result of
Interrupt controller shown in figure 10. When the reset is high
all the register present in the interrupt controller are loaded
with default values. Interrupts are identified during the
negative edge of the clock signal. The content of IER indicates
whether the interrupts are mask or unmask. En_int is obtained
by anding the content of IER with Int_inputs.

 Each register present in the interrupt controller have a
unique address. Registers are identified by using addr input.
The content ofEn_int is also stored in the ISR. Interrupt
request is generated only if both the ME and Intr flag arehigh.
Priority between the interrupts is generated by using the fixed
priority scheme. The contents of Clr_isr are set at the time of

interrupt request generation.

Top level timing diagram between interrupt controller and
RISCPU is shown in figure 11. Whenever the CPU receives
interrupt request, wait for the completion of current instruction
and store the address of next instruction in the stack. Load the
contents of program counter with address FF and send an

 acknowledgement to the Interrupt Controller by activating the
addrin and valid_wr output.

Figure 10.Top level timing diagram of Interrupt Controller

Status of intr flag is changed from high to low when the
interrupt request is received. CPU does not receive any
interrupt even though Int_inputs are active because Me output
is low indicate that interrupt request is disabled. The status of
Meoutput is high then only the CPU receives the interrupt
request and it is shown in the figure 11.

Figure 11: Top level timing Diagram between the Interrupt controller and RIS

CPU

The top level module with input and out signals of the
RISI Controller and Interrupt Controller is shown in figures
12, 13 and the RTL schematic of the Interrupt Controller is
shown in the figure 14.

Figure 12. Signals of RISI CONTROLLER

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 2, No. 11, 2011

25 | P a g e
www.ijacsa.thesai.org

 Figure 13. Signals of Interrupt Controller(IC)

The RTL schematic of the Interrupt Controller of RISI
Controller is shown in figure 14. The Interrupt controller
consists of a Register block, edge interrupt detection unit and
IRQ generation unit. Interconnection between the blocks and
the input output signals of the Interrupt Controller module are
also shown in the figure 14.

Figure 14.RTL Schematic of Interrupt controller of RISI Controller

Figures 15 and 16 represents the layout of the RISI
Controller and Interrupt controller implemented onto the
Vertex4 FPGA family. In the Fig. 15 and 16 the colored area
represents the components of the RISI CONTROLLER that
are placed on the FPGA and the place and routed diagrams of
the Interrupt Controller are shown in figures 17 and 18
respectively

Figure 15. RISI Controller Layout on FPGA

Placement involves deciding where to place all electronic
components, circuitry, and logic elements in limited amount of
space. This is followed by routing, which decides the exact
design of all the wires needed to connect the placed
components.

Figure 16.Interrupt controller(IC) layout on FPGA

This must implement all the desired connections by
following the rules and limitations .The complete placed and
routed diagram of the RISI Controller is shown in figure 17.

Figure 17.Place and Route diagram of RISI CONTROLLER

The place and route diagram of theInterrupt controllerof
RISI Controller is shown in figure 18.

Figure 18. Place and Route diagram of Interrupt Controller(IC)

In the Table I the comparison of different parameters
related to the area of RISI Controller and Mpcore were
specified. The graph clearly shows that the number of slices
and LUTs utilized by the RISI Controller less than that of the
Mpcore. The graph also indicates in othersense that the area
occupied by RISI Controller on the FPGA is less.

TABLE I.COMPARISON OF DEVICE UTILIZATION PARAMETERS OF MPCORE AND

RISI CONTROLLER

Parameter Mpcore RISI
CONTROLLER

Number of slice
Registers

349 318

Slices containing
related logic

496 467

Gate count 7360 7162

http://en.wikipedia.org/wiki/Electronic_components
http://en.wikipedia.org/wiki/Electronic_components
http://en.wikipedia.org/wiki/Circuitry
http://en.wikipedia.org/wiki/Logic

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 2, No. 11, 2011

26 | P a g e
www.ijacsa.thesai.org

The comparison of different parameters related to RISI
Controller signal delays were shown in the figure 19. The Net
Skew for clock is the difference between the minimum and
maximum routing only delays for the clock.

Figure 19.Comparison of delay parameters for Mpcore and RISI Controller

Power is one of the main constrain in the design of
controller. Clock signal [4] contribute major power
consumption source. To reduce the clock power
dissipationclock gating techniques are employed. The power
consumption of the RISI CONTROLLER was described in the
figures 20 and 21. The figures also give us a comparative view
of the power consumption of the Mpcore and RISI
CONTROLLER cores.

In the figure 21 the deviation of the curves indicate that the
operating voltage increases the power consumption of the
Mpcore increases more rapidly when compared with designed
controller power. Similarly figure 20 describes the variation of
power with respect to frequency for the Mpcore and RISI
CONTROLLER.

Figure 20. Power consumption of RISI CONTROLLER at 1.2v

Figure 21.Plot b/w Voltage and Power of Mpcore and RISI Controller

at 1 GHz

The Power-delay product is simply the product of the
power consumption and the time delay. The smaller value of
the power-delay product, performance of the design is better.
Since this RISI CONTROLLER has almost negligible power-
delay product value, it indeed has a better performance in
terms of the speed and power dissipation.

TABLE II.COMPARISON OF MPCORE AND RISI CONTROLLER

Table II shows the comparison of different parameters
related to the Mpcore and RISI CONTROLLER; it has better
performance than the Mpcore.

VI. CONCLUSION

As the amount of data transferred between the main
processing unit and peripheral devices increases, the frequency
of interrupts from peripheral devices also increases. The RISI
controller designed integrates a RISCPU and Interrupt
controller onto the single chip. The advantage of the designed
chip is, it can handle an interrupt fast and effectively. It
occupies less area and consumes less power. More over an
integrated CPU in the design performs the necessary
operations related to interrupt controller apart from the regular
operation. The scope for increasing the number of interrupts
up to databus width isprovided in the design and also extended
to multiprocessor.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 2, No. 11, 2011

27 | P a g e
www.ijacsa.thesai.org

REFERENCES

[1] A. Tumeo, M. Branca, L. Camerini, M. Monchiero,G. Palermo,F.
Ferrandi and D. Sciuto, “An Interrupt Controller for FPGA-based

Multiprocessors”, International Conference on Embedded Computer
Systems: Architures, Modeling and Simulation, July 2007,pp. 82-87.

[2] Wei Chipni, Li Ahao lin, Zheng Qingwei,Ye Jianfei, and Li Shenglong,

“Design of a configurable multichannel interrupt controller”,Second

Pacific-Asia Conference on Circuits,Communications and System, vol.
1,Aug 2010, pp. 327–330.

[3] Pizhou Ye,and Chaodong Ling, “A RISC CPU IP core”,Second

International Conference on Anti-counterfeiting,Security and
Identificatiom ,August(2008), pp. 356–359,2008.

[4] H. Jacobson,P. Bose, Zhigang Hu,A. Buyuktosunoglu, V.Zyuban,R.

Eickemeyer,L. Eisen,J. Griswell,D. Logan,Balaram Sinharoy, and J.
Tendler,“ Strenching the limits of clock-gating efficiency in server-class

processors”,Eleventh International Symposium on High-performance
Computer Architecture,Feburary (2005), pp . 238- 242,2005.

[5] Xiaotao Chang, Mingming Zhang, Ge Zhang, Zhimni Zhang and Jim
Wang,“Adaptive Clock Gating Technique for Low Power IP Core in

SoC Design”,IEEE International Symposium on Circuits And
Systems,May(2007),pp. 2120 – 2123, 2007..

[6] S. Ghosh, D. Mohapatra, G. Karakonstantis and K. Roy,“ Voltage

Scalable High-speed Robust Hybrid Artihmetic Units Using Adative
Clocking”IEEE Transactions on Very Large Scale Integration

Systems,September(2010),Vol. 18, pp.1301- 1309,2010.

[7] Hai Li, S. Bhunia,Y. Chen,T.N. Vijaykumar and K.Roy,“ Deterministic
clock gating for microprocessor power reduction”, Ninth International

Sympossium on High-Performance Computer Architecture, February
(2003), pp. 113 – 122, 2003.

[8] E. Ozer, S.W. Sathaye, K.N. Menezes, S. Banerjia, M.D. Jenningsand

T.m. Conte,“ A fast interrupt handling scheme for VLIW
processors”,International Conference on Parallel Architecures and

Compilation Techniques,October(1998),pp. 136 -141 ,1998.

[9] G. Kane and J. Heinrich,“ MIPS RISC Architecture: reference for the
R2000,R3000,R6000 and the new R4000 Instruction set computer

Architecture”, Prentice-Hall,Englewood Cliffs,NJ,1992.

[10] Krall. A, “ An extended Prolog instruction set for RISC processors” in

VLSI for Artifical Intelligence and Neural Networks,J.G. Delgado-Frias
and W.R. Moore, Eds-Plenum Press, New York,pp. 101-108,1991.

[11] Motorola Inc.“M6800 8/16/32- Bit MICROPROCESSOR”,avilable
athttp://www.freescale.com/files/32bit/doc/ref_manual/MC68000UM.pd

f

[12] J. Rose,A.E. Gamaland A. Sangiovanni and A. Vincentelli,“
Architecture of Field-Programmable Gate Arrays”, Proc. IEEE,Vol81,no

7,July,pp. 1013-1020,1993.

[13] J. Vanprate, Gossens .G, D. Lanner, and H. De man,“ Instruction set
definition and insstruction set selection”,in Proc. Of seventh

International Symposium on High-Level Synthesis,pp. 11- 16,1994.

[14] ARM11 Mpcore available athttp://www.arm.com.

[15] IBM. Multiprocessor Interrupt Controller Data Book,March,2006.

[16] Xilinx OPB Interrupt Controller (v1.00c),January 2005.

[17] A. De Gloria,Paolo Faraboschi and Mauro Olivieri,“ A Self

TimedInterrupt Controller: ACase study in Asynchronous
Micro_Architecture Design ” Seventh Annual IEEE International ASIC

Conference and Exhibit ,pp. 296 – 299,1994.

[18] G. Palumbo,F. Pappalardo,and S. Sannella “ Evaluation on power
reduction applying gated clok approes”,IEEE International Symposium

on Circuita and Systems,Vol.4,pp.IV-85-IV-88,2002.

[19] Nakasimha .K,S. Kusakabe,H. Taniguchi,and M. Amamiya “ Design and
implementaion of Interrupt packaging mechanisum”,International

Workshop on Innovative Architecture for Future Generation High-
performance processors and systems”, pp. 95-102,2002

[20] J.E. Smith, and A.R. Pleszkun,“ Implementing Precise Interrupts in

Pipelined Processors” IEEE Trans. On Comp.,Vol.37,pp. 291-299,1975.

[21] Horelick Dale “ simple Versatile Camac Crate Controller and Interrupt
Priority Encoding Module ”, IEEE Transaction on Nuclear Science,Vol.

22,pp. 517- 520,1975.

[22] Qiurong Wang “ An Interrupt Management Scheme Based on
Application in Embedded system”,Multimedia and Informetion

Technology,pp. 449-452,2008.

[23] Kamaraju.M, Lal Kishore.K, Tilak.A.V.N “A Novel Implementation of

Application Specific Instruction-set Processor (ASIP) using Verilog
“ WASET Issue 59, NOV 2011.

http://www.freescale.com/files/32bit/doc/ref_manual/MC68000UM.pdf
http://www.freescale.com/files/32bit/doc/ref_manual/MC68000UM.pdf
http://www.arm.com/
http://www.waset.org/journals/waset/v59/v59-75.pdf
http://www.waset.org/journals/waset/v59/v59-75.pdf

