
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 2, No. 11, 2011

52 | P a g e
www.ijacsa.thesai.org

Modularity Index Metrics for Java-Based Open

Source Software Projects

Andi Wahju Rahardjo Emanuel

Informatics Bachelor Program,

Faculty of Information Technology,

Maranatha Christian University,
Bandung, Indonesia

Retantyo Wardoyo, Jazi Eko Istiyanto,

Khabib Mustofa

Dept. of Computer Science and Electronics,

Universitas Gadjah Mada,

Yogyakarta, Indonesia

Abstract — Open Source Software (OSS) Projects are gaining

popularity these days, and they become alternatives in building

software system. Despite many failures in these projects, there

are some success stories with one of the identified success factors

is modularity. This paper presents the first quantitative software

metrics to measure modularity level of Java-based OSS Projects

called Modularity Index. This software metrics is formulated by

analyzing modularity traits such as size, complexity, cohesion,

and coupling of 59 Java-based OSS Projects from sourceforge.net

using SONAR tool. These OSS Projects are selected since they

have been downloaded more than 100K times and believed to

have the required modularity trait to be successful. The software

metrics related to modularity in class, package and system level

of these projects are extracted and analyzed. The similarities

found are then analyzed to determine the class quality, package

quality, and then combined with system architecture measure to

formulate the Modularity Index. The case study of measuring

Modularity Index during the evolution of JFreeChart project has

shown that this software metrics is able to identify strengths and
potential problems of the project.

Keywords-Open source software projects; modularity; Java;

sourceforge; software metrics; system architecture.

I. INTRODUCTION

Open Source Software (OSS) Projects are gaining
popularity these days. They were once only considered as an
experimental way of academics and researchers to share the
programming experiences, now they become the mainstream
software development methodology comparable to those of
commercial and proprietary software projects. This movement
was initially started by Richard Stallman [33] and Eric
Raymond [31]. Some success stories of OSS Projects include
Linux Operating System, Apache Web Server, Mozilla Web
Browser, LibreOffice, etc. The success of these projects is
attributed to many key success factors such as the fact that the
developer is the actual user [10], and sound and modular
architecture [20][17][11], the existence of communities that
support the system development [9], etc. From all these success
factors, modularity of the software system is one of the
important factors to be examined further in this paper.

Even though there are some proofs of the success of OSS
Projects, some facts that many more similar projects are
unsuccessful or failed also unavoidable exist [16]. There are
some characteristics of OSS Projects that have been identified

contributing to such unfruitful result such as no formal means
i.e. no project planning [4], poor coding styles of project
initiators [13] and poor architectural design [12]. We believe
that some new approaches with respect to modularity to
counter such problems in OSS Projects are needed. Until now,
modularity has been identified as a key success factor of OSS
projects, but how to apply modularity, especially from early
phase of the project is not yet understood.

This paper presents the formulation of Modularity Index
which is the first quantitative software metrics to measure the
modularity level in OSS Projects.

This paper is organized as follows: section 2 describes the
recent studies in OSS Projects, modularity in OSS Projects and
Software Metrics. Section 3 describes the data source of OSS
Projects for analysis. Section 4 shows the step by step
Modularity Index formulation starts from class level, package
level, and system level. The case study of 33 out of 52
versions of JFreeChart projects is shown in section 5. Finally,
section 6 describes the conclusion of the paper and future
studies of the research.

II. RECENT STUDIES

A. OSS Projects

Many web portals have been developed as an incubator for
OSS Project's developers to develop and host their projects.
These portals are equipped with many development tools and
statistics to assist the project initiator or administrator in
improving their projects and other interested contributors to
join the projects. Some of the popular portals are
Sourceforge.net, freshmeat.net, launchpad.net, and Google
Code.

The OSS Projects themselves have several distinct
characteristics not found in commercial / proprietary software
development [10][26], which are:

 The source code of the application is freely available
for everybody to download, improve and modify [31].

 People who contribute to the development of the OSS
projects are usually forming a group called
communities. The recruitment process if this groups
are completely voluntary [9]. This communities is an
example of true merit-based system of hierarchy [11]

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 2, No. 11, 2011

53 | P a g e
www.ijacsa.thesai.org

 The development methods of the projects are lacking of
formal methodology found in commercially developed
software applications [4]. The two most important
activities are fixing bugs and adding features [3].

There are already many studies relating to OSS Projects
that are classified into three main categories. The first category
is the study of large and successful OSS Projects to find their
success characteristics such as Debian [32], FreeBSD [12],
Apache [27], Open BSD [22], and many more. The second
category is the study to find similarities in several OSS Projects
such as Apache dan Mozilla [26], 15 OSS Projects [35], and 2
OSS Projects [6]. The last category is the study on the process
aspects in OSS Projects such as Requirement Engineering [30],
code fault [22], Design Pattern [18], reliability model [37],
phase of development [34], and work practice in OSS projects
[10].

Current studies about OSS Projects mostly focus on the
already successful and large projects that have already
established hierarchy and system, while most of the failed and
unsuccessful OSS Projects are usually small or medium sized
projects [16]. The application of these hierarchy and system in
already established projects into small to medium sized projects
may not be suitable. In our initial research, we have conducted
analysis on more than 130K OSS Projects to find their success
factors [15].

B. Modularity in OSS Projects

Modularization involves breaking up of an software system
into smaller, more independent elements known as module
[23]. Booch has defined modularity as the property of a system
whose modules are cohesive and loosely-coupled [24]. Fenton
stated that modularity is the internal quality attribute of the
software system [24]. It is also known that modularity is
directly related to software architecture, since modularity is
separation of a software system in independent and
collaborative modules that can be organized in software
architecture [29]. Modular software has several advantages
such as maintainability, manageability, and comprehensibility
[28]. Moreover, modularity has been identified as one of the
key success factors in OSS Projects [20][17][11].

There are five attributes closely related to modularity in
software system which are coupling / dependency, complexity,
cohesion, and information hiding [21][7]. To have an ideal
modular software system, the system should have the following
attributes:

 Small size in each module (package) and many
modules in the system [36]: each module / package
should only responsible for simple feature, and the
more complex features should be composed of many of
these simple features. The possible software metrics to
measure size are NCLOC (non-commenting lines of
code), Lines, or Statements.

 Low coupling / dependency [5]: minimization or
standardization of coupling / dependency e.g. through
standard format i.e. published APIs [2], elimination of
semantic dependencies, etc.

 Low complexity: hierarchy of modules that prefers
flatter than taller dependency [28][2].

 High cohesion [21]: high integrity of the internal
structure of software modules which is usually stated as
either high cohesion or low cohesion.

 Open for extension and close to modification [5]:
capability of the existing module to be extended to
create a more complex module. And avoid changing
already debugged code. The creation of new modules
should be encourage using available extension and not
modifying the already tested module.

Even though modularity is already identified as the key
success factor in OSS Projects, the justification for it in large
and succesful OSS Projects is purely qualitative. The software
metrics attributing to the modularity properties are all separated
and not yet integrated into a single measure. This paper will
present a single measure called Modularity Index that
quantitatively determines the modularity level of OSS Projects.

C. Software Metrics

Software metrics are defined as certain values which are
expressed in some units attributed to software application [25].
The software metrics are useful in indicate the current state of
the software and enable to compare and predict the current
achievement of software applications [25]. There are several
known software metrics based on its categories [25]:

 Size-related software metrics: NCLOC, Memory
footprint, Number of classes / headers, Number of
methods, Number of attributes, Size of compiled code,
etc.

 Quality-related software metrics: Cyclomatic
complexity, Number of states, Number of bugs in
LOC, Coupling metrics, Inheritance metrics, etc.

 Process-related software metrics: failed builds, defect
per hour, requirement changes, programming time,
number of patches after release, etc.

There are currently more than 200 metrics with many
different purposes [25], and one of the study by the authors are
the statistical analysis of software metrics affecting modularity
in OSS Projects [14].

III. DATA SOURCE OF OSS PROJECTS

The data source of the OSS Projects for the experiment is
from the sourceforge.net portal since it is the largest OSS
Portal.

A. Assumptions and Considerations

There are several consideration and assumption in selecting
which OSS Projects to be analyzed, which are:

 The OSS projects are build using Java programming
language, and a single package in the project resembles
a “module” in modular software system. The addition
of package in the software is intended as the addition of
new feature in the system.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 2, No. 11, 2011

54 | P a g e
www.ijacsa.thesai.org

 The project's size is limited to small-to-medium-sized
OSS Projects. The limitation of the size (NCLOC) of
OSS Projects being evaluated are 170K. The concept of
modularity is a lot easier to comprehend in object-
oriented programming language (i.e. C++, Java, etc.)
compared to procedural programming (i.e. C, Fortran,
etc.), since the concept of module, coupling, cohesion,
etc. are more straightforward. Java-based OSS Projects
are selected since they are among the mostly popular
object oriented programming for developing Open
Source Software [16].

 The Projects should already be downloaded more than
100,000 times. This high number of downloads may
indicate the “success” of the projects, which in turn
may imply modularity traits that already identified as
the success factor of OSS Project [20][17][11].

 The source code of the OSS Project is syntax error-free
and compile-able. The SONAR tool requires that the
source code should be compiled first using compile
tool such as maven, or ant. Many of the OSS Projects
provides separate binary and source code and it is
difficult to create binary directly from the source code
due to several reasons such as compile error, build tool
configuration error, syntax error, etc.

B. Selected OSS Projects

Table 1. shows the list of OSS Projects as a subject for this
research. The initial OSS Projects to be evaluated are 209
projects, but only 59 which are suitable to be evaluated using
SONAR due to the assumptions and considerations stated in
section III.A. There are total 1885 modules / packages being
measured from these 59 OSS Projects.

TABLE I. LIST OF 59 SELECTED OSS PROJECTS

No Project Name No Project Name

1 FreeMind 31 Jin client for chess servers

2 jEdit 32 SAX: Simple API for XML

3 TV-Browser - A free EPG 33 jKiwi

4 JFreeChart 34 Data Crow

5 JasperReports - Java Reporting 35 Wicket

6
OpenProj - Project

Management
36 Cewolf - Chart TagLib Project

7 HyperSQL Database Engine 37 DrawSWF

8 yura.net 38
c3p0:JDBC DataSources

 / Resource Pools

9 JabRef 39 JavaGroups

10 FreeCol 40
OmegaT - multiplatform CAT

tool

11
jTDS - SQL Server and Sybase

JDBC driver
41 FreeGuide TV Guide

12 Torrent Episode Downloader 42 Eteria IRC Client

13 FindBugs 43 MeD's Movie Manager

14 PMD 44 subsonic

15 JGraph Diagram Component 45 kXML

No Project Name No Project Name

16 ANts P2P 46 Jaxe

17 Paros 47 The JUMP Pilot Project

18
ProGuard Java Optimizer and

Obfuscator
48

Aglet Software Development

Kit

19 TripleA 49 Antenna

20 JSch 50 CBViewer

21 Jajuk 51 Sunflow Rendering System

22 FreeTTS 52 Thingamablog

23
A Java library for

reading/writing Excel
53 BORG Calendar

24 checkstyle 54
Directory Synchronize Pro

(DirSync Pro)

25 httpunit 55 Java Treeview

26 JMSN 56 Java Network Browser

27 PDFBox 57 Red Piranha

28 JBidwatcher 58 Cobertura

29 JTidy 59 Jake2

30 Jena - -

C. Steps

In order to be able to analyze these OSS Projects, there are
some steps being performed, which are:

 Compile the source code using available build tool
(Ant or Maven2).

 Execute maven2 script to start analyze the OSS
Projects using SONAR tool.

 Creating custom portal to perform the required
analysis.

 Analyze and find the correlation and similarities of all
the projects such as using scatter graph, least square fit,
histogram, etc.

IV. MODULARITY INDEX FORMULATION

The formulation of modularity index will start from the
class level, then move up to the package level, and finally
concluded in the system level.

A. Class Level Modularity

There are four software metrics that determine the level of
modularity in class level, which are:

 Size Metrics which consists of: NCLOC, Lines, and
Statements. NCLOC is the number of non-commenting
lines of code. The selection of NCLOC will also
represent the other size metrics [14].

 Cohesion: LCOM4 or Lack of Cohesion Method
version 4, this version is better for object oriented
programming such as Java as proposed by Hitz and
Montazeri [19] which is the improvement of LCOM1
Chidamber and Kemerer [8].

 Complexity: McCabe's Cyclomatic Complexity [22] is
one example of complexity metrics that widely used.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 2, No. 11, 2011

55 | P a g e
www.ijacsa.thesai.org

Our previous paper have shown that the size metrics
and complexity metrics are highly related so this
metrics may be ignored [14].

 Functions: the number of functions / methods in the
class. This may indicates the complexity

1) NCLOC: Figure 1 shows the histogram of the class vs.

NCLOC of the all OSS Projects being evaluated. The value of

NCLOC peaked at 50 with the histogram before the peak

resembles linear straight line and after the peak resembles

inverse polynomial line. The value of approximation of both

lines are shown in the Fig.1.

Figure 1. Histogram of Classes vs. NCLOC

If LOCQ is defined as the normalized value of the quality of
NCLOC, so the formula of LOCQ are:

 LOCQ = 0.0125 x NCLOC + 0.375 for NCLOC ≤ 50

 LOCQ = (NCLOC – 50) -2.046 for NCLOC > 50

Where:

LOCQ = NCLOC Quality Value

NCLOC = NCLOC Value

Note: the value of constant in formula (1) is adjusted from
0.371 into 0.375 to achieve the maximum value of 1 at NCLOC
= 50.

2) Number of Functions: Figure 2 shows the histogram of

classes vs. functions of all OSS Projects being evaluated. The

peak value is 4.83 (rounded up into 5). Similar to class vs.

NCLOC, the values before the peak resembles a straight line

and after the peak resembles an inverse polynomial line with

the approximation of both lines shown in the Fig.2.

FQ is defined as the normalized value of function's quality,
it can be formulated as follows:

 FQ = 0.172 x F + 0.171 for F ≤ 5

 FQ = (F – 4.83) -2.739 for F > 5

Figure 2. Histogram of Classes vs. Functions

Where:

FQ = Function Quality Value

F = Number of Function

3) Cohesion: Cohesion is determined by the value of

LCOM4. The ideal value is 1 which means that the class is

highly cohesive. Higher value of LCOM4 indicates the degree

of needed separation of classes into smaller classes.

 LCOM4 ≥

Where:

LCOM4 = Class Cohesion Value

4) Class Quality Formulation: Integrating all above

measures into a single normalized value, the formulation of

class quality or CQ are:

Where:

CQ = Class Quality Value

LOCQ = NCLOC Quality Value

FQ = Function Quality Value

LCOM4 = Class Cohesion Value

B. Package Level Modularity

Package Quality or PQ is the quality of individual package.
Since in a single package there are many classes and there is no
similarities found the the optimal number of classes in each
package, so the Package Quality is determined by the average
Class Quality or stated as:

 PQ = avg(CQ)

Where:

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 2, No. 11, 2011

56 | P a g e
www.ijacsa.thesai.org

PQ = Package Quality Value

CQ = Class Quality Value

C. System Level Modularity

SA is a normalized value (with maximum value of 1) which
determine the value of software architecture. The factors that
influence this value are Package Cohesion (relationship among
classes within package) and Package Coupling (relationship
among classes from different packages). The principle used
here is “Maximize Cohesion and Minimize Coupling” which
becomes a widely known principle in building a good software
system. The form of formulation is based on presentation titled
“Software Architecture Metrics” by Ammar et. al [1], with the
difference is that instead of using entropy approaches, this
formulation is using the actual value of dependencies in
determining the value of Package Cohesion and Package
Coupling.

Where:

 Cii = Package Cohesion

 Cij = Package Cohesion + Package Coupling

 (if i=j is Package Cohesion,

 if i ≠ j is Package Coupling)

 d = number of package

D. Formulation of Modularity Index

Finally, the formulation of Modularity Index is the product
of SA and the sum of all package quality in the software system
as stated in the following formula:

Where:

 MI = Modularity Index

 SA = Software Architecture Value

 PQi = Package Quality of Package i

The proposed modularity index is a quality metrics will
have the following properties:

 It has no upper bound: the value of modularity index
increases as the number of module / package increases.

 The value of modularity index, especially the value of
SA depends on how the packages are coupled to each
other. The limitation of connection of packages to only
itself (package cohesion) or to only some dedicated

packaged (e.g APIs, proxy, etc.) will improve the value
of SA.

V. CASE STUDY: JFREECHART

JFreeChart is a free 100% Java chart library that makes it
easy for developers to display professional quality charts in
their applications (http://www.jfree.org/jfreechart) . This
projects is one of the 59 OSS Projects used for modularity
index formulation. For this case study, this project is chosen
because:

 High SA value (more than 0.7 since version 0.9.21)

 Relatively large number of packages (more than 30)

There are 52 versions available from the project's site, but
only 33 are able to be analyzed using SONAR tool and being
measured. The results are show in the following Fig.3.

Figure 3. Average PQ in 33 versions of JFreeChart

Fig. 3 above shows that the average package quality of the
JFreeChart over 33 versions are decreasing consistently. This
indicates the problem in the quality of each classes in each
packages, such as:

 increasing size of NCLOC in each class.

 increasing number of functions in class.

 decreasing number of LCOM4 (Cohesion Metrics) in
class.

Figure 4. SA value in 33 versions of JFreeChart

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 2, No. 11, 2011

57 | P a g e
www.ijacsa.thesai.org

Fig. 4 above shows that the structure of software
architecture is improving. After consistent decrease in SA
value in early versions of the system, there seems to be
significant effort conducted before the release of version 1.0.0
started from version 0.9.21. The system from version 0.9.21
onward showing high number of SA.

The modularity index itself is shown in Fig. 5. The figure
is showing improvement by the factor of two from early
versions (until version 0.9.20) and late versions (version 1.0.5
onwards). There are significant jump in the value of
modularity index from version 0.9.21 until version 1.0.2
indicating the period of major restructuring of the system
before the release of milestone version 1.0.0.

Figure 5. Modularity Index in 33 versions of JFreeChart

It can be seen from above case study that Modularity Index
and its components (PQ and SA) are able to point the strength
and potential problems in the development of JFreeChart OSS
Projects. This information may give a valuable insight to the
initiator and developers of the project in improving their
project.

VI. CONCLUSION

Open Source Software (OSS) Projects are now gaining
popularity and becoming one alternatives in developing
software. Despite the the many success story of OSS Projects
such as Apache, Mozilla, etc., the fact the many more of these
projects that are failed needs are alarming. Some studies have
identified that modularity is one of the key success factors of
OSS Projects and authors believe that implementing modularity
approach since early start of the project will increase the
success of the project. This paper presents the first quantitative
measure of modularity for Java-based OSS Projects called
modularity index.

The formulation of modularity index are performed by
analyzing the software metrics attributing to modularity of 59
Java-based OSS Projects from sourceforge.net which have
been downloaded more than 100K times. By analyzing the
similarity of these projects from class level, package level, and
system level, the modularity index are formulated. As the
validation of the software metrics, 33 out of 52 versions of
JFreeChart OSS projects are analyzed using this metrics and
the metrics are able to identify the strength and potential
problems of the project.

Future study relating to this metrics involve further
validation and integration into a framework called modularity
framework in which the measurement of Modularity
Frameworks will generate recommendations for improvement
during OSS project’s development. The integration of the
software metrics into a web-based IDE will provide useful tool
for project initiators and developers in improving their OSS
Projects.

ACKNOWLEDGMENT

The authors would like to thank Maranatha Christian
University (http://www.maranatha.edu) that provides funding
for the research, and the Department of Computer Science and
Electronics, Universitas Gadjah Mada (http://mkom.ugm.ac.id)
that provides technical support for the research.

REFERENCES

[1] Ammar H., Shereshevsky M., Mili A., Rabie W., Radetsky N. (2008),
“Software architecture metrics”, Seminar Presentation, Faculty of

Information Science & Engineering, Management & Science University,
Shah Alam, Malaysia, May 12, 2008. Available:

http://www.docstoc.com/docs/6802629/Software-Architecture-Metrics

[2] Aruna M., M.P. Suguna Devi M.P, Deepa M. (2008), “Measuring the

quality of software modularization using coupling-based structural
metrics for an OSS system”, Proceeding of the First International

Conference on Emerging Trends in Engineering and Technology 2008

[3] Asundi J. (2007), “The need for effort estimation model for open source
software projects”, Proceeding of the Open Source Application

Workspace: Fifth Workshop on Open Source Sofware Engineering 2007

[4] Bouktif S., Antoniol G., Merlo E. (2006), “A feedback based quality
assessment to support open source software evolution: the GRASS case

study”, 22nd IEEE International Conference on Software Maintenance
2006, pp 155 - 165

[5] Cai Y., Huynh S. (2007), “An evolution model for software modularity

assessment”, Proceeding of the Fifth International Workshop on
Software Qualty 2007 (WoSQ'07).

[6] Capiluppi A., Ramil J.F. (2004), “Studying the evolution of open source

systems at different levels of granularity: two case studies”, Proceeding
on the 7

th
 IEEE International Workshop of Principles of Software

Evolution, 2004, pp 113 - 118.

[7] Capra E., Francalanci C., Merlo F. (2008), “An empirical study on the
relationship among software design quality, development effort, and

governance in open source projects”, IEEE Transactions on Software
Engineering Vol. 34, No. 6, Nov/Dec 2008, pp 765 – 782.

[8] Chidamber S.R., Kemerer C.F. (1994), “Metrics suite for object
oriented design”, IEEE Transaction on Software Engineering, Vol. 20

No. 6 June 1994, pp 476 – 493.

[9] Christley S., Madey G. (2007), “Analysis of activity in the open source
software development community”, Proceeding of the 40th IEEE

Annual Hawaii International Conference on System Sciences, 2007, pp
166b.

[10] Crowston K., Wei K., Li Q., Howison J. (2006), “Core and periphery in

free / libre and open source software team communications”, Proceeding
of the 39th IEEE Hawaii International Conference on System Sciences

2006

[11] DeKoenigsberg G. (2008), “How successful open source projects work,
and how and why to introduce students to the open source world”, 21st

IEEE Conference on Software Engineering Education and Training,
2008, pp 274 – 276.

[12] Dinh-Trong T., Bieman J.M. (2004), “Open source software

development: a case study of FreeBSD”, Proceedings of the 10th IEEE
International Symposium on Software Metrics, 2004, pp 96 - 105.

[13] Ellis H.J.C., Morelli R.A. , Lanerolle T.R., Damon J., Raye J. (2007),

“Can humanitarian open-source software development draw new sudents
to CS?”, Proceeding of the 38th SIGCSE Technical Symposium on

Computer Science Education 2007, pp 551 – 555.

http://www.docstoc.com/docs/6802629/Software-Architecture-Metrics
http://www.docstoc.com/docs/6802629/Software-Architecture-Metrics

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 2, No. 11, 2011

58 | P a g e
www.ijacsa.thesai.org

[14] Emanuel A.W.R, Wardoyo R., Istiyanto J.E., Mustofa K. (2011),

“Statistical analysis on software metrics affecting modularity in open
source software”, International Journal of Computer Science and

Information Technology (IJCSIT), Vol. 3, No. 3, June 2011, pp 105 -
118

[15] Emanuel A.W.R, Wardoyo R., Istiyanto J.E., Mustofa K. (2010),
“Success rules of OSS projects using datamining 3-itemset association

rule”, International Journal of Computer Science Issue (IJCSI), Vol. 7
Issue 6 Nov. 2010, pp 71 – 80.

[16] Emanuel A.W.R, Wardoyo R., Istiyanto J.E., Mustofa K. (2010),

“Success factors of OSS projects from sourceforge using datamining
association rule”, Proceeding of 2010 International Conference on

Distributed Frameworks for Multimedia Applications (DFmA) 2010, pp
141 - 148

[17] Gurbani V.K., Garvert A., Herbsleb J.D. (2005), “A case study of open

source tools and practices in commercial setting”, Proceeding of the fifth
Workshop on Open Source Software Engineering 2005, pp 1 - 6.

[18] Hahsler M. (2005), “A quantitative study of the adoption of design

patterns by open source software developers”, Chapter V of Free / Open
Source Software Development by Stefan Koch, Idea Group Publishing,

ISBN 1-59140-371-5, 2005, pp 103 – 123.

[19] Hitz M., Montazeri B. (1995), “Measuring coupling and cohesion in
object-oriented systems”, Proceeding International Symposium on

Applied Corporate Computing, Oct. 25-27 1995, Monterrey, Mexico,
75-76, 197, 78-84

[20] Lawrie T., Gacek C. (2002), “Issues of dependability in open source

software development”, Software Engineering Notes vol 27 no 3 of
ACM Sigsoft. May 2002. Pp 34 -37

[21] Lee Y., Yang Y., Chang K.H. (2007), “Metrics & evolution in open
source software”, Proceeding on Seventh International Conference on

Quality Software – 2007

[22] Li P.L., Herbsleb J., Shaw M. (2005), “ Finding predictors of field
defects for open source software systems in commonly available data

sources: a case study of OpenBSD”, Proceeding of 11th IEEE
International Software Metrics Symposium, 2005, 32.

[23] McCabe T. (1976), “A complexity measure”, IEEE Transactions On

Software Engineering, Vol. Se-2, No. 4, December 1976, pp. 308-320.

[24] Melton H., Tempero E. (2007), “Toward assessing modularity”,
Proceeding of the First International Workshop on Assessment of

Contemporary Modularization Techniques 2007 (ACoM'07)

[25] Meyer B., Oriol M., & Schoeller B. (2009), "Software engineering:
lecture 17-18: estimation techniques and software metrics”, Chair of

Software Engineering Website, available:
http://se.inf.ethz.ch/teaching/2008-S/se-0204/slides/15-Estimation-and-

metrics-1-6x.pdf , accessed: 18 January 2009

[26] Mockus A., Fielding R.T., Herbsleb J.(2002), “Two case studies of open
source software development: apache and mozilla”, ACM Transaction

on Software Engineering and Methodology Vol. II No. 3, Juli 2002, 309
– 346

[27] Mockus A, Fielding R.T, Herbsleb J.(2000), “A case study of open
source software development: the apache server”, ACM ICSE, 2000,

263 – 272

[28] Munelly J., Fritsch S., Clarke S. (2007). “An aspect-oriented approach to
the modularisation of context”. Proceedings of the Fifth Annual IEEE

International Conference on Pervasive Computing and Communication
(PerCom'07)

[29] Nakagawa E.Y, de Sousa E.P.M., de Britto Murata K. (2008), “Software

architecture relevance in open source software evolution: a case study”,
Annual IEEE International Computer Software and Application

Conference, 2008, pp 1234 – 1239.

[30] Paech B, Reuschenbach B (2006), “Open source requirements

engineering”, Proceeding of 14th IEEE International Requirement
Engineering Conference: 257 - 262

[31] Raymond E.S. (2000), “The cathedral and the bazaar”, version 3,
Thyrsus Enterprises (http://www.tuxedo.org/~esr/), 2000.

[32] Spaeth S., Stuermer M. (2007), “Sampling in open source development:

the case for using the debian GNU/linux dstribution”, Proceedings of the
40th IEEE Hawaii International Conference on System Sciences, 2007,

pp 166a.

[33] Stallman R. (1992), “Why software should be free”, GNU Websites, 24
April 1992, Available:

http://www.gnu.org/philosophy/shouldbefree.html

[34] Stewart K. J., Darcy D.P., Daniel S.L. (2005), “Observations on patterns
of development in open source software projects”, Proceeding on the

fifth Workshop on Open Source Software Engineering 2005, pp 1 – 5.

[35] von Krogh G., Spaeth S., Haefliger S. (2005), “Knowledge reuse in open
source software: an exploratory study of 15 open source projects”,

Proceeding of 38th Hawaii International Conference on System
Sciences, 2005, pp. 198b

[36] Wang Y., Shao J. (2003), “Measurement of the cognitive functional

complexity of software”, Proceedings of the Second IEEE International
Conference on Cognitive Informatics 2003 (ICCI'03).

[37] Zhou F., Davis J. (2008), “A model of bug dynamics for open source
software”, The Second IEEE International Conference on Secure

System Integration and Reliability Improvement 2008, pp 185 - 186.

AUTHORS PROFILE

Andi Wahju Rahardjo Emanuel is a Full Time

Lecturer at the Bachelor Informatics Program, Faculty
of Information Technology, Maranatha Christian

University in Bandung, Indonesia. He is graduated as
BSEE in Purdue University, Indiana, USA in 1996 and

MSSE in The University of Melbourne in 2001. He is
currently taking his Doctoral Program at the

Department of Computer Science and Electronics,
Gadjah Mada University in Yogyakarta, Indonesia

Retantyo Wardoyo is an Associate Professor at the

Department of Computer Science and Electronics,
Universitas Gadjah Mada in Yogyakarta, Indonesia.

He is graduated as Bachelor of Mathematics in Gadjah
Mada University, Indonesia . He received his M.Sc in

Computer Science in University of Manchester, UK
and received his PhD in Computation in University of

Manchester Institute of Science and Technology, UK.

Jazi Eko Istiyanto is a Professor and Head of the

Department of Computer Science and Electronics,
Universitas Gadjah Mada in Yogyakarta, Indonesia.

He is graduated as Bachelor of Physics in Gadjah
Mada University, Indonesia. He gets his Postgraduate

Diploma (Computer Programming and
Microprocessor), M.Sc (Computer Science) and PhD

(Electronic System Engineering) at University of
Essex, UK.

Khabib Mustofa is an Assistant Professor at the

Department of Computer Science and Electronics,
Universitas Gadjah Mada in Yogyakarta, Indonesia.

He is graduated as Bachelor of Computer and Master
of Computer at Gadjah Mada University, Indonesia.

He receives his Dr. Tech in Computer Science at The
Vienna University of Technology, Austria.

http://www.gnu.org/philosophy/shouldbefree.html

