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Abstract--Web Services are emerging technologies that enable 

application to application communication and reuse of services 

over Web. Semantic Web improves the quality of existing tasks, 

including Web services discovery, invocation, composition, 

monitoring, and recovery through describing Web services 

capabilities and content in a computer interpretable language. To 

provide most of the requested Web services, a Web service 

matchmaker is usually required. Web service matchmaking is the 

process of finding an appropriate provider for a requester 

through a middle agent. To provide the right service for the right 

user request, Quality of service (QoS)-based Web service 

selection is widely used. Employing QoS in Web service selection 

helps to satisfy user requirements through discovering the best 

service(s) in terms of the required QoS. Inspired by the mode of 

the Internet Web search engine, like Yahoo, Google, in this paper 

we provide a QoS-based service selection algorithm that is able to 

identify the best candidate semantic Web service(s) given the 

description of the requested service(s) and QoS criteria of user 

requirements. In addition, our proposed approach proposes a 

ranking method for those services. We also show how we employ 

data warehousing techniques to model the service selection 

problem.  

The proposed algorithm integrates traditional match making 

mechanism with data warehousing techniques. This integration 

of methodologies enables us to employ the historical preference of 

the user to provide better selection in future searches. The main 

result of the paper is a generic framework that is implemented to 

demonstrate the feasibility of the proposed algorithm for QoS-

based Web application. Our presented experimental results show 

that the algorithm indeed performs well and increases the system 
reliability. 

Keywords-Semantic Web; Web services; Web services match-

making; Data warehouses; Quality of Services (QoS); Web service 

ranking. 

I. INTRODUCTION 

A. Background 

Web services are considered as self-contained, self-
describing, modular applications that can be published, 
located, and invoked across the Web [1]. With the  

development of service-oriented architecture (SOA) and 
cloud computing, more and more services are continuously 

emerging on the Internet, such as Amazon EC21, Google App 
Engine2; thus, it is expected that in the near future there would 
be more and more different types of services, and more and 
more number of services emerging on the Internet.  

Besides as the users often do not know how to quantify the 
trade-offs between different Web services and just wish to 
quickly grasp what can be potentially interesting, a single 
solution that is the best one from an objective point of view 
typically does not exist; instead, many reasonable alternative 
services usually exist . 

Hence, as both the user requirements, and the number of 
available services and service providers increases, improving 
the effectiveness and accuracy of Web service discovery and 
selection mechanisms becomes a crucial issue [2, 3]. 

Today, the Universal Description, Discovery and 
Integration UDDI standard is considered the most commonly 
used service discovery standard [4]. However, UDDI has 2 
main shortcomings: first, it returns coarse results for a 
keyword based search, and second, more importantly it lacks 
semantics. Hence, UDDI is basically a framework that 
supports category based search [4].  

On the other hand, semantic Web improves the quality of 
existing tasks, including Web services discovery, invocation, 
composition, monitoring, and recovery by describing Web 
services capabilities and content in a computer interpretable 
language [4].  

One of the main applications of semantic Web is its usage 
in the semantic Web services in the matchmaking process. 
Matchmaking is the process of finding an appropriate provider 
for a requester through a middle agent. Consequently, 
Semantic matchmaking is used by semantic Web services to 
find valuable service candidates and selecting the most 
suitable service(s) that best match user request [5, 6].  In this 
work we use OWL-S [7] for describing the used services.  

OWL-S is an OWL-based Web service ontology, which 
supplies a core set of markup language, constructs for 
describing the properties and capabilities of Web services in 

                                                        
1http://aws.amazon.com/ 
2http :// code.google.com/appengine/ 
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an unambiguous, computer-interpretable form. The overall 
ontology consists of three main components: the service 
profile for advertising and discovering services; the process 
model, which gives a detailed description of a service’s 
operation; and the grounding, which provides details on how 
to interoperate with a service, via messages. Specifically, it 
specifies the signature that is composed of the inputs required 
by the service, and the outputs generated. Furthermore, since a 
service may require external conditions to be satisfied, and its 
execution can change those conditions, the profile describes 
the preconditions required by the service and the expected 
effects that result from the execution of the service. For more 
details, we refer the reader to for example [7].  

Nevertheless, with the increasing number of Web services 
providing similar functionalities, the QoS (Quality of Service) 
is becoming an important criterion of selection of the best 
available service. Although, we believe that designing 
intuitive, easy-to-use user interfaces can help the process of 
collecting user feedback and preferences; in this work, we do 
not deal with this issue, instead our focus is on how the 
collected information in the user profile is processed and 
integrated in the selection process of Web services to improve 
the results of subsequent searches. 

Inspired by the fact that current enterprise decision making 

systems benefit more from OLAP, and data warehouse 

techniques [8], in this paper we show how we can adopt the 

power of data warehousing in supporting decision making, and 

how data warehouses and OLAP techniques can help in 
selecting the most interesting result with the above issues 

being considered.  

In general, data warehousing is one of the most common 

business intelligence tools nowadays. Data warehouses 

provide a solid platform that includes both current and 

historical data [8]. Using this platform, companies can 

therefore make a series of analysis that can help in providing 

the right service that matches the user request more easily, 

accurately, and efficiency. 

B. Motivation 

The availability of service providers with different features 
makes the task of selecting an appropriate service provider for 
a user more and more complex which motivates us to consider 
new solutions for the Web services selection problem in SOA 
systems. As shown in Table I there are various types and 
number of services, associated with different performances, 
prices, platform/APIs, and availability levels [9, 10, 11]. 

Analyzing these services we find that: 

1) There exist various types of services (for example 

compute, storage etc). 

2) There exist a large number of functionally similar 

services which results in a proliferation in the number of 

services that provide similar functionality with different QoS 

criteria (i.e. price, availability). 

3) There are a large number of service providers that are 

continuously emerging on the internet such as Google 

AppEngine. 

4) Finally, there is a wide range in service performance 

and price. Where different providers offer their services with 

different prices and performance values. 

From that we can conclude that Web service selection 
process needs five crucial issues: 

a) Accuracy: the algorithm should avoid the loss of Web 

services that can match the user request but their interface is 

not the same as the user request. Thus, semantic matchmaking 

of Web services is needed. 

b) Flexibility: new evolving mechanisms should be 

flexible to support large numbers of services providers. 

c) Scalability: selection algorithm of Web services 

should be scalable to support any number of QoS 

requirements. 

d) Generality: the selection algorithm should be as 

generic as possible to support different users and various user 

requirements, rather than specific types of users. 

e) User personalization: the algorithm should be able 

to provide the right service to the right user request; ideally 

the user preferences should be captured automatically 

C. Our Contribution 

Inspired by importance of the Web service selection 
problem and its vital role in satisfying the requests of billions 
internet users, in this paper, we address the service selection 
problem. We focus on the five challenges that we presented 
earlier namely, the accuracy, flexibility, scalability, generality, 
and personalization. Our main contributions are as follows:  

1) We propose a new service selection algorithm that uses 

a semantic matchmaker to enhance the selection accuracy. 

2) We include QoS criteria in our selection process to find 

the service that best matches the user requirements and 

constraints.  

3) We employ data warehousing techniques to capture the 

historical user profile to provide a better service 

personalization based on previous user requirements and 

selections. 

4) We experimentally show that the proposed algorithm 

enhances the quality and efficiency of the selection process. 

The paper is organized as follows: Section II presents an 
overview of previous work. Section III describes QoS 
properties that will be used. Section IV discusses the system 
architecture. Our proposed selection methodology of Web 
services is presented in section V. Experimental evaluation is 
provided in section VI. Finally, section VII concludes our 
work and presents directions for future work. 
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TABLE I.    SERVICES PROVIDED BY REPRESENTATIVE PROVIDER

II. RELATED WORK 

Today we are witnessing a proliferation in the number of 

available Web services; this proliferation increases the need 

for automatic Web service retrieval algorithms. Currently, 

Web service discovery is a challenging task specially when  

finding the services that match users’ interest. This challenge 
is a natural consequence of the inability of service  

discovery processes to resolve ambiguities introduced by 
Web service interfaces. Unfortunately, many of the existing 
discovery models restrict themselves to finding Web services 
solely based on the descriptions available within WSDL 

documents [12, 13]. 

Several approaches have been proposed in the literature for 
discovering Web services. In [14], the authors proposed a 
system that discovers Web services based on keyword 
matching by taking advantage of the IR technique utilizing 
Vector Space Model (VSM). This approach computes the 
similarity between query terms and the document collection 
focusing mainly on WSDL operations (e.g. operation names). 

In a similar effort, the authors in [15] proposed Woogle, a 
search engine which focuses on retrieving WSDL operations 
retrieving WSDL operations. Woogle (which discontinued its 
services in 2006), collected services from accessible service 
registries and provided clients with capabilities to perform 
keyword-based search. However, the main underlying concept 
behind the method implemented in Woogle was based on the 
assumption that Web services belong to the same domain of 
interest and are equal in terms of their behavior in 
accomplishing the required functionality. 

In [16], the author provided a comprehensive list of QoS 
parameters that cover the quality in Web services, and 
classified them into categories including: (1) runtime- QoS 
attributes, such as scalability, capacity, performance, 
reliability, availability, robustness, accuracy, and exception 
handling; (2) transactional- QoS which mainly focuses on the 
quality of transactions executed (integrity); (3) configuration 
management and cost-QoS properties that are to standards and 
cost, such as regulatory, supported standards, stability, cost, 
and completeness; and (4) security- QoS properties that are to 
security, such as authentication, confidentiality, 
accountability, data encryption, traceability, and non-
repudiation. 

Other researchers have provided similar lists of QoS 
properties [17, 18, 19], however, little or no details are given 
on how to calculate or compute the proposed QoS parameters. 
Recently, a number of approaches were proposed that 
presented experimental frameworks that attempt to provide 
QoS measurements and support for Web services. One of the 
most common frameworks is QoS Certifier introduced in Ran 
[16] in which a system is proposed for adding QoS 
information in UDDI registries using a QoS certification 
framework. The QoS Certifier verifies QoS claims provided 
by a service provider. Although the proposed solution may 
provide QoS support for Web service discovery, it has several 
limitations such as the redundancy of performing QoS 
measurements which first have to be supplied by the service 
provider at the time of registration, and then those QoS 
measurements will eventually be performed by a certification 
authority. In addition, this solution proposed a major change to 
the UDDI specification [20] which is problematic at this stage. 

In [21], the authors used the concept of classes in their 
proposed approach named WS-QoS. WS-QoS attempts to 
address issues, such as service selection and monitoring of 
QoS for Web services. WS-QoS not only defines several QoS 
parameters, but also includes network-level QoS parameters 
such as packet-loss, and network delay [21]. However, in real 
world, it is likely that clients would be more interested to 
know the overall QoS of a Web service, and not network-level 
details. 

In [22], the authors proposed QoS support for service-
oriented middleware (SOM). In this model, the middle-ware 
monitors QoS metrics for Web services automatically, and 
four QoS properties were identified: time, cost, reliability, and 
fidelity. Similarly, in [23], the authors proposed a model for 
identifying services based on QoS guarantees. However, in 
both of these proposed solutions, the authors did not provide 
an actual implementation of the proposed systems or how QoS 
metrics are conducted. 

Other approaches focused on the semantic support for Web 
services as presented in [24], the authors proposed a novel 
approach to integrate services considering only their 
availability, the functionalities they provide, and their non-
functional QoS properties rather than considering the users 
direct requests. In [25], the authors proposed a solution for this 
problem and introduced the Web Service Relevancy Function  

Service Provider Service Type Price Platform/API Availability(SLA)% 

Google AppEngine Compute  $8/application  Java/Spring/Python  99.9 

Azure compute (small) Compute 0.12/h  Windows server2008  99.95 

IBM cloud (Unres. Bronze)  Compute $0.210/ h RedHat Linux  99.5 

AWS SimpleDB Database  $0.250/GB/Month   

Azure storage  Storage $0.15 /GB/Month  99.9 
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(WSRF) that is used for measuring the relevancy ranking of a 
particular Web service based on QoS metrics and client 
preferences. However one of the challenges in this work is the 
clients ability to control the discovery process across 
accessible service registries for finding services of interest, yet 
semantic matching of services has not been considered. 

In [26] the authors proposed heuristic algorithms that can 
be used to find a near-to-optimal solution more efficiently than 
exact solutions. The authors proposed two models for the 
QoS-based service composition problem. Despite the 
significant improvement of these algorithms compared to 
exact solutions, both algorithms do not scale with respect to an 
increasing number of Web services and remain out of the real 
time requirements. 

Unfortunately many of the existing solutions do not 
provide ways for clients to articulate service queries tailored to 
their needs. In fact, the existing discovery models do not 
sufficiently consider end-to-end discovery mechanisms that 
can provide clients with quality Web services. In addition, 
existing QoS discovery models do not provide ways to 
conduct QoS measurements in a transparent and fair manner. 
in addition, users do not know the history of the service as if it 
is a reliable service or not. As a result, the user has to try to 
use the service and see if it can actually provide the required 
information or not. 

Inspired by the mode of the Internet Web search engine, 
like Yahoo, Google, the authors on [9] design the service 
providers search engine (SPSE) algorithm. Different with the 
existing works, which directly schedule the jobs to resources, 
the algorithm does not make any schedule decision for the job, 
but is an assistant tool for service selection. 

Our algorithm most similar to his idea but in our algorithm 
after we select the available providers that can match the user 
request we enhance the result by conducting semantic 
matching of services which provide more accurate results also 
we provide a new method for the selection and ranking of the 
results of our algorithm. In this work we present a solution that 
aims to overcome many of the limitations of the existing 
solutions and offers a novel quality-driven discovery and 
ranking of Web services. Unlike many of the existing QoS 
discovery models which require major changes to be made to 
existing standards such as UDDI, our model serves as an 
assistant tool for service selection.  

Our proposed model measures service qualities in an 
independent and transparent manner, and allows clients to 
control and manage the discovery process based on QoS 
properties. 

III. QUALITY OF SERVICE (QOS) 

QoS criteria are used to differentiate the Web services 
providing the same functionality during the service selection 
process. As a user request can be answered by multiple 
functionally similar services with different level of QoS. One 
or more non-functional properties can be associated to a Web 
service. In this work we use the generic QoS criteria as the 
basis for further discussions which are also used in [9, 27, 28]. 
In the rest of this section we explore those additional QoS 
measures in more details.   

 Trust degree: Trust degree is a kind of a social attribute 

of the service provider, and implies its reliability or 

availability level. The authors in [9] proposed to compute 

the trust degree of each service provider by aggregating 

several factors, such as, success rate, user´s evaluation to 

the service, availability level in Service Level Agreement 
(SLA). Calibrating them into a decimal value between 0 

and 1, and denoting by TDi the ith correlative factor. the 

trust degree of a service provider can be calculated as:   

 

      ∑   
 
         

Where wi is the weight for the corresponding factor, and d 
is the number of factors. We assume that trust degree is used 
as a decimal score, with a greater value representing more 
reliable provider. 

 Execution Time: is the time interval between the time a 

service request arrives, and the time the corresponding 

response is generated. The execution time can be 

estimated by using existing performance estimation 

techniques, such as history data [29]. 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 
Figure 1.     Web Service Selection Architecture 

We assume that the response time can be predicted exactly, 
and simply make use of history data for a service provider´s 
computing power; in case of first time in using services we 
assume that processing speed standing for provider´s 
computing power. 

 Service Charge: is the cost that the requester has to pay. 

The Web service cost can be estimated by operation or by 

volume of data. i.e. the monetary cost for request 

execution is commonly defined as:  
 

C = Din . Pin + Texe .Pexe+ Dout. Pout 

Where, C indicates the total monetary cost, Din represents 
the data volume transferred into the service provider, Texe 
stands for the Request execution time, and Dout denotes the 
data volume transferred back to the user after request finish. 
Pin, Pexe and Pout indicate the prices for transferring in data, job 
execution and transferring out data, respectively. 
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 Service Platform/API: various platforms and APIs are 

provided for applications. The users may specify the 

platform or API requirements (e.g. the .Net applications, 

or Java/Spring based applications). If the application is 

originally developed on.Net platform, transplanting it to 

the Azure can offer tremendous savings in terms of time. 

IV. SYSTEM ARCHITECTURE 

The main focus of our approach is to design an intelligent 
system that has the potential of examining Web service’s QoS 
properties in an open and transparent manner, and enabling 
clients to select the best available Web service by taking 
advantage of client QoS preferences, Web service capabilities, 
and service provider features. This is achieved through the 
following architecture of the proposed solution as shown on 
Fig. 1. 

Web Services from different firms are stored on database 
using UDDI registry. The service selection algorithm is 
geographically separated and deployed on the Internet. It 

communicates with the database to find service providers. 

A. Service request module: 

This module uses a Web service ontology language (OWL-
S) to communicate with the Query module to search for the 
Web service according to the functional service demand. 

B. Services Response module:  

This module presents the ranked set of services to the user 
also to collect users’ appraisals towards the founded services. 
The collected information is offered for further action. by 
collecting the user’s feedback and passing results to the QoS 
database for adjusting the service provider’s appraisal 
dynamically according to the user’s experience To guarantee 
the data quality, this module will change QoS attribute of user 
profile values dynamically after each user selection. 

1) Query module: 
This module communicates with the UDDI Registry to 

find all the service providers for user’s request, and calculates 
some QoS values, e.g. response time. And store the result.  

2) Selector module: 
This module will return the service provider candidates; 

inside the selector we implement our provider selection 
algorithm. 

3) Functional match module: 
This module after receiving the services with QoS 

information , it filter the returned services by performing  
semantic match between the returned services and services 
request  using OWL-MX matchmaker filters. 

4) QoS  module: 
This module makes inquiries of QoS information regularly 

from a UDDI repository to check whether any Web service 
has added or withdrawn its QoS values. It changes information 
in the QoS database after the new Web service function has 
been classified that improves to a great extent the quality of 
the Web service discovery process. To continuously update 
services QoS values through UDDI, this module provides 

reliable service discovery results. In particular, it removes any 
outdated or broken links. 

5) Ranker module: 
This module uses the data collected from other modules to 

generate a ranked list of services. Inside the ranker we 
implement service filtering and ranking algorithm; using data 
warehousing techniques to provide decision about selection 
and ranking of required services by their QoS attributes as 
required by user. The detailed evaluation process will be 
discussed later. 

6) Finally, Execution module: 
This module is in charge of monitoring the execution state 

of the request. If the service provider is dead, it will be 
activated to find another service provider to execute the 
Request. After execution finished, it is also in charge of 
collecting the results.   

V. METHODOLOGY OF WEB SERVICES SELECTION 

In this section we explore our proposed approach the 
proposed system proceeds as follow: 

First, given a user request we search for candidate 
providers that can support this request and then we need to 
filter the resulted candidate services set generated from the 
SPSL (Service Provider Selection Algorithm) to 

a) remove bad provider's,  and  

b) to decrease the search space; this is achieved by 

checking semantic matching between the candidates and 

service request.  

Then, we perform functional matching (matching 
input/output parameters) using OWL-MX matchmaking 
algorithm [14] on the resulting services descriptions from 
running the SPSL algorithm.  

The output of this step is thus a set of matched services 
with their QoS parameters. Next, we check user profile to get 
the weights of each QoS parameters and identify the expected 
user objective function towards the specified parameters.  In 
case users’ profile does not include those data we use his class 
assuming that each user class should contain an importance 
level towards QoS parameters. Then, we build a data cube 
whose dimensions are the QoS parameters of the functionally 
matched services with the aim of maximizing (or minimizing) 
their values according to the user’s objective function. 
Building the data cube in our model acts as the ranking 
method for the services providers.   

Consequently, the user is provided with a ranked candidate 
services list with an OLAP report about each service usage to 
enable him to make efficient decision in selecting the service 
that could provide the needed information.  

Finally, we ask the user for feedback about the results to 
enhance future requests. In addition, the algorithm considers 
the case of 2 equivalent candidates; in this case we employ the 
user rating of those services to select one of them. In case no 
rating value is available, we provide the user with both 
services; and with the help of the resulting OLAP report he 
can decide which one fits his needs. In the following 
discussion we present the details of the algorithm. 
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A. Service Model 

We assume in this work that services are of type request-
response, i.e., they consist of one atomic activity (operation). 

A service is represented as below: 

Service tuple = <ID, I, O, provider_id, service_type, 

interface, processing_speed, price, trust_degree...&others> 

 
where ID is the service identifier, I is the set of service 

inputs, O is the set of service outputs, provider_id uniquely 
identifies the provider; Service type indicates which kind of 
service this resource provides; we can access the service 
through interface.  

Price indicates the monetary cost that users have to pay for 
resource utilization; Trust_degree represents the provider’s 
reputation; We reserve the other criteria field to support more 
criteria. 

B. Request Model 

A service request is used by the framework to select a 
service provider for a single task from a set of services. 

Request = < ReqID; UserID; Input_Data; Services type; 
Interface > 

Where, UserID represents the requesters owner; ReqID 
uniquely identifies the request; Input_Data is the dataset that 
need to submit to the service provider; service type indicates 
which kind of service this request needs; and interface defines 
the platform and API that user prefers. 

In our work the user request are divided in two parts the 
first part will be used to generate candidate providers that 
match specific services type then both the user input data and 
the discovered candidates are semantically annotated to 
perform semantic matching between them. 

A service request is used by the framework to discover a 
set of services. Service request and existing services are both 
described based on common ontology mainly domain 
ontology and service ontology i.e. OWL-S [7], which allow 
service discovery and enable interoperability of the discovered 
services. 

A service request consists of a set of semantic annotations 
(ID, I, O) that describe declaratively the desired service 
properties. ID is the request identifier, I is the service input, 
and O is the service output.  

C. The Service Provider Selection Algorithm (SPSA): 

After we select the set of providers that match the user 

request type as shown in Fig. 2, the number of candidate 
services is further reduced by checking semantic matching 
between the candidates and service request, and by adjusting 
user profiles as we will show in the next section. 

D. Service Filtering and Ranking Algorithm 

Given the results returned in Section V-C, we filter those 

candidate services by first performing semantic matchmaking 

between them and the requested services as follow: 
 

 
Figure 2. The Service Provider Selection Algorithm 

1) Functional matching. 
Semantic Web based approaches have been applied to 

semantically annotate Web Services to allow automated 
discovery and ranking, followed by mediation and invocation. 
Rich semantic descriptions allow Service Providers to model 
their services in a more expressive way that makes it easier for 
the Service Consumers to search for the required service using 
semantic reasoning and querying approaches. 

Use of semantic annotation is important for appropriate 
service discovery and to help user specify problem using free 
text which is translated to semantic description of the problem. 

The users Input_Data are semantically annotated and also 
the candidate’s services generated from SPSA. The functional 
part of a semantic Web service can be described by a 
quadruple SWS = (I , O, P, E),  where I , O, P, E  are sets of 
Inputs, Outputs, Preconditions, and Effects, with each 
parameter semantically annotated by means of an associated 
ontology ”O”.  Matching a service request R with a service 
offer S is based on matching the individual parameters in the 
two descriptions. The service discovery process consists of 
checking all returned services from SPSA that semantically 
match the service request inputs, outputs (IO). 

The proposed algorithm uses the OWLS-MX service 
matchmaker [30] to process service requests and 
advertisements described in OWL-S, and to compute the pair-
wise similarities between parameters. In particular, we use this 
matchmaker because it provides five different matching filters. 
The first performs a purely logic-based match (M0), 
characterizing the result as exact, plug-in, subsumes, or 
subsumed-by. The remaining four perform hybrid match, 
combining the semantic-based matchmaking with the 
following measures: loss-of-information (M1), extended 
Jaccard similarity coefficient (M2), cosine similarity (M3), 
and Jensen-Shannon information divergence based similarity 
(M4). For each pair (R, S) of a service request and service 
advertisement, OWLS-MX applies one of the filters M0 − M4, 
and calculates a single score denoting the degree of match 
between R and S [30]. 

2) Non-functional and personalization. 
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After functional match is performed, we assume there are 
multiple sources of information for each service request; this 
implies that each request can be answered from multiple 
functionally similar Web services, so we need to decide which 
Web service provider is of higher quality. Hence, after 
services have been chosen based on functional parameters, 
non-functional matching is performed and user’s profile has to 
perform another important task while using the service, it has 
to supply preferences of users towards the values of the 
parameters that are transferred to the service: 

1. To save the time needed to identify the weight of 

different quality parameters each time user initializes 

a service request 

2. To ensure providing the right service to the user as he 

expects.    
We use user preference in our model assuming that each 

user profile contains three parts: 

1) The first part contains the class of user (i.e.  Business, 

economic, social … etc.). 

2) The second part consists of the importance level of 

the preferred quality of service parameters and helps 
to choose between discovered services. We assume 

that these values range from 0 to 1.0. For example, a 

0.99 value for price, and 0.44 for availability. Those 

values will be used as a user weight for QoS 

parameters. Also if the user considers all properties 

as important, then the weights are distributed equally.  

If user considers only certain attributes are important 

then the weights will be distributed equally between 

the other remaining attributes and also this part 

include the user preference for business properties of 

services like payment method. 
3) The third part deals with the preferred characteristics 

of objects or information that a service claims to 

provide.  This part helps to choose between different 

services and to discard services that can in principle 

handle the task, but do not provide any desirable 

objects. This is the user rating of service that can be 0 

or 1.0. 
In our study QoS constraint represents user’s end-to-end 

QoS requirements. These can be expressed in terms of the user 
objective function towards the different QoS criteria as 
follows: 

If the parameters values in a range less than 0.5, then we 
assume that the user wants to minimize the values, and if the 
values in a range greater than 0.5, then, we assume the user 
wants to maximize the objective function. Those preferences 
can be gathered from previous interactions in the form of a 
long-term profile or can be directly specified by the user in the 
form of soft constraints.  

Definition 1: Given a candidate service set for a request 
denoted by CSS, and a vector C of QoS constraints on CSS 
given by:         C = c1, c2... cm.  Let S be an instantiation of 
CSS in which a concrete Web service is selected. S is a 
feasible service selection iff S satisfies all QoS constraints in 
C.  

 In case of two identical services (i.e. two similar 
candidates) which candidate should be chosen is a crucial 
question. Deciding which one better presents the user’s 
request when they are identical requires us to define an 
optimal service. Thus, it is important to address the problem of 
finding plans that consistently choose the highest quality 
available Web services. 

Definition 2: An optimal service selection for a given Web 
service request R, and a given vector of QoS constraints C is a 
feasible selection with the maximum non-functional matching 
value.  The non-functional matching value of each service is 
calculated by: 

  (Si) ∑  i
d
i   q

i
 S   ( ) 

Where, NF (Si) is the non-functional matching value, Wi  is 
the weight for the QoS parameter identified by the user, and, qi 
(S) is the value of the ith QoS parameter in service ’S’. 

3) services ranking. 
 Next, we provide a ranking method to sort all matched 

candidate services based on user’s preferences towards the 
criteria (time, cost, trust degree) 

Rank=Functional Match value + non-functional match value.
 (4) 

  Non-functional match= ∑   
 
      ( ) 

In case the users want to minimize the criteria 
value we multiple the value of non-functional match 
by (-1). 

According to the research direction described in sections I, 
II we introduce a multi-dimensional user model in which the 
set of feasible services of user request are organized in an 
OLAP fashion, such that: 

1. The cube dimensions represent the QoS parameters; 

We use the vector Qs   = q1(s , …, qr (s)  to represent 

the QoS attributes of service ‘S’ which  define our 

data cube dimensions, where the function qi(S) is the 
value of the ith  quality attribute of ‘S’.  

In reality, companies managing the service searching 
engines can deploy special applications themselves to obtain 
their own experience on QoS of some specific Web services. 
Alternatively, they can also hire third party companies to do 
these QoS monitoring tasks for them [31]. 

2. The measure of each dimension is the value of Rank 

function. 
Objective function towards those dimensions are calculated 

as we mentioned earlier depending on the weight for each 
value in the quality vector ’C’ the user identifies, to be used 
during the selection of services. 

Note that, we map each item in the quality vector ’C’ into a 
single real value between 0 and 1, by comparing it with the 
minimum and maximum possible values of service candidates 
(for example, the maximum execution price of ’CSS’ can be 
normalized by selecting the execution price of the most 
expensive service in the candidate set) to allow a uniform 
measurement of the multi-dimensional service qualities 
independent of their units and ranges. 
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 ( )  
  ( )     ( )

    ( )     ( )
  

Where, M(i) is the normalization value  for the ith 
dimension  for example “price” , qi(S) is the quality value of 
the ith dimension in Web service component ’S’ in the 
candidate set ’CSS’, Qmax(i) is the maximum value of the ith 

dimension in the candidate set ’CSS’, and Qmin(i) is the 
minimum value of the ith dimension in the candidate set ’CSS’. 

As shown in Fig. 3 each multi-dimensional entry on the 
model contains the objects needed to accomplish the non-
functional selection and retrieving task of services; such 
objects are dynamically built at the beginning of the user 
sessions. In more detail, we exploit the OLAP logic model and 
use the well-known mechanism of aggregations on levels [32]. 
This allows us to represent and manage user variables with a 
very high level of granularity. The matched services are 
returned to user in an ordered list based on user objective 
function. 

With the help of OLAP infrastructure we provide the user 
with the description and history of the services to decide 
which one to choose from. Service consumers might want to 
take a look at the history of these alternatives to make a better 
decision. If a service had good performance during the last 
year it might be more trust-worthy than services which have 
been recently published. This in turn is important to ensure 
result reliability that can help not only the user who wants to 
both save time and perform the right selection, but also large 
organizations that want to save money and time. 
Consequently, using data warehouse will benefit us in: 

 

 

 
 

 

 

 

 

 

 

 

 

 

 
 

Figure 3.      Star schema for non-functional and personalized selection of 

semantic Web service. 

1) Past interactions are stored and can be retrieved to 

save time for search and selection of services. 

2) Building a data cube with the selected QoS 
parameters (i.e. execution time, price, etc.), and 

objective function helps us to select and rank services 

that best match user request and preference in timely 

fashion. 

3) If there are set of matched services that are 

functionally equivalent with different QoS, the model 

will find the best one of them based on user objective 

function and preference. 

4) Each cube cell represents constraint over the selected 

service and so that the objective function to find best 

matched service can be performed. Also a ranked 

service list is provided. 
5) The stored heuristic data about user interaction with 

different services are extremely useful for service 

providers as they can display reports about usage 

percentage of their services during specific periods of 

time.  

6) Also, if the system is applied in a company the 

manager can identify that a specific service provider 

has poor rating and so does not accept his services in 

the future. 

4) Update users profile. 
After we found the service, we enable the user to provide 

rating on the provided services to show whether these services 
satisfy his needed information or not. The provided ratings are 
stored in the system for future use when the same or a similar 
request is issued. 

5) Algorithm Overview. 
In this section we explore some basic concepts and 

notations that we will use in our algorithm. Then, we present 
our proposed Service Filtering and Ranking algorithm (SFRA) 
shown on Fig. 4. 

Definition 3. A Matched Solution List MSoL is a list of 
service providers that can serve the user request. It is similar, 
but not identical to the SPL: 

a) MSoL is generated by filtering the SPL, by running 

OWL-MX. 

b) Both the MSoL and SPL contain the service providers 

SP who will execute user request. 

 
Definition 4. A Final Solution List FSoL is a list of service 

providers generated by filtering the MSoL such that: FSoL is 
generated by filtering MSoL based on the user profile values. 
The size of FSoL is smaller than the size of MSoL. 

Definition 5. A Ranked Solution List RSoL is a list 
generated by sorting all the services in FSoL such that: 

 RSoL contains exactly the same services in the FSoL. 

 Service providers in RSoL are sorted using data cube. 

 RSoL is returned to the end user. 

VI. EXPERIMENTAL RESULTS 

In this section we discuss our experimental evaluation for 
our proposed algorithm. In our experiments we manually 
defined services. Services in the registry are all created and 
semantically annotated by humans (service developers). We 
assume in this scenario that all the services are meaningful. 
All services information’s are stored in a data warehouse 
which is implemented by files updating instead of a real 
monitoring service, e.g. MDS service [33], also we used the 
open source for OWL-MX matchmaker [30] for functional 
matching of service as described in the functional matching 
Section. 

 



(IJACSA) International Journal of Advanced Computer Science and Applications,  
Vol. 2, No. 12, 2011 

199 | P a g e  
www.ijacsa.thesai.org 

 

Figure 4.  Services Filtering and Ranking Algorithm 

In the experiments we simulate different number of service 
providers ranging from 100 to 13000 providers, we use 
numeric code indicating the different types of service, 
uniformly ranging from 1 to 9. The price is evenly generated 
between 10 and 20 cent per service. And the trust degree is a 
decimal value uniformly generated from [0; 1]. 

The experiments were conducted on a DELL Inspiron 
1525 machine with 2.80GHz processor Core Duo and 1 GB 
RAM. The machine is running under Microsoft windows 7 
operating system. 

In our experiments, we evaluate the performance of our 
proposed approach through two experiments; the scheduling 
latency under different number of services providers and 
different number of QoS criteria.  

1. Scheduling latency under different number of 

services providers: Considering the QoS criteria: 

response time, monetary cost and trust degree, we 

evaluate the latency in responding to user request 

from different number of service providers. Fig. 5, 

shows that only a small number of service providers 

are available for the job under our configurations 
compared to SPSE [9]. 

 
Although, in Fig. 5, along with the number of service 

providers increasing from 500 to 3000, our algorithm has a 
much higher scheduling efficiency compared to the SPSE 

algorithm; our algorithm takes more time for semantic 
matching of services request as shown in Fig. 6.  

 
Figure 5.  Available service candidates for the request. 

For example when we have 2700 service provider our 
algorithm selects 75 that match the user request in 57:55 sec 
but SPSE algorithm selects 81 services in 38sec.  

 

Figure 6.  Latency for scheduling 150 request with different number of QoS 
criteria. 

Therefore, our proposed algorithms SFRA is quite useful 
for user to accurately find the most appropriate service 
providers but with the cost of increasing the time. 

2. The scheduling latency under different number of 

QoS criteria: Considering 1000 service providers and 

150 service requests in the experiments, the SFRA 

and SPSE algorithms efficiency is also evaluated 

under different number of QoS criteria. Only the 

response time is considered in the first experiment, 

response time and monetary cost are integrated in to 
the second experiment, and response time, monetary 

cost and trust degree are implemented in the third 

experiment. As shown in Fig. 7, the time needed 

increases linearly with the number of criteria also 

SPSE algorithm take small time compared to our 

algorithm. 
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Figure 7.        Comparison of SFRA and SPSE algorithms 

We summarize the key findings of the comparison test 
between our approach and the SPSE engine as follows. The 
first observation is that an optimization of automated Web 
service discovery techniques appears to be necessary in order 
to assure the effectiveness of semantic Web services in larger 
search spaces of available Web services which can be 
expected in real-world scenarios. The second major outcome 
is that our approach can be considered as an optimization 
technique for automated Web Service selection because it can 
achieve significant improvements in computational 
performance. Our approach also assures scalability as it 
supports large number of service providers and QoS 
parameters, and it demonstrates a high accuracy among 
several invocations with marginal variations in the number of 
available services. 

VII. CONCLUSIONS AND FUTURE WORK 

In this paper we propose an algorithm that is used as a tool 
in the selection of Web services based on the available 
providers and user requirements. Our algorithm basically 
selects the best set of services as required by the user. In 
addition, the proposed approach ranks those set of candidate 
services.  

A key feature of our proposed approach is that, instead of 
asking the user for the non-functional properties, the algorithm 
uses the importance level for QoS parameters already stored in 
user profile, which makes the algorithm easy to use even for 
someone not very familiar with the different quality of 
services attributes. 

Besides, the approach allows the user to rate any of the 
matched services, indicating how relevant or appropriate they 
are for his request. This rating is used to speed-up similar 
future searches.  

For future work we aim to improve our Web service 
selection approach and allow it capturing maximum possible 
and relevant information from publicly available information 
in user's social network. Social aspects of the information 
from a network of service consumers and service providers 
can help a lot in ranking the best available Web services for 
the users. In addition, we want to consider the case where no 
matched services are found that match user QoS constraints. 
We want to explore the effect of relaxing those QoS 
constraints. Finally, we aim to investigate more on how we 

can take into account the users’ opinion on the identified 
objective function to achieve better service matching. 
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