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Abstract—The Kalman filter is widely used in many different 

fields. Many practical applications and theoretical results show 

that the Kalman filter is very sensitive to outliers in a 

measurement process. In this paper some reasons why the 

Kalman Filter is sensitive to outliers are analyzed and a series of 

outlier-tolerant algorithms are designed to be used as substitutes 

of the Kalman Filter. These outlier-tolerant filters are highly 

capable of preventing adverse effects from outliers similar with 

the Kalman Filter in complexity degree and very outlier-tolerant 

in the case there are some outliers arisen in sampling data set of 

linear stochastic systems. Simulation results show that these 
modified algorithms are safe and applicable.  
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I.  INTRODUCTION 

The Kalman filter is not only a widely used tool to estimate 
or to reconstruct states of a dynamic system in modern control 
but also famous powerful tool to extract useful information 
from noisy signals in signals processing. The Kalman filtering 
algorithms have many advantages: it is optimal in linear 
estimator set and suitable for online processing because of its 
recursive relationship; it can be used in stationary system and 
non-stationary system; and it can be used in multi-dimensional 
processes, etc. Since Kalman and Bucy put forward this linear 
optimal iterative filtering algorithm with the development of 
state-space theory in the early 1960s’, its applications have 
become more and more wide-spread in many different 
engineering fields, such as process control, stochastic control 
and navigation, etc. It is also very useful in fault diagnosis of 
dynamic systems. 

Although the Kalman filter possesses many advantages 
stated above, recent research has revealed that the Kalman 
filtering algorithm is not robust (see [1,3]) against perturbation 
in a model or observed/measured data. Practical experience in 
using Kalman filter to process signals also indicates that 
outliers in the measured data would degrade the performance of 
Kalman filter. How to imporve the Kalman filtering algorithm 
is an open question in the cases when there are outliers in 
measurement data sequence because outliers are unavoidable 

and could lead to a considerable deviation of the estimated 
target from the true system status when using Kalman-filter 
based algorithms. Durovic, et al. (1999) discussed robust 
estimation with unknown noise statistics; Nihal et al. (1991) and 
Chan et al. (2005) built a new robust Kalman filter algorithm 
with outliers respectively; Ting et al. (2007) reviewed the 
Kalman filter and suggested a kind of robust Kalman filtering 
with Bayesian weights so as to overcome negative effects from 
outliers. 

This paper analyzes systematically the adverse effect of 
outliers on Kalman filter and establishes a series of outlier-
tolerant filtering algorithms. Numerical results of simulated 
examples show the validity of the outlier-tolerant algorithms.  

II. EFFECTS OF OUTLIERS ON KALMAN FILTER 

The Kalman filter is used to estimate the state vector of the 
following linear stochastic dynamic-measurement system 
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If both the multi-dimensional dynamic noise process }{ k

and dynamic measurement error series }{ k possess the 

following properties:  

(a) 0}{  kk EE   

(b) 0),cov( kk   

(c) ),cov(),,cov( )()( kkkkkk RR     

then the optimal estimator of the state vector kX  in model 

(1) can be expressed by the following recursive relationships: 
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These recursive relationships can intuitively express that 

the best estimator )1|1(
ˆ

 kkX  
of the state

 1kX  at time 1kt  is 

composed of two parts: the best estimator of the state
 kX  at 

time kt  and the sampling innovation as follows 

)|(111)|1(
ˆˆ

kkkkkkk XAHYE                    (3) 

Obviously, if the additional samples 1kY  are “normal” 

values, the sampling innovation )|1(
ˆ

kkE   will make some correct 

modification to predictor )|1(
ˆ

kkX   with ratio 1kK  to get the next 

optimal estimator )1|1(
ˆ

 kkX . On the other hand, if the additional 

samples 1kY  are outliers, the resultant innovation )|1(
ˆ

kkE   will 

be abnormal and the abnormal information will result in an 

erroneous modification to prediction )|1(ˆ kkx   by the same ratio 

1kK ,  which lead to the filtering estimators deviating from 

normal states.   

In section V of this paper, an example is given to 
substantiate the negative influence of outliers on the Kalman 
filtering estimators of state vectors. Figure 1 plots the 
simulation results, which indicates that the Kalman filtering of 
state vectors is far from normal states when there are outliers in 
sampling data series. 

For a practical measurement system or device, outliers are 
inevitable in sampling data because of faulty operations or 
recording errors. In some cases, there may be complicated 
abnormal measurement data existing in sampling processes, 
such as step-type jumps or patchy outliers, etc. For example, 
when the flight of a spacecraft was tracked by an impulse radar, 
1‰~2‰ (occasionally as high as 5‰) of measurement data 
display serious deviations from the trend formed by most other 
samples. So it is very important to modify the Kalman filtering 
algorithms or reduce the negative effects of outliers on Kalman 
filtering estimators of state vectors.  

III. TACTICS TO DEAL WITH OUTLIERS IN SAMPLE 

Considering that it is very difficult to diagnose outliers in a 
large quantity of data and that the Kalman filtering is still 
widely used, a best effort is made in this paper to improve 
fault-tolerance of the  linear optimal recursive filtering 
algorithm. The improved filters should possess the following 
properties:  

1) The algorithm should be recursive and easy to use;  

2) When there are a few abnormal samples in the measured 
data series, the filtering algorithm must have a strong 
ability to overcome negative effects from abnormal data, 
or must restrict the negative effects within prescribed 
bounds;  

3) When there are no abnormal samples, the algorithm is 
capable of making full use of useful information to 
achieve high filtering accuracy. 

Considering these three restrictive conditions stated above, 
a set of algorithms which are similar to the Kalman filter are 
established as follows 
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where the function series )}({ 1  k  are segment-wise smooth 

and bounded, 1kK  is the gain and 1kG  is a weighting 

matrix. 

When 11  k  and IGk 1  (identity matrix) are selected, 

)1|1(

~
 kkX  in equation (3) is reduced to the conventional Kalman 

filter. It is found that the main reason for outlier-tolerance of 
conventional Kalman filter is that the function sequence {

11  k } potentially treat all of the innovations (normal and 

abnormal) equally. This is the root cause why Kalman filter is 
unable to deal with outliers. In order to endow a filter anti-

outliers capability, a sensible tactic is to select a suitable 1k  

which must decrease or diminish to zero when 1kr  increases.  

IV. OPTIMAL SELECTION OF k  

In order to reduce the negative effects of outliers in state 
filtering, some analyses of formulae (3) must be done as 
follows: 
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where )|1( kk = )|1(1
ˆ2

1

kkk EG 


  is one-step predicted weighted 

residual.  

For threshold constant series }{ 1kc  used to control the 

difference between the filtered values and the predicted values 

of state vectors 1kX , 1k  should be suitably chosen so as to 

make sure that the following inequality holds 
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where 1k  is the maximum eigenvalue of matrix 

111  kkk KGK  . 

It is easy to see that there are quite many different kinds of 

function series }{ 1k  satisfying inequality (5).All of the 

function series }{ 1k  are denoted as a set S: 
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The way to select function series }{ 1k  from the set S is 

examined below.  

Theorem 1：For a linear stochastic system, when the noise 

series  },,;,,,{ 21100  x  are stochastic sequences that 

possess a normal distribution and are mutually independent, if 
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the weighting matrix sequence are )1(1111   kkkkk RHHG 


, 

then the function series Sk   }{ 1  which lead to the least 

errors of filtering estimation are as follows: 
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where 
kC  is the suitably chosen threshold constant. 

Proof： It follows from equations (2) and (3) that the 
filtering error can be expressed as follows: 
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 Using the basic properties on conditional probability 
distribution , the following results may be deduced 
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Note that the project property of Kalman filtering has been 
used in the last equation of the above expression. So the 
following result can be obtained: 
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In order to investigate how to minimize the error in 
equation (8), equations (2) and (3) are used to deduce the 
following expression: 
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It is obvious that function series Sk  }{  which were 

prescribed in the equation (7) minimize the equation (9).     ■ 

In the following part of this section, we will discuss how to 
calculate weigh matrix sequence }{ 1kG  and threshold 

constants 1kC  ( ,2,1k ). 

Hypothesis 1. Suppose that }{ k and }{ k  are two 

independent noise sequences and they satisfy following 
relationships: 

 a). 
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Hypothesis 2： Suppose that }{ k and }{ k  are two 

independent noise sequences and they satisfy following 
distributions: 
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Lemma 1： If a linear stochastic system defined by 
equation (1) satisfies hypothesis 1 and hypothesis 2, then 

stochastic sequence { ;,,, 00 kx    },,1 k   obeys the 

law of a multivariate normal distribution and their joint 

covariance matrix aC  is as follows: 
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where operator “ ” represents the block-diagonal matrix 
formed by the two block matrices on either side of the operator;  

)(2 kCa  is the covariance matrix of the measured noise sequence, 

which can be expressed as the inverse matrix of the tri-diagonal 

matrix A= kkjia )( ,  which is defined as follows 
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In formula (11) matrix  )(2 kCa  is the covariance matrix of 

the measured noise sequence }{ k
:
 

},,{diag)( )()1(2 ka RRkC  
 

Lemma 2： If the linear stochastic system defined by 
equation (1) satisfies hypothesis 1 and hypothesis 2, the joint 

distributions of sequence { ;,,, 10 kxxx   },,1 kyy   are 

normal and their covariance matrix is given by the following 
relationships 
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where the superscript  denotes transpose of a matrix.   

Analyzing these two lemmas described above, it is found 

that the joint distribution of sequence { },,1 kyy   is also 

normal.  
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If the linear stochastic system defined by equation (1) 
satisfies those two hypotheses, denoting the joint covariance 

matrix of { },,1 kyy   by )(kD  and the covariance matrix of 

)|1(
ˆ

kkE   by 1k ，it is easy to verify the properties of Kalman 

filtering algorithms that 
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where ),cov( 111   kkk yyd , the auto-variance matrix of 

stochastic vector 1ky ; matrix )(kdD  is the covariance matrix 

of { },,1 kyy   and 1ky .  

Weighting matrix 1kG  and weighted residual )|1( kk  

can be calculated as follows 
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It can be proven that )|1( kk  follows the standard 

multivariate normal distribution. Supposing that the measured 
information is an m-dimensional vector, the weighted residual  

)|1( kk  is an m-dimensional standard normal variable, the 

norm of which is equal to 1kr : 
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where )(2 m denotes the  distribution of degrees-of-

freedom  m .  

Since the random variable 1kr  satisfies the distribution

)(2 m , the threshold constant
 )(mc   satisfies 

  ))(( 1 mcrP k  

 Generally parameter   is taken as 0.05 or 0.025. If 

)(1 mcrk
 , it is believed with (1- )100% confidence that 

the additional information from the measured data 1ky  is 

reasonable; otherwise, when )(1 mcrk
 , it is also believed 

with   100% confidence that the additional information 

from the measured data 1ky  is unreasonable and hence this 

additional information must be discarded. 

From the above analysis and considering equation (6), it is 

known that 1kC  can be given by 
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where 1k  is the maximum eigenvalue of matrix 


11  kk KK .  

In specific applications in engineering, 1kC  may be chosen 

with our experience. 

V. NUMERICAL SIMULATION 

Supposing that the coefficient matrices and covariance 
matrix of errors defined by equation (1) are as follows 







































7.00

2.00

09.0

,

0.13.00

00.12.0

000.1

kk HA  

and the covariance of the model errors are respectively equal to   











}1.0,1.0{diag

}5.0,5.0,5.0{diag

)(

)(

k

k

R

R




 

Using Monte Carlo method and selecting the initial states of 
the system as the following 
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one hundred pieces of simulation data are generated and 
denoted by the set S. Let deviations of the 50th and 75th pieces 
of data be 

)75,50(5)1(,100)1( 1
21   iyy ii   

The new set with these two outliers is denoted by S*. The 
estimates on S* made by equations (1) and (2) are shown in 
figures 1 and 2.  
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(b)  Filtering Estimation of 2X  
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(c)  Filtering Estimation of 3X  

Figure 1  Kalman Filters of State Variables 
3RX    

 
(a)  Filtering Estimation of 

1X  

 
(b)  Filtering Estimation of 

2X  

 
(c)  Filtering Estimation of 3X  

Figure 2  Fault-tolerant Filters of State Variables 
3RX   

It can be seen clearly that the outliers have a very negative 
effect on conventional Kalman filtering and the outliers-
tolerant modification method proposed in the paper is capable 
of overcoming this negative effect and is reliable. 
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