
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 2, No. 12, 2011

161 | P a g e
www.ijacsa.thesai.org

Solving the MDBCS Problem Using the Metaheuric–

Genetic Algorithm
Genetic algorithm for the MDBCS problem

Milena Bogdanović

University of Niš

Teacher Training Faculty
Partizanska 14, Vranje, Serbia

Abstract— The problems degree-limited graph of nodes

considering the weight of the vertex or weight of the edges, with

the aim to find the optimal weighted graph in terms of certain

restrictions on the degree of the vertices in the subgraph. This

class of combinatorial problems was extensively studied because

of the implementation and application in network design,

connection of networks and routing algorithms. It is likely that

solution of MDBCS problem will find its place and application in

these areas. The paper is given an ILP model to solve the

problem MDBCS, as well as the genetic algorithm, which

calculates a good enough solution for the input graph with a

greater number of nodes. An important feature of the heuristic

algorithms is that can approximate, but still good enough to solve

the problems of exponential complexity. However, it should solve

the problem heuristic algorithms may not lead to a satisfactory

solution, and that for some of the problems, heuristic algorithms

give relatively poor results. This is particularly true of problems

for which no exact polynomial algorithm complexity. Also,

heuristic algorithms are not the same, because some parts of

heuristic algorithms differ depending on the situation and

problems in which they are used. These parts are usually the

objective function (transformation), and their definition

significantly affects the efficiency of the algorithm.

By mode of action, genetic algorithms are among the methods

directed random search space solutions are looking for a global
optimum.

Keywords- graph theory; NP-complete problems; the degree-

bounded graphs; Integer linear programming; genetic algorithms.

I. INTRODUCTION

General problems of degree-constraind graphs, consider the
nodes of weight or weight on the vertices, where the goal is to
find the optimal weighted graph, with set limits for levels of
subgraph nodes. This class of combinatorial problems has been
extensively studied for use in designing networks. If the input
graph is bipartite, ie, if the set of its nodes can be broken down
into two nonempty disjoint subsets so that each vertices has
one end in each of the two subsets, then these problems are
equivalent to the classical transportation problem in terms of
operational research. The reason for this extensive study and
research issues listed above, lies in their wide application in the
areas of networks and routing algorithms.

In the Theory of complexity, NP (nondeterministic
polynomial time) is a set of decision problems that can be

solved by nondeterministic Turing machine. The importance of
this class of decision problems is that it contains many
interesting problems of search and optimization, where we
want to determine whether there is some solution to the
problem, but whether this is the optimal solution. Therefore,
the challenge with NP problem is to find the answer in an
efficient manner, as an effective way to verify the response, ie.
solution already exists. Since many important problems in this
class, intensive efforts were invested to find in polynomial time
algorithms for solving problems in class NP. However, a large
number of NP problems has resisted these efforts, and
apparently, they require time polynomial is not even close! Are
these problems really are not solvable in polynomial time is
one of the biggest open questions in computer science.

The easiest way to prove that an problem a NP-complete
problem is to first prove that the NP and then to an already
known NP-complete problem down to him. It is therefore
useful to know the various NP-complete problems.

The problems of class NP-complete are classified into the
following groups:

1) Covering and Partitioning

2) Subgraphs and Supergraphs

3) Vertex Ordering

4) Iso- and Other Morphisms

5) Miscellaneous

From the group Subgraph and supergrafs distinguishes the
following NP-problems:

1) MAXIMUM INDEPENDENT SET

2) MAXIMUM INDEPENDENT SEQUENCE

3) MAXIMUM INDUCED SUBGRAPH WITH

PROPERTY P

4) MINIMUM VERTEX DELETION TO OBTAIN

SUBGRAPH WITH PROPERTY P

5) MINIMUM EDGE DELETION TO OBTAIN

SUBGRAPH WITH PROPERTY P

6) MAXIMUM INDUCED CONNECTED SUBGRAPH

WITH PROPERTY P

7) MINIMUM VERTEX DELETION TO OBTAIN

CONNECTED SUBGRAPH WITH PROPERTY P

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 2, No. 12, 2011

162 | P a g e
www.ijacsa.thesai.org

8) MAXIMUM DEGREE-BOUNDED CONNECTED

SUBGRAPH

9) MAXIMUM PLANAR SUBGRAPH

10) MINIMUM EDGE DELETION K-PARTITION

11) MAXIMUM K-COLORABLE SUBGRAPH

12) MAXIMUM SUBFOREST

13) MAXIMUM EDGE SUBGRAPH

14) MINIMUM EDGE K-SPANNER

15) MAXIMUM K-COLORABLE INDUCED SUBGRAPH

16) MINIMUM EQUIVALENT DIGRAPH

17) MINIMUM INTERVAL GRAPH COMPLETION

18) MINIMUM CHORDAL GRAPH COMPLETION
The problem MDBCS is stated as follows:

INPUT: a graph , the function of weight on the
vertices (or weighting function) w:E→ , and an integer
 .

SOLUTION: a subset of such that the subgraph
 is connected and that there is no node with degree
exceeding .

MEASUREMENTS: Total weight of found subgraph, ie.
∑

Considering an undirected graph , where is
the set of vertices, and is a set of nodes, and let
 . Let is connected (but not
necessarily) a graph with a weighting function:
For simplicity, we can only say that the graph -weighted
graph. For an arbitrary subset , with denotes subgraph
of induced by , and denote the sum of weight on the
vertices of , ie, ∑ .

Let is an undirected graph, let an
integer, and let weighting function. The problem
limits the maximum degree of connected subgraph (MDBCS)
consists in finding a subgraph , where
and , so that the subgraph is connected, and
∑ has a maximum value.

The constants in the ILP model are: - denote arrays of
sets, and values of functions in them.

Variables for the ILP model are:

 {

 ,

 {

 ,

where , and is a spanning tree for the subgraph ,

 {

 .

ILP formulation of the model for finding the maximum
degree of a connected subgraph constraints is given below, part
of the paper [4].

Determine

 ∑ (1)
with conditions:

∑ , (2)

 (3)

∑ ∑ (4)

 (5)

 (6)

∑

 (7)

Graph is not oriented. In the ILP model, the formula (5),
indicates the starting node of the vertice , while in formula
(6), indicates an incoming (final) node of the vertice .

The objective function, given by (1), maximizes the sum of
the total weight.

Condition (2) ensures that the subgraph each node has
the most vertices leading from the .

The condition given by (3), ensures that the subgraph is
a superset of and if as a spanning tree is connected, it
follows that the subgraph also connected.

Conditions (4), (5) and (6), provided that the candidate for
the spanning tree has as many nodes in the subgraph a
vertices, minus 1. Finally, condition (7) guarantees that the
candidate for the spanning tree has no cycle. Therefore, the
conditions (4), (5), (6) and (7) together ensure that is
the spanning tree for the subgraph .

The following theorem proves the correctness of the above
ILP model.

Theorem 1. [4] The MDBCS problem can be solved if and
only if the following conditions (2) - (7) holds or their
equivalent set of conditions.

II. METAHEURISTIC GENETIC ALGORITHM FOR SOLVING

THE MDBCS PROBLEM

Genetic algorithms (GA) are a family of algorithms, which
use some of the genetic principles that are present in nature, in
order to solve certain computational problems. These natural
principles are: inheritance, crossover, mutation, survival of the
best custom (survival of the fittest), migration and so on. These
algorithms can be used for solving various classes of problems
because they are fairly general nature. In this case, they are
used in the optimization problem - finding the optimal
parameters of a system ([5]).

In a narrow sense, the notion of a genetic algorithm applies
only to the model introduced by John Holland in his book
„Adaption in natural and artificial systems“, 1975. ([10]).
Holland is considered the creator of this metaheuristic and
basic settings of his earliest works are valid even today. In a
broader sense, genetic algorithm is any algorithm that is based
on a population and operators of selection, crossover and
mutation, which are used to obtain new points in the search
space.

Genetic algorithm is applied to the final set of individuals
called the population. Each individual in the population is
represented by a series of characters (genetic code) and
corresponds to a solution in search space. Coding can be binary

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 2, No. 12, 2011

163 | P a g e
www.ijacsa.thesai.org

or a transliteration of higher cardinality. Encoding solutions is
an important step of genetic algorithm because, inadequate
choice of code can lead to poor results regardless of the rest of
the structure of the algorithm.

The diversity of genetic material is provided by generating
the initial population randomly. It can be used and some
heuristics to generate initial population, or part thereof, of
course, if the heuristics perform relatively quickly and
significantly if not reduce the diversity of genetic material.

Individuals assigned to each function adaptation (fitness
function) that evaluates the quality of given individuals, as well
as individual solutions in the search space. The task of genetic
algorithms is to provide a constant, from generation to
generation, improving the adaptability of the absolute
population. This is realized by applying successive genetic
operators selection, crossover and mutation, thus gaining a
better solution given a particular problem.

Mechanism of selection favoring above average fitted
individuals and their above-average custom parts (genes),
which receive a higher chance of their own reproduction in the
formation of a new generation. In this way, less fitted
individuals and genes get less chances to play, and gradually
dying out. Contribution to diversity of genetic material from
your operator crosses that controls recombination genes of
individuals. As a result of the crossing structure is obtained,
although non-deterministic, the exchange of genetic material
between individuals, with the possibility that well-adjusted
individuals generate better individuals. The mechanism of
crossing operators and relatively less fitted individuals, with
some well-adapted genes, gets his chance to recombination of
good genes produce well-adjusted individuals. However, using
multiple selection and crossbreeding can result in loss of
genetic material, ie, some regions of space results become
available. The operator performs a random mutation of a
particular gene, given the small probability , which can
restore the lost genetic material in the population. This is the
basic mechanism for preventing premature convergence of
genetic algorithm to a local extreme, (see [3]).

Operators are applied until a stopping criterion is met, for
example. reached the maximum number of generations, the
same quality of solutions in a number of generations, finding
the optimal solution, the best individual was repeated a
maximum number of times, limited the time of executing the
genetic algorithm, the termination by the user and so on.

As the most important aspects of a genetic algorithm, there
are coding and fitness function, which is very important to be
well adapted to the nature of a particular problem. It has been
said that the usual binary encoding or over a large alphabet
cardinality. The most convenient is that the relationship
between the genetic codes and solutions to the problem is
bijectiv mapping. Then it is possible that the application of
genetic operators in a certain age to get called incorrect
specimen, ie. individuals whose genetic code does not
correspond to any solution. Overcoming this problem is
possible in several ways. One possibility is to assign any such
individuals as the fitness function value is zero, so that the
operator applying for selection to eliminate these individuals.
This approach has proven to be suitable only if the ratio of the

number of incorrect and correct individuals in the population is
too large, which in practice often not the case. It is possible,
however, incorrect inclusion of individuals in the population by
the individuals assigned to each incorrect value penalty
function. The aim is unfair to individuals and get a chance to
participate in the crossing, but to be discriminated against on
the correct individual. Care should be taken on how to balance
the value of penalty function, because too small values can lead
to a genetic algorithm that some of the incorrect code for a
declaration of the solution, while, on the other hand, excessive
punishment can cause loss of useful information from the
incorrect individuals. There is another way to solve this
problem - which is to improve specimen be unfair to make
them correct or incorrect that each individual is replaced
correctly.

Calculating the fitness function is possible in several ways.
Some of these methods are direct download, linear scaling,
interval scaling, sigma truncation, etc..

Since the selection is directly related to the fitness function,
the basic way to implement this genetic operator is the simple
roulette selection. This method uses a distribution where the
probability of selection proportional to its adaptation to the
individual. Individuals involved with the chances of roulette in
accordance with them, pass or not pass the process of creating
a new generation. The lack of a simple roulette selection is the
possibility of premature convergence due to the gradual
prevalence of highly adapted individuals in the population that
do not correspond to the global optimum.

To avoid this problem can be used ranking selection based
on genetic codes, according to their adaptability. Fitness
function is equal to the individual a range of pre-specified
number of ranks, and only depend on the position of
individuals in the population. It can be used linearly, as well as
other forms of ranking.

Another form of selection is the tournament selection.
When tournament selection is randomly generated subsets of
the individuals (is the pre-set number), then in each
subset, the principle of the tournament, selects the best
individual that participates in the creation of a new generation.
Usually the problem is the choice of so as to reduce the
adverse effects of stochastic, so that better and more diverse
genetic material passed to the next generation. In cases where
the size is perfect tournament is not an integer, has proved
successful fine-graded tournament selection (FGTS). A
detailed description of these and other types of selection and its
theoretical aspects can be found in [6]. Application of fine-
graded tournament selection and comparison with other
practices in the selection of operators are given in [7], [8], [9].

The process of exchange of genetic material between
individuals of the parents, in order to form new offspring
individuals, is performed by the crossover operator. The most
common operators are one-point crossover, two-point
crossover, multi-point and a uniform crossover, and can also be
used for crossover mixing, reduced surrogate crossover,
crossover with the mother, intermediate crossover, as well as
the linear intersection.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 2, No. 12, 2011

164 | P a g e
www.ijacsa.thesai.org

Intersection operator, which is implemented in a simple
genetic algorithm, the one-point crossover. In one-point
crossover, so determined crossing position. All genes from the
predetermined position, change position so that each parental
pair created two offspring. In two-point crossover two
positions are set and is the exchange of genetic material
between the parents and two positions.

As for the uniform crossover, it should be noted that for
each parental pair determines a binary string of length the same
as the genetic parents. This range is called the mask. Sharing
genes is performed only on those positions where the mask is
0, while in positions where there is one, the parents retain their
genes.

Mutation operator is considered one of the most important
and as such it can decisively influence the operation of genetic
algorithm. If a genetic algorithm using binary encoding and the
population of individuals not incorrect, it is usually
implemented by a simple mutation operator that runs through
the individual genes and the genetic code for each check
whether or not mutated. The probability of mutation is pre-set
 small size, usually taken from the interval [0.001,0.01].
Simple mutation is sometimes possible to apply over a binary
number - the mask, which is randomly generated for each
individual, and carries information about the position in which
the genetic code results in a change of genes.

When the gene encoding algorithm used whole or real
numbers (floating point), it was necessary to develop other
concepts of mutation, which was done. These are the
replacement of genes randomly selected number (random
replacement), add or subtract a small value (creep), multiply
the number close to one (geometric creep) and so on. For both
creep mutation operator required values are random and can
have a uniform, exponential, Gaussian or binomial distribution
(see [1], [2]).

In some cases it is useful to genes, depending on the
position in the genetic code, have different levels of mutation.
In this regard it is particularly important concept of frozen
gene. Namely, if in a position of the genetic code in all or most
of the population, the same gene, it is useful that the gene
mutation has a higher level than the rest of the genetic code.
This concept is used to restore lost diversity of genetic
material, and these genes are called frozen.

Will the application of genetic algorithms have a success
depends largely on the choice of replacement policy
generation. Some of the most important policy of the
replacement generation: generational genetic algorithm, genetic
algorithm stationary and elitist strategy. Of course, it is
possible to combine these principles.

Where the generational genetic algorithm, then apply to all
individuals all the genetic operators, ie. there are no privileged
individuals are going into the next generation, or individuals
who go directly to the selection process.

On the contrary, stationary genetic algorithm favors the
best individuals in the population so as to them shall not apply
operator selection, but they go directly to the next stage, while
the other applies the selection of individuals and they come to
the remaining places.

Elitist strategy provides a direct passage into the next
generation of one of the best individuals. These individuals do
not apply to operators of selection, crossover and mutation. By
applying genetic operators to the individuals of the population
remaining seats are filled by the next generation.

This approach leaves room for another possible
improvement of the genetic algorithm, which is caching. As an
elite individuals pass from generation to generation unchanged,
it and its value remains unchanged. Therefore, it would be
useful to individuals elitinih value is remembered, rather than
constantly calculated, saving the time required for their
computation. This process is called caching, and more detail is
in [12] and [11].

Namely, the calculated value of the objective function of
individuals are stored in so-called. Hess-row table, which uses
CRC codes that are assigned to individuals in population. If,
during operation of the genetic algorithm, obtained through the
same genetic code, then the objective function value is taken
from a hash-table, through the CRC code.

Input for the algorithm for slving the MDBCS problem is
undirected graph , weight function (weighting
function) and integer . Each vertices of the
graph encode the zero (0), if the condition (2) does not satisfy,
and one (1), otherwise (we use that is, a binary encoding of
individuals). If we find the node that has more than vertices,
then vertices of the node does not count, that is. set value 0.

In order to get connected components (or component
connection), we apply a search in width. If the graph is only
one component connection, then this is the end, that is, the
graph is connected and calculate the sum of all vertices of the
weight of the component. But if more than one connected
components, then we take them in order, first and second,
second and third, and so on, and look for the largest vertice of
the weight (or cycle if it exists) that connects the two
components. Then take all the vertices of the shortest path from
the original graph, and the count only those with a degree .
The process continues until they connect all components of
relationship. Finally, we add all of this and get ∑ .

Genetic operators, which are used here, are fine-graded
tournament selection, a one-point crossover, a simple
mutations with the frozen gene and caching techniques.
Genetic algorithm is coded in the programming language C.

For checking the results of the implemented genetic
algorithm based on mathematical models (1) - (7), we used the
software package CPLEX. Genetic algorithm is tested on the
test-examples reached the same values as the CPLEX program,
and that the execution time was short in both cases, data on
execution times not are presented.

As there are no standard instances of MDBCS problem, and
the instance for KCT problem (-cardinality tree problem),
containing the nodes and weights that are appropriate for the
considered problem, the necessary adjustments in accordance
with the input of a genetic algorithm, are used in testing of the
genetic algorithm for graphs with a large number of vertices
and nodes.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 2, No. 12, 2011

165 | P a g e
www.ijacsa.thesai.org

Stopping criterion of the algorithm is the maximum number
of generations 5000 or up to 2000 generations without
improving the objective function value.

III. TEST EXAMPLES

Here are a few tables where the columns of labels,
respectively, represent:

 instance name that contains the dimension of the

input graph, an Instance name;

 cardinality of the set of nodes, ;

 cardinality of the set of vertices, ;

 integer ;

 best solution obtained by genetic algorithm,

 ;

 average time (in seconds) to calculate the best
value;

 total time (in seconds) to complete a genetic
algorithm;

 total number of generation, gen;

 average value of using caching, cache.
The Tables 1 - 5 shows the results obtained by testing the

genetic algorithm for instances with a large number of vertices
and nodes, for different values of

IV. CONCLUSION

The problem of finding the maximum degree of limitation
associated subgraph is very interesting, and then proposed a
genetic algorithm can be the basis for further research and
improvement. In addition, this class of combinatorial problems
has been studied extensively and due to the application in the
design of networks of networks and routing algorithms.

Some of the directions of further enlargement and
improvement of the results could be:

1) the development of exact methods based on integer

programming;

2) modification of metaheuristic described - genetic

algorithm for solving similar problems on graphs;

3) obtaining new results from graph theory developed

using the implementation.

REFERENCES

[1] Beasley D., Bull D. R., Martin R. R., „ An Overview of Genetic
Algorithms, Part1,“ Research Topics. University Computing; 1993, Vol.

15, No. 2, p. 58-69.
[2] Beasley D., Bull D. R., Martin R. R., „ An Overview of Genetic

Algorithms, Part2,“ Research Topics. University Computing; 1993, Vol.
15, No. 4, p. 170-181.

[3] Bogdanović M., Rešavanje problema maksimalnog ograničenja stepena
podgrafova u računarstvu, kao prilog teoriji grafova, Doktorska

disertacija. Univerzitet u Beogradu, Matematički fakultet; 2010, PhD
Thesis (in Serbian).

[4] Bogdanović M., „ An ILP formulation for the maximum degree-bounded
connected subgraph problem“, Computers & Mathematics with

Applications; 2010, 59, No.9, p. 3029-3038.
[5] Bogdanović M. „On some basic concepts of genetic algorithms as a

meta-heuristic method for solving of optimization problems“, A Journal
of Software Engineering and Applications; 2011, Vol. 4, No. 8, pp. 482-

486, doi: 10.4236/jsea.2011.48055. Website:
http://www.scirp.org/journal/jsea

[6] Filipović V., Predlog poboljšanja operatora turnirske selekcije kod
genetskih algoritama, Magistarski rad. Univerzitet u Beogradu,

Matematički fakultet; 1998. MsThesis (in Serbian)
[7] Filipović V., Kratica J., Tošić D., Ljubić I., „Fine Grained Tournament

Selection for the Simple Plant Location Problem“, Proceedings on the
5th Online World Conference on Soft Computing Methods in Industrial

Application – WSC5; 2000, p. 152-158.
[8] Filipović V., Tošić D., Kratica J., “Experimental Results in Applying of

Fine Grained Tournament Selection”, Proceedings of the 10th Congress
of Yugoslav Mathematicians Belgrade, 21.-24.01.; 2001, p. 331-336.

[9] Filipović, V., “Fine-Grained Tournament Selection Operator in Genetic
Algorithms”, Computing and Informatics; 2003. 22(2), p.143-161.

[10] Holland J. H., Adaptation in Natural and Artificial Systems. The
University of Michigan Press, Ann Arbor; 1975.

[11] Kratica J., „ Improvement of Simple Genetic Algorithm for Solving the
Uncapacitated Warehouse Location Problem“, Advances in Soft

Computing – Engineering Design and Manufactining, R. Roy, T.
Furuhachi and P. K. Chawdhry (Eds), Springer-Verlang London

Limited; 1999, p. 390-402.
[12] Kratica J., Paralelizacija genetskih algoritama za rešavanje nekih NP-

kompletnih problema, Doktorska disertacija. Matematički fakultet,
Beograd; 2000, PhD Thesis (in Serbian).

TABLE 1.

Instance name n m d gen cache [%]

Proba10-13 10 13 2 60 0.0001 0.50 2003 97.94716

Proba10-13 10 13 3 71 0.0001 0.53 2004 98.11958

Proba10-13 10 13 4 74 0.0001 0.48 2005 98.19920

Proba10-13 10 13 5 75 0.0001 0.50 2004 98.18934

Proba10-13 10 13 6 75 0.0001 0.48 2004 98.19934

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 2, No. 12, 2011

166 | P a g e
www.ijacsa.thesai.org

TABLE 2.

TABLE 3.

Instance name n m d gen cache [%]

w40-40 40 40 2 576 0.02 0.53 2042 75.21076

w40-40 40 40 3 768 0.09 0.64 2298 80.43894

w40-40 40 40 4 906 0.01 0.55 2040 82.20656

w40-40 40 40 5 1013 0.05 0.59 2114 82.38545

w40-40 40 40 6 1069 0.01 0.55 2048 82.72843

w40-40 40 40 7 1111 0.01 053 2037 85.22745

w40-40 40 40 8 1120 0.0001 0.52 2026 85.13061

w40-40 40 40 9 1120 0.0001 0.52 2026 85.13061

h44-44 44 44 2 85 0.08 0.67 2032 57.63736

h44-44 44 44 3 203 0.02 0.53 2050 79.11934

h44-44 44 44 4 292 0.05 0.56 2137 77.93271

h44-44 44 44 5 343 0.03 0.50 2112 81.25106

h44-44 44 44 6 371 0.01 0.55 2042 83.19511

h44-44 44 44 7 377 0.01 0.53 2038 85.13866

h44-44 44 44 8 377 0.01 0.53 2038 85.13866

w65-65 65 65 2 283 0.25 1.11 2456 43.06466

w65-65 65 65 3 787 0.42 1.22 3004 52.15896

w65-65 65 65 4 1200 0.47 1.28 3101 55.82088

w65-65 65 65 5 1488 0.05 0.75 2093 68.62977

w65-65 65 65 6 1644 0.34 1.03 2913 71.04870

w65-65 65 65 7 1744 0.03 0.72 2060 72.59913

w65-65 65 65 8 1792 0.03 0.70 2058 76.46288

w65-65 65 65 9 1801 0.05 0.72 2077 75.60385

w65-65 65 65 10 1801 0.05 0.72 2077 75.60385

Instance name n m d gen cache [%]

h118-118 118 118 2 127 0.01 1.33 2007 33.67463

h118-118 118 118 3 601 0.69 2.00 2999 39.21786

h118-118 118 118 5 1235 2.59 3.34 5000 44.09634

h118-118 118 118 6 1663 3.06 3.19 5000 49.11733

h118-118 118 118 7 1958 0.41 1.48 2648 59.18974

h118-118 118 118 8 2058 0.11 1.17 2143 61.19571

h118-118 118 118 9 2091 0.09 1.17 2117 61.18774

h118-118 118 118 10 2091 0.09 1.17 2117 61.18774

w130-130 130 130 2 295 0.02 1.38 2017 34.75842

w130-130 130 130 3 1030 1.30 2.70 3788 34.68636

w130-130 130 130 4 1657 0.31 1.75 2406 36.35866

w130-130 130 130 5 2084 0.88 2.28 3195 39.45466

w130-130 130 130 6 2323 0.64 2.08 2877 38.50201

w130-130 130 130 7 2481 0.13 1.50 2152 42.08631

w130-130 130 130 8 2582 0.36 1.67 2488 46.23685

w130-130 130 130 9 2591 0.11 1.41 2117 46.92453

w130-130 130 130 10 2591 0.11 1.41 2117 46.92453

h183-183 183 183 2 169 0.01 1.83 2019 32.26805

h183-183 183 183 3 1000 2.47 4.36 4525 32.48498

h183-183 183 183 4 2056 2.20 4.16 4167 35.62782

h183-183 183 183 5 3007 2.77 4.66 4780 40.11583

h183-183 183 183 6 3776 0.83 2.48 2892 50.47738

h183-183 183 183 7 4147 2.09 3.75 4392 51.32014

h183-183 183 183 8 4343 1.59 3.23 3829 51.77192

h183-183 183 183 9 4425 0.27 1.92 2232 51.54989

h183-183 183 183 10 4457 0.38 2.00 2367 51.83713

h183-183 183 183 11 4457 0.39 2.02 2367 51.83713

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 2, No. 12, 2011

167 | P a g e
www.ijacsa.thesai.org

TABLE 4.

Instance name n m d gen cache [%]

h212-212 212 212 2 156 0.22 2.30 2179 32.14757

h212-212 212 212 3 1203 1.52 3.75 3230 33.58119

h212-212 212 212 4 2624 4.09 5.84 5000 33.34679

h212-212 212 212 5 3959 4.95 5.69 5000 37.96402

h212-212 212 212 6 4902 2.72 4.69 4645 47.71343

h212-212 212 212 7 5376 2.55 4.50 4502 49.54007

h212-212 212 212 8 5571 1.33 3.25 3279 49.15052

h212-212 212 212 9 5654 2.20 4.09 4225 50.38174

h212-212 212 212 10 5686 0.38 2.27 2291 48.96513

h212-212 212 212 11 5686 0.36 2.25 2291 48.96513

h44-48 44 48 2 177 0.27 0.86 2826 61.00530

h44-48 44 48 3 335 0.48 1.22 3799 78.49343

h44-48 44 48 4 405 0.05 0.61 2110 72.81590

h44-48 44 48 5 452 0.19 0.77 2679 73.40791

h44-48 44 48 6 477 0.05 0.59 2147 77.68186

h44-48 44 48 7 484 0.02 0.55 2045 78.76856

h44-48 44 48 8 489 0.01 0.55 2032 82.67125

h44-48 44 48 9 489 0.01 0.55 2032 82.67125

w70-76 70 76 2 625 0.11 0.97 2225 44.62029

w70-76 70 76 3 1307 0.31 1.20 2664 50.06899

w70-76 70 76 4 1732 0.09 0.89 2157 62.85833

w70-76 70 76 5 1991 0.06 0.81 2096 69.20438

w70-76 70 76 6 2109 0.08 0.80 2099 69.92674

w70-76 70 76 7 2159 0.66 1.42 3702 69.68583

w70-76 70 76 8 2203 0.03 0.80 2068 70.37373

w70-76 70 76 9 2224 0.03 0.75 2064 72.95791

w70-76 70 76 10 2224 0.03 0.77 2064 72.95791

TABLE 5.

Instance name n m d gen cache [%]

proba12-17 12 17 2 118 0.02 0.53 2010 95.20616

proba12-17 12 17 3 128 0.0001 0.55 2011 96.62761

proba12-17 12 17 4 128 0.0001 0.52 2011 96.62761

g15-4-01 15 20 2 326 0.0001 0.52 2011 94.55214

g15-4-01 15 20 3 335 0.0001 0.53 2011 95.36941

g15-4-01 15 20 4 335 0.0001 0.52 2011 95.36941

liter34-39 34 39 2 282 0.0001 0.56 2018 67.02524

liter34-39 34 39 3 349 0.01 0.53 2028 84.96898

liter34-39 34 39 4 369 0.09 0.66 2363 81.58072

liter34-39 34 39 5 371 0.01 0.53 2033 84.18566

liter34-39 34 39 6 371 0.01 0.53 2033 84.18566

h69-69 69 69 2 382 0.13 0.95 2248 49.79209

h69-69 69 69 3 572 0.28 1.03 2680 62.79687

h69-69 69 69 4 690 0.33 1.03 2781 69.99425

h69-69 69 69 5 752 0.16 0.84 2351 71.30161

h69-69 69 69 6 771 0.03 0.72 2064 74.50798

h69-69 69 69 7 771 0.03 0.72 2064 74.50798

h148-152 148 152 2 2107 0.77 2.45 2829 38.28884

h148-152 148 152 3 3470 2.16 3.66 4685 48.01664

h148-152 148 152 4 3811 0.56 1.97 2688 53.01078

h148-152 148 152 5 3931 0.17 1.61 2178 51.45988

h148-152 148 152 6 3941 0.19 1.56 2191 54.73291

h148-152 148 152 7 3941 0.19 1.56 2191 54.73291

