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Abstract— The problems degree-limited graph of nodes 

considering the weight of the vertex or weight of the edges, with 

the aim to find the optimal weighted graph in terms of certain 

restrictions on the degree of the vertices in the subgraph. This 

class of combinatorial problems was extensively studied because 

of the implementation and application in network design, 

connection of networks and routing algorithms. It is likely that 

solution of MDBCS problem will find its place and application in 

these areas. The paper is given an ILP model to solve the 

problem MDBCS, as well as the genetic algorithm, which 

calculates a good enough solution for the input graph with a 

greater number of nodes. An important feature of the heuristic 

algorithms is that can approximate, but still good enough to solve 

the problems of exponential complexity. However, it should solve 

the problem heuristic algorithms may not lead to a satisfactory 

solution, and that for some of the problems, heuristic algorithms 

give relatively poor results. This is particularly true of problems 

for which no exact polynomial algorithm complexity. Also, 

heuristic algorithms are not the same, because some parts of 

heuristic algorithms differ depending on the situation and 

problems in which they are used. These parts are usually the 

objective function (transformation), and their definition 

significantly affects the efficiency of the algorithm. 

By mode of action, genetic algorithms are among the methods 

directed random search space solutions are looking for a global 
optimum. 

Keywords- graph theory; NP-complete problems; the degree-

bounded graphs; Integer linear programming; genetic algorithms. 

I.  INTRODUCTION 

General problems of degree-constraind graphs, consider the 
nodes of weight or weight on the vertices, where the goal is to 
find the optimal weighted graph, with set limits for levels of 
subgraph nodes. This class of combinatorial problems has been 
extensively studied for use in designing networks. If the input 
graph is bipartite, ie, if the set of its nodes can be broken down 
into two nonempty disjoint subsets so that each vertices has 
one end in each of the two subsets, then these problems are 
equivalent to the classical transportation problem in terms of 
operational research. The reason for this extensive study and 
research issues listed above, lies in their wide application in the 
areas of networks and routing algorithms.  

In  the Theory of complexity, NP (nondeterministic 
polynomial time) is a set of decision problems that can be 

solved by nondeterministic Turing machine. The importance of 
this class of decision problems is that it contains many 
interesting problems of search and optimization, where we 
want to determine whether there is some solution to the 
problem, but whether this is the optimal solution. Therefore, 
the challenge with NP problem is to find the answer in an 
efficient manner, as an effective way to verify the response, ie. 
solution already exists. Since many important problems in this 
class, intensive efforts were invested to find in polynomial time 
algorithms for solving problems in class NP. However, a large 
number of NP problems has resisted these efforts, and 
apparently, they require time polynomial is not even close! Are 
these problems really are not solvable in polynomial time is 
one of the biggest open questions in computer science. 

The easiest way to prove that an problem a NP-complete 
problem is to first prove that the NP and then to an already 
known NP-complete problem down to him. It is therefore 
useful to know the various NP-complete problems. 

The problems of class NP-complete are classified into the 
following groups: 

1)  Covering and Partitioning  

2) Subgraphs and Supergraphs  

3) Vertex Ordering  

4) Iso- and Other Morphisms  

5) Miscellaneous 

From the group Subgraph and supergrafs distinguishes the 
following NP-problems: 

1) MAXIMUM INDEPENDENT SET  

2) MAXIMUM INDEPENDENT SEQUENCE  

3) MAXIMUM INDUCED SUBGRAPH WITH 

PROPERTY P  

4) MINIMUM VERTEX DELETION TO OBTAIN 

SUBGRAPH WITH PROPERTY P  

5) MINIMUM EDGE DELETION TO OBTAIN 

SUBGRAPH WITH PROPERTY P  

6) MAXIMUM INDUCED CONNECTED SUBGRAPH 

WITH PROPERTY P  

7) MINIMUM VERTEX DELETION TO OBTAIN 

CONNECTED SUBGRAPH WITH PROPERTY P  
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8) MAXIMUM DEGREE-BOUNDED CONNECTED 

SUBGRAPH  

9) MAXIMUM PLANAR SUBGRAPH  

10) MINIMUM EDGE DELETION K-PARTITION  

11) MAXIMUM K-COLORABLE SUBGRAPH  

12) MAXIMUM SUBFOREST  

13) MAXIMUM EDGE SUBGRAPH  

14) MINIMUM EDGE K-SPANNER  

15) MAXIMUM K-COLORABLE INDUCED SUBGRAPH  

16) MINIMUM EQUIVALENT DIGRAPH  

17) MINIMUM INTERVAL GRAPH COMPLETION  

18) MINIMUM CHORDAL GRAPH COMPLETION 
The problem MDBCS is stated as follows: 

INPUT:  a graph          , the function of weight on the 
vertices (or weighting function) w:E→  , and an integer 
     . 

SOLUTION: a subset of      such that the subgraph 
          is connected and that there is no node with degree 
exceeding   . 

MEASUREMENTS: Total weight of found subgraph, ie. 
∑           

Considering an undirected graph          , where   is 
the set of vertices, and   is a set of nodes, and let        
            . Let           is connected (but not 
necessarily) a graph with a weighting function:         
For simplicity, we can only say that the graph    -weighted 
graph. For an arbitrary subset     , with   denotes subgraph 
of   induced by   , and       denote the sum of weight on the 
vertices of   , ie,       ∑         . 

Let           is an undirected graph, let       an 
integer, and let       weighting function. The problem 
limits the maximum degree of connected subgraph (MDBCS) 
consists in finding a subgraph           , where      
and      , so that the subgraph    is connected, and  
∑           has a maximum value. 

The constants in the ILP model are:   - denote arrays of 
sets, and values of functions   in them. 

Variables for the ILP model are: 

   {
      

       , 

   {
      

       , 

where    , and    is a spanning tree for the subgraph   , 

   {
      

       . 

ILP formulation of the model for finding the maximum 
degree of a connected subgraph constraints is given below, part 
of the paper [4]. 

Determine 

   ∑                             (1) 
with conditions: 

∑                ,          (2) 

                                      (3) 

∑       ∑                  (4) 

      
                     (5) 

                                 (6) 

∑                                           

    (7) 

Graph   is not oriented. In the ILP model, the formula (5), 
indicates the starting node    of the vertice  , while in formula 
(6),     indicates an incoming (final) node of the vertice  . 

The objective function, given by (1), maximizes the sum of 
the total weight. 

Condition (2) ensures that the subgraph    each node has 
the most   vertices leading from the   . 

The condition given by (3), ensures that the subgraph    is 
a superset of     and if    as a spanning tree is connected, it 
follows that the subgraph    also connected. 

Conditions (4), (5) and (6), provided that the candidate for 
the spanning tree    has as many nodes in the subgraph    a 
vertices, minus 1. Finally, condition (7) guarantees that the 
candidate for the spanning tree    has no cycle. Therefore, the 
conditions (4), (5), (6) and (7) together ensure that    is 
the spanning tree for the subgraph   . 

The following theorem proves the correctness of the above 
ILP model. 

Theorem 1. [4] The MDBCS problem can be solved if and 
only if the following conditions (2) - (7) holds or their 
equivalent set of conditions. 

II. METAHEURISTIC GENETIC ALGORITHM FOR SOLVING 

THE MDBCS PROBLEM 

Genetic algorithms (GA) are a family of algorithms, which 
use some of the genetic principles that are present in nature, in 
order to solve certain computational problems. These natural 
principles are: inheritance, crossover, mutation, survival of the 
best custom (survival of the fittest), migration and so on. These 
algorithms can be used for solving various classes of problems 
because they are fairly general nature. In this case, they are 
used in the optimization problem - finding the optimal 
parameters of a system ([5]).  

In a narrow sense, the notion of a genetic algorithm applies 
only to the model introduced by John Holland in his book 
„Adaption in natural and artificial systems“, 1975. ([10]). 
Holland is considered the creator of this metaheuristic and 
basic settings of his earliest works are valid even today. In a 
broader sense, genetic algorithm is any algorithm that is based 
on a population and operators of selection, crossover and 
mutation, which are used to obtain new points in the search 
space. 

Genetic algorithm is applied to the final set of individuals 
called the population. Each individual in the population is 
represented by a series of characters (genetic code) and 
corresponds to a solution in search space. Coding can be binary 



(IJACSA) International Journal of Advanced Computer Science and Applications,  
Vol. 2, No. 12, 2011 

163 | P a g e  
www.ijacsa.thesai.org 

or a transliteration of higher cardinality. Encoding solutions is 
an important step of genetic algorithm because, inadequate 
choice of code can lead to poor results regardless of the rest of 
the structure of the algorithm. 

The diversity of genetic material is provided by generating 
the initial population randomly. It can be used and some 
heuristics to generate initial population, or part thereof, of 
course, if the heuristics perform relatively quickly and 
significantly if not reduce the diversity of genetic material. 

Individuals assigned to each function adaptation (fitness 
function) that evaluates the quality of given individuals, as well 
as individual solutions in the search space. The task of genetic 
algorithms is to provide a constant, from generation to 
generation, improving the adaptability of the absolute 
population. This is realized by applying successive genetic 
operators selection, crossover and mutation, thus gaining a 
better solution given a particular problem. 

Mechanism of selection favoring above average fitted 
individuals and their above-average custom parts (genes), 
which receive a higher chance of their own reproduction in the 
formation of a new generation. In this way, less fitted 
individuals and genes get less chances to play, and gradually 
dying out. Contribution to diversity of genetic material from 
your operator crosses that controls recombination genes of 
individuals. As a result of the crossing structure is obtained, 
although non-deterministic, the exchange of genetic material 
between individuals, with the possibility that well-adjusted 
individuals generate better individuals. The mechanism of 
crossing operators and relatively less fitted individuals, with 
some well-adapted genes, gets his chance to recombination of 
good genes produce well-adjusted individuals. However, using 
multiple selection and crossbreeding can result in loss of 
genetic material, ie, some regions of space results become 
available. The operator performs a random mutation of a 
particular gene, given the small probability     , which can 
restore the lost genetic material in the population. This is the 
basic mechanism for preventing premature convergence of 
genetic algorithm to a local extreme,      (see [3]). 

Operators are applied until a stopping criterion is met, for 
example. reached the maximum number of generations, the 
same quality of solutions in a number of generations, finding 
the optimal solution, the best individual was repeated a 
maximum number of times, limited the time of executing the 
genetic algorithm, the termination by the user and so on. 

As the most important aspects of a genetic algorithm, there 
are coding and fitness function, which is very important to be 
well adapted to the nature of a particular problem. It has been 
said that the usual binary encoding or over a large alphabet 
cardinality. The most convenient is that the relationship 
between the genetic codes and solutions to the problem is 
bijectiv mapping. Then it is possible that the application of 
genetic operators in a certain age to get called incorrect 
specimen, ie. individuals whose genetic code does not 
correspond to any solution. Overcoming this problem is 
possible in several ways. One possibility is to assign any such 
individuals as the fitness function value is zero, so that the 
operator applying for selection to eliminate these individuals. 
This approach has proven to be suitable only if the ratio of the 

number of incorrect and correct individuals in the population is 
too large, which in practice often not the case. It is possible, 
however, incorrect inclusion of individuals in the population by 
the individuals assigned to each incorrect value penalty 
function. The aim is unfair to individuals and get a chance to 
participate in the crossing, but to be discriminated against on 
the correct individual. Care should be taken on how to balance 
the value of penalty function, because too small values can lead 
to a genetic algorithm that some of the incorrect code for a 
declaration of the solution, while, on the other hand, excessive 
punishment can cause loss of useful information from the 
incorrect individuals. There is another way to solve this 
problem - which is to improve specimen be unfair to make 
them correct or incorrect that each individual is replaced 
correctly. 

Calculating the fitness function is possible in several ways. 
Some of these methods are direct download, linear scaling, 
interval scaling, sigma truncation, etc.. 

Since the selection is directly related to the fitness function, 
the basic way to implement this genetic operator is the simple 
roulette selection. This method uses a distribution where the 
probability of selection proportional to its adaptation to the 
individual. Individuals involved with the chances of roulette in 
accordance with them, pass or not pass the process of creating 
a new generation. The lack of a simple roulette selection is the 
possibility of premature convergence due to the gradual 
prevalence of highly adapted individuals in the population that 
do not correspond to the global optimum. 

To avoid this problem can be used ranking selection based 
on genetic codes, according to their adaptability. Fitness 
function is equal to the individual a range of pre-specified 
number of ranks, and only depend on the position of 
individuals in the population. It can be used linearly, as well as 
other forms of ranking. 

Another form of selection is the tournament selection. 
When tournament selection is randomly generated subsets of 
the   individuals (  is the pre-set number), then in each 
subset, the principle of the tournament, selects the best 
individual that participates in the creation of a new generation. 
Usually the problem is the choice of   so as to reduce the 
adverse effects of stochastic, so that better and more diverse 
genetic material passed to the next generation. In cases where 
the size is perfect tournament is not an integer, has proved 
successful fine-graded tournament selection (FGTS). A 
detailed description of these and other types of selection and its 
theoretical aspects can be found in [6]. Application of fine-
graded tournament selection and comparison with other 
practices in the selection of operators are given in [7], [8], [9]. 

The process of exchange of genetic material between 
individuals of the parents, in order to form new offspring 
individuals, is performed by the crossover operator. The most 
common operators are one-point crossover, two-point 
crossover, multi-point and a uniform crossover, and can also be 
used for crossover mixing, reduced surrogate crossover, 
crossover with the mother, intermediate crossover, as well as 
the linear intersection. 
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Intersection operator, which is implemented in a simple 
genetic algorithm, the one-point crossover. In one-point 
crossover, so determined crossing position. All genes from the 
predetermined position, change position so that each parental 
pair created two offspring. In two-point crossover two 
positions are set and is the exchange of genetic material 
between the parents and two positions. 

As for the uniform crossover, it should be noted that for 
each parental pair determines a binary string of length the same 
as the genetic parents. This range is called the mask. Sharing 
genes is performed only on those positions where the mask is 
0, while in positions where there is one, the parents retain their 
genes. 

Mutation operator is considered one of the most important 
and as such it can decisively influence the operation of genetic 
algorithm. If a genetic algorithm using binary encoding and the 
population of individuals not incorrect, it is usually 
implemented by a simple mutation operator that runs through 
the individual genes and the genetic code for each check 
whether or not mutated. The probability of mutation is pre-set 
     small size, usually taken from the interval [0.001,0.01]. 
Simple mutation is sometimes possible to apply over a binary 
number - the mask, which is randomly generated for each 
individual, and carries information about the position in which 
the genetic code results in a change of genes. 

When the gene encoding algorithm used whole or real 
numbers (floating point), it was necessary to develop other 
concepts of mutation, which was done. These are the 
replacement of genes randomly selected number (random 
replacement), add or subtract a small value (creep), multiply 
the number close to one (geometric creep) and so on. For both 
creep mutation operator required values are random and can 
have a uniform, exponential, Gaussian or binomial distribution 
(see [1], [2]). 

In some cases it is useful to genes, depending on the 
position in the genetic code, have different levels of mutation. 
In this regard it is particularly important concept of frozen 
gene. Namely, if in a position of the genetic code in all or most 
of the population, the same gene, it is useful that the gene 
mutation has a higher level than the rest of the genetic code. 
This concept is used to restore lost diversity of genetic 
material, and these genes are called frozen. 

Will the application of genetic algorithms have a success 
depends largely on the choice of replacement policy 
generation. Some of the most important policy of the 
replacement generation: generational genetic algorithm, genetic 
algorithm stationary and elitist strategy. Of course, it is 
possible to combine these principles. 

Where the generational genetic algorithm, then apply to all 
individuals all the genetic operators, ie. there are no privileged 
individuals are going into the next generation, or individuals 
who go directly to the selection process. 

On the contrary, stationary genetic algorithm favors the 
best individuals in the population so as to them shall not apply 
operator selection, but they go directly to the next stage, while 
the other applies the selection of individuals and they come to 
the remaining places. 

Elitist strategy provides a direct passage into the next 
generation of one of the best individuals. These individuals do 
not apply to operators of selection, crossover and mutation. By 
applying genetic operators to the individuals of the population 
remaining seats are filled by the next generation. 

This approach leaves room for another possible 
improvement of the genetic algorithm, which is caching. As an 
elite individuals pass from generation to generation unchanged, 
it and its value remains unchanged. Therefore, it would be 
useful to individuals elitinih value is remembered, rather than 
constantly calculated, saving the time required for their 
computation. This process is called caching, and more detail is 
in [12] and [11]. 

Namely, the calculated value of the objective function of 
individuals are stored in so-called. Hess-row table, which uses 
CRC codes that are assigned to individuals in population. If, 
during operation of the genetic algorithm, obtained through the 
same genetic code, then the objective function value is taken 
from a hash-table, through the CRC code. 

Input for the algorithm for slving the MDBCS problem is 
undirected graph          , weight function (weighting 
function)       and integer      . Each vertices of the 
graph encode the zero (0), if the condition (2) does not satisfy, 
and one (1), otherwise (we use that is, a binary encoding of 
individuals). If we find the node that has more than   vertices, 
then vertices of the node does not count, that is. set value 0. 

In order to get connected components (or component 
connection), we apply a search in width. If the graph is only 
one component connection, then this is the end, that is, the 
graph is connected and calculate the sum of all vertices of the 
weight of the component. But if more than one connected 
components, then we take them in order, first and second, 
second and third, and so on, and look for the largest vertice of 
the weight (or cycle if it exists) that connects the two 
components. Then take all the vertices of the shortest path from 
the original graph, and the count only those with a degree    . 
The process continues until they connect all components of 
relationship. Finally, we add all of this and get  ∑         . 

Genetic operators, which are used here, are fine-graded 
tournament selection, a one-point crossover, a simple 
mutations with the frozen gene and caching techniques. 
Genetic algorithm is coded in the programming language C. 

For checking the results of the implemented genetic 
algorithm based on mathematical models (1) - (7), we used the 
software package CPLEX. Genetic algorithm is tested on the 
test-examples reached the same values as the CPLEX program, 
and that the execution time was short in both cases, data on 
execution times not are presented. 

As there are no standard instances of MDBCS problem, and 
the instance for KCT problem ( -cardinality tree problem), 
containing the nodes and weights that are appropriate for the 
considered problem, the necessary adjustments in accordance 
with the input of a genetic algorithm, are used in testing of the 
genetic algorithm for graphs with a large number of vertices 
and nodes. 
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Stopping criterion of the algorithm is the maximum number 
of generations 5000 or up to 2000 generations without 
improving the objective function value. 

III. TEST EXAMPLES 

Here are a few tables where the columns of labels, 
respectively, represent: 

 instance name that contains the dimension of the 

input graph, an Instance name; 

 cardinality of the set of nodes,  ; 

 cardinality of the set of vertices,  ; 

 integer        ; 

 best solution obtained by genetic algorithm, 

      ; 

 average time   (in seconds) to calculate the best 
value; 

     total time (in seconds) to complete a genetic 
algorithm; 

 total number of generation, gen; 

 average value of using caching, cache. 
The Tables 1 - 5 shows the results obtained by testing the 

genetic algorithm for instances with a large number of vertices 
and nodes, for different values of    

IV. CONCLUSION 

The problem of finding the maximum degree of limitation 
associated subgraph is very interesting, and then proposed a 
genetic algorithm can be the basis for further research and 
improvement. In addition, this class of combinatorial problems 
has been studied extensively and due to the application in the 
design of networks of networks and routing algorithms.  

Some of the directions of further enlargement and 
improvement of the results could be: 

1) the development of exact methods based on integer 

programming; 

2) modification of metaheuristic described - genetic 

algorithm for solving similar problems on graphs; 

3) obtaining new results from graph theory developed 

using the implementation. 
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Instance name n m d                     gen cache [%] 

Proba10-13 10 13 2 60 0.0001 0.50 2003 97.94716 

Proba10-13 10 13 3 71 0.0001 0.53 2004 98.11958 

Proba10-13 10 13 4 74 0.0001 0.48 2005 98.19920 

Proba10-13 10 13 5 75 0.0001 0.50 2004 98.18934 

Proba10-13          10          13          6          75          0.0001           0.48           2004           98.19934 
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TABLE 2. 

 

TABLE 3.

Instance name n m d                     gen cache [%] 

w40-40 40 40 2 576 0.02 0.53 2042 75.21076 

w40-40 40 40 3 768 0.09 0.64 2298 80.43894 

w40-40 40 40 4 906 0.01 0.55 2040 82.20656 

w40-40 40 40 5 1013 0.05 0.59 2114 82.38545 

w40-40 40 40 6 1069 0.01 0.55 2048 82.72843 

w40-40 40 40 7 1111 0.01 053 2037 85.22745 

w40-40 40 40 8 1120 0.0001 0.52 2026 85.13061 

w40-40 40 40 9 1120 0.0001 0.52 2026 85.13061 

h44-44 44 44 2 85 0.08 0.67 2032 57.63736 

h44-44 44 44 3 203 0.02 0.53 2050 79.11934 

h44-44 44 44 4 292 0.05 0.56 2137 77.93271 

h44-44 44 44 5 343 0.03 0.50 2112 81.25106 

h44-44 44 44 6 371 0.01 0.55 2042 83.19511 

h44-44 44 44 7 377 0.01 0.53 2038 85.13866 

h44-44 44 44 8 377 0.01 0.53 2038 85.13866 

w65-65 65 65 2 283 0.25 1.11 2456 43.06466 

w65-65 65 65 3 787 0.42 1.22 3004 52.15896 

w65-65 65 65 4 1200 0.47 1.28 3101 55.82088 

w65-65 65 65 5 1488 0.05 0.75 2093 68.62977 

w65-65 65 65 6 1644 0.34 1.03 2913 71.04870 

w65-65 65 65 7 1744 0.03 0.72 2060 72.59913 

w65-65 65 65 8 1792 0.03 0.70 2058 76.46288 

w65-65 65 65 9 1801 0.05 0.72 2077 75.60385 

w65-65 65 65 10 1801 0.05 0.72 2077 75.60385 

Instance name n m d                     gen cache [%] 

h118-118 118 118 2 127 0.01 1.33 2007 33.67463 

h118-118 118 118 3 601 0.69 2.00 2999 39.21786 

h118-118 118 118 5 1235 2.59 3.34 5000 44.09634 

h118-118 118 118 6 1663 3.06 3.19 5000 49.11733 

h118-118 118 118 7 1958 0.41 1.48 2648 59.18974 

h118-118 118 118 8 2058 0.11 1.17 2143 61.19571 

h118-118 118 118 9 2091 0.09 1.17 2117 61.18774 

h118-118 118 118 10 2091 0.09 1.17 2117 61.18774 

w130-130 130 130 2 295 0.02 1.38 2017 34.75842 

w130-130 130 130 3 1030 1.30 2.70 3788 34.68636 

w130-130 130 130 4 1657 0.31 1.75 2406 36.35866 

w130-130 130 130 5 2084 0.88 2.28 3195 39.45466 

w130-130 130 130 6 2323 0.64 2.08 2877 38.50201 

w130-130 130 130 7 2481 0.13 1.50 2152 42.08631 

w130-130 130 130 8 2582 0.36 1.67 2488 46.23685 

w130-130 130 130 9 2591 0.11 1.41 2117 46.92453 

w130-130 130 130 10 2591 0.11 1.41 2117 46.92453 

h183-183 183 183 2 169 0.01 1.83 2019 32.26805 

h183-183 183 183 3 1000 2.47 4.36 4525 32.48498 

h183-183 183 183 4 2056 2.20 4.16 4167 35.62782 

h183-183 183 183 5 3007 2.77 4.66 4780 40.11583 

h183-183 183 183 6 3776 0.83 2.48 2892 50.47738 

h183-183 183 183 7 4147 2.09 3.75 4392 51.32014 

h183-183 183 183 8 4343 1.59 3.23 3829 51.77192 

h183-183 183 183 9 4425 0.27 1.92 2232 51.54989 

h183-183 183 183 10 4457 0.38 2.00 2367 51.83713 

h183-183 183 183 11 4457 0.39 2.02 2367 51.83713 
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TABLE 4. 

Instance name n m d                     gen cache [%] 

h212-212 212 212 2 156 0.22 2.30 2179 32.14757 

h212-212 212 212 3 1203 1.52 3.75 3230 33.58119 

h212-212 212 212 4 2624 4.09 5.84 5000 33.34679 

h212-212 212 212 5 3959 4.95 5.69 5000 37.96402 

h212-212 212 212 6 4902 2.72 4.69 4645 47.71343 

h212-212 212 212 7 5376 2.55 4.50 4502 49.54007 

h212-212 212 212 8 5571 1.33 3.25 3279 49.15052 

h212-212 212 212 9 5654 2.20 4.09 4225 50.38174 

h212-212 212 212 10 5686 0.38 2.27 2291 48.96513 

h212-212 212 212 11 5686 0.36 2.25 2291 48.96513 

h44-48 44 48 2 177 0.27 0.86 2826 61.00530 

h44-48 44 48 3 335 0.48 1.22 3799 78.49343 

h44-48 44 48 4 405 0.05 0.61 2110 72.81590 

h44-48 44 48 5 452 0.19 0.77 2679 73.40791 

h44-48 44 48 6 477 0.05 0.59 2147 77.68186 

h44-48 44 48 7 484 0.02 0.55 2045 78.76856 

h44-48 44 48 8 489 0.01 0.55 2032 82.67125 

h44-48 44 48 9 489 0.01 0.55 2032 82.67125 

w70-76 70 76 2 625 0.11 0.97 2225 44.62029 

w70-76 70 76 3 1307 0.31 1.20 2664 50.06899 

w70-76 70 76 4 1732 0.09 0.89 2157 62.85833 

w70-76 70 76 5 1991 0.06 0.81 2096 69.20438 

w70-76 70 76 6 2109 0.08 0.80 2099 69.92674 

w70-76 70 76 7 2159 0.66 1.42 3702 69.68583 

w70-76 70 76 8 2203 0.03 0.80 2068 70.37373 

w70-76 70 76 9 2224 0.03 0.75 2064 72.95791 

w70-76 70 76 10 2224 0.03 0.77 2064 72.95791 

 

TABLE 5. 

Instance name n m d                     gen cache [%] 

proba12-17 12 17 2 118 0.02 0.53 2010 95.20616 

proba12-17 12 17 3 128 0.0001 0.55 2011 96.62761 

proba12-17 12 17 4 128 0.0001 0.52 2011 96.62761 

g15-4-01 15 20 2 326 0.0001 0.52 2011 94.55214 

g15-4-01 15 20 3 335 0.0001 0.53 2011 95.36941 

g15-4-01 15 20 4 335 0.0001 0.52 2011 95.36941 

liter34-39 34 39 2 282 0.0001 0.56 2018 67.02524 

liter34-39 34 39 3 349 0.01 0.53 2028 84.96898 

liter34-39 34 39 4 369 0.09 0.66 2363 81.58072 

liter34-39 34 39 5 371 0.01 0.53 2033 84.18566 

liter34-39 34 39 6 371 0.01 0.53 2033 84.18566 

h69-69 69 69 2 382 0.13 0.95 2248 49.79209 

h69-69 69 69 3 572 0.28 1.03 2680 62.79687 

h69-69 69 69 4 690 0.33 1.03 2781 69.99425 

h69-69 69 69 5 752 0.16 0.84 2351 71.30161 

h69-69 69 69 6 771 0.03 0.72 2064 74.50798 

h69-69 69 69 7 771 0.03 0.72 2064 74.50798 

h148-152 148 152 2 2107 0.77 2.45 2829 38.28884 

h148-152 148 152 3 3470 2.16 3.66 4685 48.01664 

h148-152 148 152 4 3811 0.56 1.97 2688 53.01078 

h148-152 148 152 5 3931 0.17 1.61 2178 51.45988 

h148-152 148 152 6 3941 0.19 1.56 2191 54.73291 

h148-152 148 152 7 3941 0.19 1.56 2191 54.73291 

 

 

 

 


