
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 2, No. 12, 2011

191 | P a g e
www.ijacsa.thesai.org

A Flexible Tool for Web Service Selection in Service

Oriented Architecture
A Flexible Tool for Web Service Selection

Walaa Nagy, Hoda M. O. Mokhtar, Ali El-Bastawissy

Faculty of Computers and Information

Cairo University

Cairo, Egypt

Abstract--Web Services are emerging technologies that enable

application to application communication and reuse of services

over Web. Semantic Web improves the quality of existing tasks,

including Web services discovery, invocation, composition,

monitoring, and recovery through describing Web services

capabilities and content in a computer interpretable language. To

provide most of the requested Web services, a Web service

matchmaker is usually required. Web service matchmaking is the

process of finding an appropriate provider for a requester

through a middle agent. To provide the right service for the right

user request, Quality of service (QoS)-based Web service

selection is widely used. Employing QoS in Web service selection

helps to satisfy user requirements through discovering the best

service(s) in terms of the required QoS. Inspired by the mode of

the Internet Web search engine, like Yahoo, Google, in this paper

we provide a QoS-based service selection algorithm that is able to

identify the best candidate semantic Web service(s) given the

description of the requested service(s) and QoS criteria of user

requirements. In addition, our proposed approach proposes a

ranking method for those services. We also show how we employ

data warehousing techniques to model the service selection

problem.

The proposed algorithm integrates traditional match making

mechanism with data warehousing techniques. This integration

of methodologies enables us to employ the historical preference of

the user to provide better selection in future searches. The main

result of the paper is a generic framework that is implemented to

demonstrate the feasibility of the proposed algorithm for QoS-

based Web application. Our presented experimental results show

that the algorithm indeed performs well and increases the system
reliability.

Keywords-Semantic Web; Web services; Web services match-

making; Data warehouses; Quality of Services (QoS); Web service

ranking.

I. INTRODUCTION

A. Background

Web services are considered as self-contained, self-
describing, modular applications that can be published,
located, and invoked across the Web [1]. With the

development of service-oriented architecture (SOA) and
cloud computing, more and more services are continuously

emerging on the Internet, such as Amazon EC21, Google App
Engine2; thus, it is expected that in the near future there would
be more and more different types of services, and more and
more number of services emerging on the Internet.

Besides as the users often do not know how to quantify the
trade-offs between different Web services and just wish to
quickly grasp what can be potentially interesting, a single
solution that is the best one from an objective point of view
typically does not exist; instead, many reasonable alternative
services usually exist .

Hence, as both the user requirements, and the number of
available services and service providers increases, improving
the effectiveness and accuracy of Web service discovery and
selection mechanisms becomes a crucial issue [2, 3].

Today, the Universal Description, Discovery and
Integration UDDI standard is considered the most commonly
used service discovery standard [4]. However, UDDI has 2
main shortcomings: first, it returns coarse results for a
keyword based search, and second, more importantly it lacks
semantics. Hence, UDDI is basically a framework that
supports category based search [4].

On the other hand, semantic Web improves the quality of
existing tasks, including Web services discovery, invocation,
composition, monitoring, and recovery by describing Web
services capabilities and content in a computer interpretable
language [4].

One of the main applications of semantic Web is its usage
in the semantic Web services in the matchmaking process.
Matchmaking is the process of finding an appropriate provider
for a requester through a middle agent. Consequently,
Semantic matchmaking is used by semantic Web services to
find valuable service candidates and selecting the most
suitable service(s) that best match user request [5, 6]. In this
work we use OWL-S [7] for describing the used services.

OWL-S is an OWL-based Web service ontology, which
supplies a core set of markup language, constructs for
describing the properties and capabilities of Web services in

1http://aws.amazon.com/
2http :// code.google.com/appengine/

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 2, No. 12, 2011

192 | P a g e
www.ijacsa.thesai.org

an unambiguous, computer-interpretable form. The overall
ontology consists of three main components: the service
profile for advertising and discovering services; the process
model, which gives a detailed description of a service’s
operation; and the grounding, which provides details on how
to interoperate with a service, via messages. Specifically, it
specifies the signature that is composed of the inputs required
by the service, and the outputs generated. Furthermore, since a
service may require external conditions to be satisfied, and its
execution can change those conditions, the profile describes
the preconditions required by the service and the expected
effects that result from the execution of the service. For more
details, we refer the reader to for example [7].

Nevertheless, with the increasing number of Web services
providing similar functionalities, the QoS (Quality of Service)
is becoming an important criterion of selection of the best
available service. Although, we believe that designing
intuitive, easy-to-use user interfaces can help the process of
collecting user feedback and preferences; in this work, we do
not deal with this issue, instead our focus is on how the
collected information in the user profile is processed and
integrated in the selection process of Web services to improve
the results of subsequent searches.

Inspired by the fact that current enterprise decision making

systems benefit more from OLAP, and data warehouse

techniques [8], in this paper we show how we can adopt the

power of data warehousing in supporting decision making, and

how data warehouses and OLAP techniques can help in
selecting the most interesting result with the above issues

being considered.

In general, data warehousing is one of the most common

business intelligence tools nowadays. Data warehouses

provide a solid platform that includes both current and

historical data [8]. Using this platform, companies can

therefore make a series of analysis that can help in providing

the right service that matches the user request more easily,

accurately, and efficiency.

B. Motivation

The availability of service providers with different features
makes the task of selecting an appropriate service provider for
a user more and more complex which motivates us to consider
new solutions for the Web services selection problem in SOA
systems. As shown in Table I there are various types and
number of services, associated with different performances,
prices, platform/APIs, and availability levels [9, 10, 11].

Analyzing these services we find that:

1) There exist various types of services (for example

compute, storage etc).

2) There exist a large number of functionally similar

services which results in a proliferation in the number of

services that provide similar functionality with different QoS

criteria (i.e. price, availability).

3) There are a large number of service providers that are

continuously emerging on the internet such as Google

AppEngine.

4) Finally, there is a wide range in service performance

and price. Where different providers offer their services with

different prices and performance values.

From that we can conclude that Web service selection
process needs five crucial issues:

a) Accuracy: the algorithm should avoid the loss of Web

services that can match the user request but their interface is

not the same as the user request. Thus, semantic matchmaking

of Web services is needed.

b) Flexibility: new evolving mechanisms should be

flexible to support large numbers of services providers.

c) Scalability: selection algorithm of Web services

should be scalable to support any number of QoS

requirements.

d) Generality: the selection algorithm should be as

generic as possible to support different users and various user

requirements, rather than specific types of users.

e) User personalization: the algorithm should be able

to provide the right service to the right user request; ideally

the user preferences should be captured automatically

C. Our Contribution

Inspired by importance of the Web service selection
problem and its vital role in satisfying the requests of billions
internet users, in this paper, we address the service selection
problem. We focus on the five challenges that we presented
earlier namely, the accuracy, flexibility, scalability, generality,
and personalization. Our main contributions are as follows:

1) We propose a new service selection algorithm that uses

a semantic matchmaker to enhance the selection accuracy.

2) We include QoS criteria in our selection process to find

the service that best matches the user requirements and

constraints.

3) We employ data warehousing techniques to capture the

historical user profile to provide a better service

personalization based on previous user requirements and

selections.

4) We experimentally show that the proposed algorithm

enhances the quality and efficiency of the selection process.

The paper is organized as follows: Section II presents an
overview of previous work. Section III describes QoS
properties that will be used. Section IV discusses the system
architecture. Our proposed selection methodology of Web
services is presented in section V. Experimental evaluation is
provided in section VI. Finally, section VII concludes our
work and presents directions for future work.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 2, No. 12, 2011

193 | P a g e
www.ijacsa.thesai.org

TABLE I. SERVICES PROVIDED BY REPRESENTATIVE PROVIDER

II. RELATED WORK

Today we are witnessing a proliferation in the number of

available Web services; this proliferation increases the need

for automatic Web service retrieval algorithms. Currently,

Web service discovery is a challenging task specially when

finding the services that match users’ interest. This challenge
is a natural consequence of the inability of service

discovery processes to resolve ambiguities introduced by
Web service interfaces. Unfortunately, many of the existing
discovery models restrict themselves to finding Web services
solely based on the descriptions available within WSDL

documents [12, 13].

Several approaches have been proposed in the literature for
discovering Web services. In [14], the authors proposed a
system that discovers Web services based on keyword
matching by taking advantage of the IR technique utilizing
Vector Space Model (VSM). This approach computes the
similarity between query terms and the document collection
focusing mainly on WSDL operations (e.g. operation names).

In a similar effort, the authors in [15] proposed Woogle, a
search engine which focuses on retrieving WSDL operations
retrieving WSDL operations. Woogle (which discontinued its
services in 2006), collected services from accessible service
registries and provided clients with capabilities to perform
keyword-based search. However, the main underlying concept
behind the method implemented in Woogle was based on the
assumption that Web services belong to the same domain of
interest and are equal in terms of their behavior in
accomplishing the required functionality.

In [16], the author provided a comprehensive list of QoS
parameters that cover the quality in Web services, and
classified them into categories including: (1) runtime- QoS
attributes, such as scalability, capacity, performance,
reliability, availability, robustness, accuracy, and exception
handling; (2) transactional- QoS which mainly focuses on the
quality of transactions executed (integrity); (3) configuration
management and cost-QoS properties that are to standards and
cost, such as regulatory, supported standards, stability, cost,
and completeness; and (4) security- QoS properties that are to
security, such as authentication, confidentiality,
accountability, data encryption, traceability, and non-
repudiation.

Other researchers have provided similar lists of QoS
properties [17, 18, 19], however, little or no details are given
on how to calculate or compute the proposed QoS parameters.
Recently, a number of approaches were proposed that
presented experimental frameworks that attempt to provide
QoS measurements and support for Web services. One of the
most common frameworks is QoS Certifier introduced in Ran
[16] in which a system is proposed for adding QoS
information in UDDI registries using a QoS certification
framework. The QoS Certifier verifies QoS claims provided
by a service provider. Although the proposed solution may
provide QoS support for Web service discovery, it has several
limitations such as the redundancy of performing QoS
measurements which first have to be supplied by the service
provider at the time of registration, and then those QoS
measurements will eventually be performed by a certification
authority. In addition, this solution proposed a major change to
the UDDI specification [20] which is problematic at this stage.

In [21], the authors used the concept of classes in their
proposed approach named WS-QoS. WS-QoS attempts to
address issues, such as service selection and monitoring of
QoS for Web services. WS-QoS not only defines several QoS
parameters, but also includes network-level QoS parameters
such as packet-loss, and network delay [21]. However, in real
world, it is likely that clients would be more interested to
know the overall QoS of a Web service, and not network-level
details.

In [22], the authors proposed QoS support for service-
oriented middleware (SOM). In this model, the middle-ware
monitors QoS metrics for Web services automatically, and
four QoS properties were identified: time, cost, reliability, and
fidelity. Similarly, in [23], the authors proposed a model for
identifying services based on QoS guarantees. However, in
both of these proposed solutions, the authors did not provide
an actual implementation of the proposed systems or how QoS
metrics are conducted.

Other approaches focused on the semantic support for Web
services as presented in [24], the authors proposed a novel
approach to integrate services considering only their
availability, the functionalities they provide, and their non-
functional QoS properties rather than considering the users
direct requests. In [25], the authors proposed a solution for this
problem and introduced the Web Service Relevancy Function

Service Provider Service Type Price Platform/API Availability(SLA)%

Google AppEngine Compute $8/application Java/Spring/Python 99.9

Azure compute (small) Compute 0.12/h Windows server2008 99.95

IBM cloud (Unres. Bronze) Compute $0.210/ h RedHat Linux 99.5

AWS SimpleDB Database $0.250/GB/Month

Azure storage Storage $0.15 /GB/Month 99.9

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 2, No. 12, 2011

194 | P a g e
www.ijacsa.thesai.org

(WSRF) that is used for measuring the relevancy ranking of a
particular Web service based on QoS metrics and client
preferences. However one of the challenges in this work is the
clients ability to control the discovery process across
accessible service registries for finding services of interest, yet
semantic matching of services has not been considered.

In [26] the authors proposed heuristic algorithms that can
be used to find a near-to-optimal solution more efficiently than
exact solutions. The authors proposed two models for the
QoS-based service composition problem. Despite the
significant improvement of these algorithms compared to
exact solutions, both algorithms do not scale with respect to an
increasing number of Web services and remain out of the real
time requirements.

Unfortunately many of the existing solutions do not
provide ways for clients to articulate service queries tailored to
their needs. In fact, the existing discovery models do not
sufficiently consider end-to-end discovery mechanisms that
can provide clients with quality Web services. In addition,
existing QoS discovery models do not provide ways to
conduct QoS measurements in a transparent and fair manner.
in addition, users do not know the history of the service as if it
is a reliable service or not. As a result, the user has to try to
use the service and see if it can actually provide the required
information or not.

Inspired by the mode of the Internet Web search engine,
like Yahoo, Google, the authors on [9] design the service
providers search engine (SPSE) algorithm. Different with the
existing works, which directly schedule the jobs to resources,
the algorithm does not make any schedule decision for the job,
but is an assistant tool for service selection.

Our algorithm most similar to his idea but in our algorithm
after we select the available providers that can match the user
request we enhance the result by conducting semantic
matching of services which provide more accurate results also
we provide a new method for the selection and ranking of the
results of our algorithm. In this work we present a solution that
aims to overcome many of the limitations of the existing
solutions and offers a novel quality-driven discovery and
ranking of Web services. Unlike many of the existing QoS
discovery models which require major changes to be made to
existing standards such as UDDI, our model serves as an
assistant tool for service selection.

Our proposed model measures service qualities in an
independent and transparent manner, and allows clients to
control and manage the discovery process based on QoS
properties.

III. QUALITY OF SERVICE (QOS)

QoS criteria are used to differentiate the Web services
providing the same functionality during the service selection
process. As a user request can be answered by multiple
functionally similar services with different level of QoS. One
or more non-functional properties can be associated to a Web
service. In this work we use the generic QoS criteria as the
basis for further discussions which are also used in [9, 27, 28].
In the rest of this section we explore those additional QoS
measures in more details.

 Trust degree: Trust degree is a kind of a social attribute

of the service provider, and implies its reliability or

availability level. The authors in [9] proposed to compute

the trust degree of each service provider by aggregating

several factors, such as, success rate, user´s evaluation to

the service, availability level in Service Level Agreement
(SLA). Calibrating them into a decimal value between 0

and 1, and denoting by TDi the ith correlative factor. the

trust degree of a service provider can be calculated as:

 ∑

   

Where wi is the weight for the corresponding factor, and d
is the number of factors. We assume that trust degree is used
as a decimal score, with a greater value representing more
reliable provider.

 Execution Time: is the time interval between the time a

service request arrives, and the time the corresponding

response is generated. The execution time can be

estimated by using existing performance estimation

techniques, such as history data [29].

Figure 1. Web Service Selection Architecture

We assume that the response time can be predicted exactly,
and simply make use of history data for a service provider´s
computing power; in case of first time in using services we
assume that processing speed standing for provider´s
computing power.

 Service Charge: is the cost that the requester has to pay.

The Web service cost can be estimated by operation or by

volume of data. i.e. the monetary cost for request

execution is commonly defined as:

C = Din . Pin + Texe .Pexe+ Dout. Pout 

Where, C indicates the total monetary cost, Din represents
the data volume transferred into the service provider, Texe
stands for the Request execution time, and Dout denotes the
data volume transferred back to the user after request finish.
Pin, Pexe and Pout indicate the prices for transferring in data, job
execution and transferring out data, respectively.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 2, No. 12, 2011

195 | P a g e
www.ijacsa.thesai.org

 Service Platform/API: various platforms and APIs are

provided for applications. The users may specify the

platform or API requirements (e.g. the .Net applications,

or Java/Spring based applications). If the application is

originally developed on.Net platform, transplanting it to

the Azure can offer tremendous savings in terms of time.

IV. SYSTEM ARCHITECTURE

The main focus of our approach is to design an intelligent
system that has the potential of examining Web service’s QoS
properties in an open and transparent manner, and enabling
clients to select the best available Web service by taking
advantage of client QoS preferences, Web service capabilities,
and service provider features. This is achieved through the
following architecture of the proposed solution as shown on
Fig. 1.

Web Services from different firms are stored on database
using UDDI registry. The service selection algorithm is
geographically separated and deployed on the Internet. It

communicates with the database to find service providers.

A. Service request module:

This module uses a Web service ontology language (OWL-
S) to communicate with the Query module to search for the
Web service according to the functional service demand.

B. Services Response module:

This module presents the ranked set of services to the user
also to collect users’ appraisals towards the founded services.
The collected information is offered for further action. by
collecting the user’s feedback and passing results to the QoS
database for adjusting the service provider’s appraisal
dynamically according to the user’s experience To guarantee
the data quality, this module will change QoS attribute of user
profile values dynamically after each user selection.

1) Query module:
This module communicates with the UDDI Registry to

find all the service providers for user’s request, and calculates
some QoS values, e.g. response time. And store the result.

2) Selector module:
This module will return the service provider candidates;

inside the selector we implement our provider selection
algorithm.

3) Functional match module:
This module after receiving the services with QoS

information , it filter the returned services by performing
semantic match between the returned services and services
request using OWL-MX matchmaker filters.

4) QoS module:
This module makes inquiries of QoS information regularly

from a UDDI repository to check whether any Web service
has added or withdrawn its QoS values. It changes information
in the QoS database after the new Web service function has
been classified that improves to a great extent the quality of
the Web service discovery process. To continuously update
services QoS values through UDDI, this module provides

reliable service discovery results. In particular, it removes any
outdated or broken links.

5) Ranker module:
This module uses the data collected from other modules to

generate a ranked list of services. Inside the ranker we
implement service filtering and ranking algorithm; using data
warehousing techniques to provide decision about selection
and ranking of required services by their QoS attributes as
required by user. The detailed evaluation process will be
discussed later.

6) Finally, Execution module:
This module is in charge of monitoring the execution state

of the request. If the service provider is dead, it will be
activated to find another service provider to execute the
Request. After execution finished, it is also in charge of
collecting the results.

V. METHODOLOGY OF WEB SERVICES SELECTION

In this section we explore our proposed approach the
proposed system proceeds as follow:

First, given a user request we search for candidate
providers that can support this request and then we need to
filter the resulted candidate services set generated from the
SPSL (Service Provider Selection Algorithm) to

a) remove bad provider's, and

b) to decrease the search space; this is achieved by

checking semantic matching between the candidates and

service request.

Then, we perform functional matching (matching
input/output parameters) using OWL-MX matchmaking
algorithm [14] on the resulting services descriptions from
running the SPSL algorithm.

The output of this step is thus a set of matched services
with their QoS parameters. Next, we check user profile to get
the weights of each QoS parameters and identify the expected
user objective function towards the specified parameters. In
case users’ profile does not include those data we use his class
assuming that each user class should contain an importance
level towards QoS parameters. Then, we build a data cube
whose dimensions are the QoS parameters of the functionally
matched services with the aim of maximizing (or minimizing)
their values according to the user’s objective function.
Building the data cube in our model acts as the ranking
method for the services providers.

Consequently, the user is provided with a ranked candidate
services list with an OLAP report about each service usage to
enable him to make efficient decision in selecting the service
that could provide the needed information.

Finally, we ask the user for feedback about the results to
enhance future requests. In addition, the algorithm considers
the case of 2 equivalent candidates; in this case we employ the
user rating of those services to select one of them. In case no
rating value is available, we provide the user with both
services; and with the help of the resulting OLAP report he
can decide which one fits his needs. In the following
discussion we present the details of the algorithm.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 2, No. 12, 2011

196 | P a g e
www.ijacsa.thesai.org

A. Service Model

We assume in this work that services are of type request-
response, i.e., they consist of one atomic activity (operation).

A service is represented as below:

Service tuple = <ID, I, O, provider_id, service_type,

interface, processing_speed, price, trust_degree...&others>

where ID is the service identifier, I is the set of service

inputs, O is the set of service outputs, provider_id uniquely
identifies the provider; Service type indicates which kind of
service this resource provides; we can access the service
through interface.

Price indicates the monetary cost that users have to pay for
resource utilization; Trust_degree represents the provider’s
reputation; We reserve the other criteria field to support more
criteria.

B. Request Model

A service request is used by the framework to select a
service provider for a single task from a set of services.

Request = < ReqID; UserID; Input_Data; Services type;
Interface >

Where, UserID represents the requesters owner; ReqID
uniquely identifies the request; Input_Data is the dataset that
need to submit to the service provider; service type indicates
which kind of service this request needs; and interface defines
the platform and API that user prefers.

In our work the user request are divided in two parts the
first part will be used to generate candidate providers that
match specific services type then both the user input data and
the discovered candidates are semantically annotated to
perform semantic matching between them.

A service request is used by the framework to discover a
set of services. Service request and existing services are both
described based on common ontology mainly domain
ontology and service ontology i.e. OWL-S [7], which allow
service discovery and enable interoperability of the discovered
services.

A service request consists of a set of semantic annotations
(ID, I, O) that describe declaratively the desired service
properties. ID is the request identifier, I is the service input,
and O is the service output.

C. The Service Provider Selection Algorithm (SPSA):

After we select the set of providers that match the user

request type as shown in Fig. 2, the number of candidate
services is further reduced by checking semantic matching
between the candidates and service request, and by adjusting
user profiles as we will show in the next section.

D. Service Filtering and Ranking Algorithm

Given the results returned in Section V-C, we filter those

candidate services by first performing semantic matchmaking

between them and the requested services as follow:

Figure 2. The Service Provider Selection Algorithm

1) Functional matching.
Semantic Web based approaches have been applied to

semantically annotate Web Services to allow automated
discovery and ranking, followed by mediation and invocation.
Rich semantic descriptions allow Service Providers to model
their services in a more expressive way that makes it easier for
the Service Consumers to search for the required service using
semantic reasoning and querying approaches.

Use of semantic annotation is important for appropriate
service discovery and to help user specify problem using free
text which is translated to semantic description of the problem.

The users Input_Data are semantically annotated and also
the candidate’s services generated from SPSA. The functional
part of a semantic Web service can be described by a
quadruple SWS = (I , O, P, E), where I , O, P, E are sets of
Inputs, Outputs, Preconditions, and Effects, with each
parameter semantically annotated by means of an associated
ontology ”O”. Matching a service request R with a service
offer S is based on matching the individual parameters in the
two descriptions. The service discovery process consists of
checking all returned services from SPSA that semantically
match the service request inputs, outputs (IO).

The proposed algorithm uses the OWLS-MX service
matchmaker [30] to process service requests and
advertisements described in OWL-S, and to compute the pair-
wise similarities between parameters. In particular, we use this
matchmaker because it provides five different matching filters.
The first performs a purely logic-based match (M0),
characterizing the result as exact, plug-in, subsumes, or
subsumed-by. The remaining four perform hybrid match,
combining the semantic-based matchmaking with the
following measures: loss-of-information (M1), extended
Jaccard similarity coefficient (M2), cosine similarity (M3),
and Jensen-Shannon information divergence based similarity
(M4). For each pair (R, S) of a service request and service
advertisement, OWLS-MX applies one of the filters M0 − M4,
and calculates a single score denoting the degree of match
between R and S [30].

2) Non-functional and personalization.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 2, No. 12, 2011

197 | P a g e
www.ijacsa.thesai.org

After functional match is performed, we assume there are
multiple sources of information for each service request; this
implies that each request can be answered from multiple
functionally similar Web services, so we need to decide which
Web service provider is of higher quality. Hence, after
services have been chosen based on functional parameters,
non-functional matching is performed and user’s profile has to
perform another important task while using the service, it has
to supply preferences of users towards the values of the
parameters that are transferred to the service:

1. To save the time needed to identify the weight of

different quality parameters each time user initializes

a service request

2. To ensure providing the right service to the user as he

expects.
We use user preference in our model assuming that each

user profile contains three parts:

1) The first part contains the class of user (i.e. Business,

economic, social … etc.).

2) The second part consists of the importance level of

the preferred quality of service parameters and helps
to choose between discovered services. We assume

that these values range from 0 to 1.0. For example, a

0.99 value for price, and 0.44 for availability. Those

values will be used as a user weight for QoS

parameters. Also if the user considers all properties

as important, then the weights are distributed equally.

If user considers only certain attributes are important

then the weights will be distributed equally between

the other remaining attributes and also this part

include the user preference for business properties of

services like payment method.
3) The third part deals with the preferred characteristics

of objects or information that a service claims to

provide. This part helps to choose between different

services and to discard services that can in principle

handle the task, but do not provide any desirable

objects. This is the user rating of service that can be 0

or 1.0.
In our study QoS constraint represents user’s end-to-end

QoS requirements. These can be expressed in terms of the user
objective function towards the different QoS criteria as
follows:

If the parameters values in a range less than 0.5, then we
assume that the user wants to minimize the values, and if the
values in a range greater than 0.5, then, we assume the user
wants to maximize the objective function. Those preferences
can be gathered from previous interactions in the form of a
long-term profile or can be directly specified by the user in the
form of soft constraints.

Definition 1: Given a candidate service set for a request
denoted by CSS, and a vector C of QoS constraints on CSS
given by: C = c1, c2... cm. Let S be an instantiation of
CSS in which a concrete Web service is selected. S is a
feasible service selection iff S satisfies all QoS constraints in
C.

 In case of two identical services (i.e. two similar
candidates) which candidate should be chosen is a crucial
question. Deciding which one better presents the user’s
request when they are identical requires us to define an
optimal service. Thus, it is important to address the problem of
finding plans that consistently choose the highest quality
available Web services.

Definition 2: An optimal service selection for a given Web
service request R, and a given vector of QoS constraints C is a
feasible selection with the maximum non-functional matching
value. The non-functional matching value of each service is
calculated by:

 (Si) ∑ i
d
i q

i
 S ()

Where, NF (Si) is the non-functional matching value, Wi is
the weight for the QoS parameter identified by the user, and, qi
(S) is the value of the ith QoS parameter in service ’S’.

3) services ranking.
 Next, we provide a ranking method to sort all matched

candidate services based on user’s preferences towards the
criteria (time, cost, trust degree)

Rank=Functional Match value + non-functional match value.
 (4)

 Non-functional match= ∑

 ()

In case the users want to minimize the criteria
value we multiple the value of non-functional match
by (-1).

According to the research direction described in sections I,
II we introduce a multi-dimensional user model in which the
set of feasible services of user request are organized in an
OLAP fashion, such that:

1. The cube dimensions represent the QoS parameters;

We use the vector Qs = q1(s , …, qr (s) to represent

the QoS attributes of service ‘S’ which define our

data cube dimensions, where the function qi(S) is the
value of the ith quality attribute of ‘S’.

In reality, companies managing the service searching
engines can deploy special applications themselves to obtain
their own experience on QoS of some specific Web services.
Alternatively, they can also hire third party companies to do
these QoS monitoring tasks for them [31].

2. The measure of each dimension is the value of Rank

function.
Objective function towards those dimensions are calculated

as we mentioned earlier depending on the weight for each
value in the quality vector ’C’ the user identifies, to be used
during the selection of services.

Note that, we map each item in the quality vector ’C’ into a
single real value between 0 and 1, by comparing it with the
minimum and maximum possible values of service candidates
(for example, the maximum execution price of ’CSS’ can be
normalized by selecting the execution price of the most
expensive service in the candidate set) to allow a uniform
measurement of the multi-dimensional service qualities
independent of their units and ranges.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 2, No. 12, 2011

198 | P a g e
www.ijacsa.thesai.org

 ()
 () ()

 () ()
  

Where, M(i) is the normalization value for the ith
dimension for example “price” , qi(S) is the quality value of
the ith dimension in Web service component ’S’ in the
candidate set ’CSS’, Qmax(i) is the maximum value of the ith

dimension in the candidate set ’CSS’, and Qmin(i) is the
minimum value of the ith dimension in the candidate set ’CSS’.

As shown in Fig. 3 each multi-dimensional entry on the
model contains the objects needed to accomplish the non-
functional selection and retrieving task of services; such
objects are dynamically built at the beginning of the user
sessions. In more detail, we exploit the OLAP logic model and
use the well-known mechanism of aggregations on levels [32].
This allows us to represent and manage user variables with a
very high level of granularity. The matched services are
returned to user in an ordered list based on user objective
function.

With the help of OLAP infrastructure we provide the user
with the description and history of the services to decide
which one to choose from. Service consumers might want to
take a look at the history of these alternatives to make a better
decision. If a service had good performance during the last
year it might be more trust-worthy than services which have
been recently published. This in turn is important to ensure
result reliability that can help not only the user who wants to
both save time and perform the right selection, but also large
organizations that want to save money and time.
Consequently, using data warehouse will benefit us in:

Figure 3. Star schema for non-functional and personalized selection of

semantic Web service.

1) Past interactions are stored and can be retrieved to

save time for search and selection of services.

2) Building a data cube with the selected QoS
parameters (i.e. execution time, price, etc.), and

objective function helps us to select and rank services

that best match user request and preference in timely

fashion.

3) If there are set of matched services that are

functionally equivalent with different QoS, the model

will find the best one of them based on user objective

function and preference.

4) Each cube cell represents constraint over the selected

service and so that the objective function to find best

matched service can be performed. Also a ranked

service list is provided.
5) The stored heuristic data about user interaction with

different services are extremely useful for service

providers as they can display reports about usage

percentage of their services during specific periods of

time.

6) Also, if the system is applied in a company the

manager can identify that a specific service provider

has poor rating and so does not accept his services in

the future.

4) Update users profile.
After we found the service, we enable the user to provide

rating on the provided services to show whether these services
satisfy his needed information or not. The provided ratings are
stored in the system for future use when the same or a similar
request is issued.

5) Algorithm Overview.
In this section we explore some basic concepts and

notations that we will use in our algorithm. Then, we present
our proposed Service Filtering and Ranking algorithm (SFRA)
shown on Fig. 4.

Definition 3. A Matched Solution List MSoL is a list of
service providers that can serve the user request. It is similar,
but not identical to the SPL:

a) MSoL is generated by filtering the SPL, by running

OWL-MX.

b) Both the MSoL and SPL contain the service providers

SP who will execute user request.

Definition 4. A Final Solution List FSoL is a list of service

providers generated by filtering the MSoL such that: FSoL is
generated by filtering MSoL based on the user profile values.
The size of FSoL is smaller than the size of MSoL.

Definition 5. A Ranked Solution List RSoL is a list
generated by sorting all the services in FSoL such that:

 RSoL contains exactly the same services in the FSoL.

 Service providers in RSoL are sorted using data cube.

 RSoL is returned to the end user.

VI. EXPERIMENTAL RESULTS

In this section we discuss our experimental evaluation for
our proposed algorithm. In our experiments we manually
defined services. Services in the registry are all created and
semantically annotated by humans (service developers). We
assume in this scenario that all the services are meaningful.
All services information’s are stored in a data warehouse
which is implemented by files updating instead of a real
monitoring service, e.g. MDS service [33], also we used the
open source for OWL-MX matchmaker [30] for functional
matching of service as described in the functional matching
Section.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 2, No. 12, 2011

199 | P a g e
www.ijacsa.thesai.org

Figure 4. Services Filtering and Ranking Algorithm

In the experiments we simulate different number of service
providers ranging from 100 to 13000 providers, we use
numeric code indicating the different types of service,
uniformly ranging from 1 to 9. The price is evenly generated
between 10 and 20 cent per service. And the trust degree is a
decimal value uniformly generated from [0; 1].

The experiments were conducted on a DELL Inspiron
1525 machine with 2.80GHz processor Core Duo and 1 GB
RAM. The machine is running under Microsoft windows 7
operating system.

In our experiments, we evaluate the performance of our
proposed approach through two experiments; the scheduling
latency under different number of services providers and
different number of QoS criteria.

1. Scheduling latency under different number of

services providers: Considering the QoS criteria:

response time, monetary cost and trust degree, we

evaluate the latency in responding to user request

from different number of service providers. Fig. 5,

shows that only a small number of service providers

are available for the job under our configurations
compared to SPSE [9].

Although, in Fig. 5, along with the number of service

providers increasing from 500 to 3000, our algorithm has a
much higher scheduling efficiency compared to the SPSE

algorithm; our algorithm takes more time for semantic
matching of services request as shown in Fig. 6.

Figure 5. Available service candidates for the request.

For example when we have 2700 service provider our
algorithm selects 75 that match the user request in 57:55 sec
but SPSE algorithm selects 81 services in 38sec.

Figure 6. Latency for scheduling 150 request with different number of QoS
criteria.

Therefore, our proposed algorithms SFRA is quite useful
for user to accurately find the most appropriate service
providers but with the cost of increasing the time.

2. The scheduling latency under different number of

QoS criteria: Considering 1000 service providers and

150 service requests in the experiments, the SFRA

and SPSE algorithms efficiency is also evaluated

under different number of QoS criteria. Only the

response time is considered in the first experiment,

response time and monetary cost are integrated in to
the second experiment, and response time, monetary

cost and trust degree are implemented in the third

experiment. As shown in Fig. 7, the time needed

increases linearly with the number of criteria also

SPSE algorithm take small time compared to our

algorithm.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 2, No. 12, 2011

200 | P a g e
www.ijacsa.thesai.org

Figure 7. Comparison of SFRA and SPSE algorithms

We summarize the key findings of the comparison test
between our approach and the SPSE engine as follows. The
first observation is that an optimization of automated Web
service discovery techniques appears to be necessary in order
to assure the effectiveness of semantic Web services in larger
search spaces of available Web services which can be
expected in real-world scenarios. The second major outcome
is that our approach can be considered as an optimization
technique for automated Web Service selection because it can
achieve significant improvements in computational
performance. Our approach also assures scalability as it
supports large number of service providers and QoS
parameters, and it demonstrates a high accuracy among
several invocations with marginal variations in the number of
available services.

VII. CONCLUSIONS AND FUTURE WORK

In this paper we propose an algorithm that is used as a tool
in the selection of Web services based on the available
providers and user requirements. Our algorithm basically
selects the best set of services as required by the user. In
addition, the proposed approach ranks those set of candidate
services.

A key feature of our proposed approach is that, instead of
asking the user for the non-functional properties, the algorithm
uses the importance level for QoS parameters already stored in
user profile, which makes the algorithm easy to use even for
someone not very familiar with the different quality of
services attributes.

Besides, the approach allows the user to rate any of the
matched services, indicating how relevant or appropriate they
are for his request. This rating is used to speed-up similar
future searches.

For future work we aim to improve our Web service
selection approach and allow it capturing maximum possible
and relevant information from publicly available information
in user's social network. Social aspects of the information
from a network of service consumers and service providers
can help a lot in ranking the best available Web services for
the users. In addition, we want to consider the case where no
matched services are found that match user QoS constraints.
We want to explore the effect of relaxing those QoS
constraints. Finally, we aim to investigate more on how we

can take into account the users’ opinion on the identified
objective function to achieve better service matching.

REFERENCES

[1] J. Rao and X. Su, “A survey of automated Web service composition
methods,” in Proceedings of the irst International orkshop on

Semantic Web Services and Web Process Composition, San Diego,
California, USA, 2004, pp. 43–54.

[2] A. Averbakh, D. Krause, and D. Skoutas, “Exploiting user feedback to

improve semantic Web service discovery,” in IS C 2009: Proceedings
of the 8th International Semantic Web Conference. Springer-Verlag,

2009, pp. 33–48.

[3] R. Krummenacher, M. Hepp, A. Polleres, C. Bussler, and D. Fensel,
“ ww or what is wrong with Web services discovery,” in Proceedings

of the Third European Conference on Web Services, ser. ECO S ’05.
Washington, DC, USA: IEEE Computer Society, 2005.

[4] D. Martin, M. Burstein, G. Denker, J. Hobbs, L. Kagal, O. Lassila, D.

McDermott, S. McIlraith, M. Paolucci, B. Parsia, T. Payne, M. Sabou, E.
Sirin, M. Solanki, . Srinivasan, and K. Sycara, “Bringing semantics to

Web services: The OWL-S approach,” in irst International orkshop
on Semantic Web Services and Web Process Composition (SWSWPC

2004), San Diego, CA, 2004, pp. 243–277.

[5] A. B.Bener, O. Volkan, and I. E. Savas, “Semantic matchmaker with
precondition and effect matching using S RL,” Expert Syst. Appl., vol.

36, no. 5, pp. 9371–9377, 2009.

[6] L. Cabral, J. Domingue, E. Motta, T. Payne, and F. Hakimpour,
“Approaches to semantic Web services: An overview and comparisons,”

The Semantic Web Research and Applications, vol. 3053, pp. 225–239,
2004.

[7] “Owl-s: Semantic markup for Web services,” 20 .

[8] K. Pyar, “Decision support system for personnel information using data
warehouse,” in The 2nd Int. Conference on Computer and Automation

Engineering (ICCAE). IEEE, 2010, pp. 668–672.

[9] L. Zhaoa, Y. Renc, M. Lib, and K. Sakuraia, “ lexible service selection
with user-specific QoS support in service-oriented architecture,”

network and computer application, 2011.

[10] H. Q. Yu and S. Reiff-Marganiec, “ on-functional property based
service selection: A survey and classification of approaches,”

NonFunctional Properties and Service Level Agreements in Service
Oriented Computing Workshop colocated with The 6th IEEE European

Conference on Web Services, vol. 411, pp. 13–25, 2008.

[11] D. A. Menasc, E. Casalicchio, and V. Dubey, “On optimal service
selection in service oriented architectures,” Performance Evaluation, vol.

67, no. 8, pp. 659–675, 2010.

[12] S. Agarwal and R. Studer, “Automatic matchmaking of Web services,”
in Proceedings of the IEEE International Conference on Web Services.

IEEE Computer Society, 2006, pp. 45–54.

[13] H. Q. Yu and S. Reiff-Marganiec, “A backwards composition context

based service selection approach for service composition,” 2009 IEEE
International Conference on Services Computing, pp. 419–426, 2009.

[14] C. Platzer and S. Dustdar, “A vector space search engine for Web

services,” in Proceedings of the Third European Conference on Web
Services, ser. ECO S ’05. ashington, DC, USA: IEEE Computer

Society, 2005, pp. 62–71.

[15] X. Dong, A. Halevy, J. Madhavan, E. emes, and J. Zhang, “Similarity
search for Web services,” in Proceedings of the Thirtieth international

conference on Very large data bases, ser. VLDB ’04. VLDB
Endowment, 2004, pp. 372–383.

[16] S. Ran, “A model for Web services discovery with QoS,” SIGecom

Exch., vol. 4, pp. 1–10, March 2003.

[17] L. Zeng, B. Benatallah, M. Dumas, J. Kalagnanam, and Q. Z.
Sheng,“Quality driven Web services composition,” in Proceedings of the

12
th
 international conference on World Wide Web, ser. ’03. ew

York, NY, USA: ACM, 2003, pp. 411–421.

[18] D. A. Menasc´e, “QoS issues in Web services,” IEEE Internet

Computing, vol. 6, pp. 72–75, November 2002.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 2, No. 12, 2011

201 | P a g e
www.ijacsa.thesai.org

[19] D. Liu, Z. Shao, C. Yu, and G. an, “A heuristic qos-aware service

selection approach to Web service composition,” 2009 Eighth
IEEEACIS International Conference on Computer and Information

Science, pp.1184–1189, 2009.

[20] “UDDI version 3.0.2 specifications,” http : uddi:xml:org , 20 .

[21] M. Tian, A. Gramm, T. aumowicz, H. Ritter, and J. Schiller, “A

concept for QoS integration in Web services,” in Proceedings of the
Fourth international conference on Web information systems

engineering workshops, ser. ISE ’03. ashington, DC, USA: IEEE
Computer Society, 2003, pp. 149–155.

[22] A. Sheth, J. Cardoso, J. Miller, and K. Kochut, “QoS for service-

oriented middleware,” in Proceedings of the Sixth orld Multi-
Conference on Systemics, Cybernetics and Informatics (SCI02), 2002,

pp. 528–534.

[23] Y. Liu, A. H. gu, and L. Z. Zeng, “QoS computation and policing in
dynamic Web service selection,” in Proceedings of the 3th international

World Wide Web conference on Alternate track papers & posters,
ser. Alt. ’04. ew York, Y, USA: ACM, 2004, pp. 66–73.

[24] . Ibrahim, . L. Mou¨el, and S. r´enot, “Mysim: a spontaneous

service integration middleware for pervasive environments,” in
Proceedings of the 2009 international conference on Pervasive services,

ser. ICPS ’09. ew York, Y, USA: ACM, 2009, pp. –10.

[25] E. Al-Masri and Q. H. Mahmoud, “Discovering the best Web service,”
in Proceedings of the 16th international conference on World Wide

Web, ser. ’07. ew York, Y, USA: ACM, 2007, pp. 1257–
1258.

[26] T. Yu, Y. Zhang, and K.-J. Lin, “Efficient algorithms for Web services

selection with end-to-end QoS constraints,” ACM Trans. Web, vol. 1,
May 2007.

[27] L. Zeng, B. Benatallah, A. H. Ngu, M. Dumas, J. Kalagnanam, and H.
Chang, “QoS-aware middleware for Web services composition,” IEEE

Trans. Softw. Eng., vol. 30, pp. 311–327, May 2004.

[28] D. A. Menasce, “Qos issues in Web services,” IEEE Internet
Computing, vol. 6, no. 6, pp. 72–75, 2002.

[29] S. hye Jang, V. Taylor, X. Wu, and M. Prajugo, “Performance

predictionbased versus load-based site selection: quantifying the
difference,” in Proceedings of the 8th international conference on

parallel and distributed computing systems, Las Vegas, Nevada, 2005.

[30] M. Klusch, B. ries, and K. Sycara, “O LS-MX: A hybrid semantic
Web service matchmaker for OWL-S services,” Web Semantics:

Science, Services and Agents on the World Wide Web, vol. 7, no. 2, pp.
121 –133, 2009.

[31] . Ahmadi and . Binder, “ lexible matching and ranking of Web

service advertisements,” in Proceedings of the 2nd workshop on
Middleware for service oriented computing: held at the

ACM/IFIP/USENIX International Middleware Conference, ser.
M 4SOC ’07. ew York, Y, USA: ACM, 2007, pp. 30–35.

[32] W. H. Inmon, Building the Data Warehouse, 3rd Edition. New York,

NY, USA: John Wiley & Sons, Inc., 2002.

[33] “GT information services monitoring &discovery system MDS ,”

http://www.globus.org/toolkit/mds/, 2011.

