
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 2, No.2, February 2011

90 | P a g e

http://ijacsa.thesai.org/

Extracting Code Resource from OWL by Matching

Method Signatures using UML Design Document
UML Extractor

Gopinath Ganapathy 1

1Department of Computer Science

 Bharathidasan University

Trichy, India.

gganapathy@gmail.com

S. Sagayaraj 2

2 Department of Computer Science

 Sacred Heart College

 Tirupattur, India

sagi_sara@yahoo.com

Abstract—Software companies develop projects in various

domains, but hardly archive the programs for future use. The

method signatures are stored in the OWL and the source code

components are stored in HDFS. The OWL minimizes the

software development cost considerably. The design phase

generates many artifacts. One such artifact is the UML class

diagram for the project that consists of classes, methods,

attributes, relations etc., as metadata. Methods needed for the

project can be extracted from this OWL using UML metadata.

The UML class diagram is given as input and the metadata about

the method is extracted. The method signature is searched in

OWL for the similar method prototypes and the appropriate

code components will be extracted from the HDFS and reused in

a project. By doing this process the time, manpower system

resources and cost will be reduced in Software development.

Keywords- Component: Unified Modeling language, XML, XMI

Metadata Interchange, Metadata, Web Ontology Language, Jena

framework.

I. INTRODUCTION

The World Wide Web has changed the way people
communicate with each other. The term Semantic Web
comprises techniques that dramatically improve the current
web and its use. Today’s Web content is huge and not well-
suited for human consumption. The machine processable Web
is called the Semantic Web. Semantic Web will not be a new
global information highway parallel to the existing World
Wide Web; instead it will gradually evolve out of the existing
Web [1]. Ontologies are built in order to represent generic
knowledge about a target world [2]. In the semantic web,
ontologies can be used to encode meaning into a web page,
which will enable the intelligent agents to understand the
contents of the web page. Ontologies increase the efficiency
and consistency of describing resources, by enabling more
sophisticated functionalities in development of knowledge
management and information retrieval applications. From the
knowledge management perspective, the current technology
suffers in searching, extracting, maintaining and viewing
information. The aim of the Semantic Web is to allow much
more advanced knowledge management system.

To develop such a knowledge management system the
software company’s can make use of the already developed
coding. That is to develop new software projects with reusable
codes. The concept of reuse is not a new one. It is however
relatively new to the software profession. Every Engineering
discipline from Mechanical, Industrial, Hydraulic, Electrical,
etc, understands the concept of reuse. However, Software
Engineers often feel the need to be creative and like to design
“one time use” components. The fact is they come with unique
solution for every problem. Reuse is a process, an applied
concept and a paradigm shift for most people. There are many
definitions for reuse. In plain and simple words, reuse is, “The
process of creating new software systems from existing
software assets rather then building new ones”.

Systematic reuse of previously written code is a way to
increase software development productivity as well as the
quality of the software [3, 4, 5]. Reuse of software has been
cited as the most effective means for improvement of
productivity in software development projects [6, 7]. Many
artifacts can be reused including; code, documentation,
standards, test cases, objects, components and design models.
Few organizations argue the benefits of reuse. These benefits
certainly will vary organization to organization and to a degree
in economic rational. Some general reusability guidelines,
which are quite often similar to general software quality
guidelines, include [8] ease of understanding, functional
completeness, reliability, good error and exception handling,
information hiding, high cohesion and low coupling, portability
and modularity. Reuse could provide improved profitability,
higher productivity and quality, reduced project costs, quicker
time to market and a better use of resources. The challenge is to
quantify these benefits.

For every new project Software teams design new
components and code by employing new developers. If the
company archives the completed code and components, they
can be used with no further testing unlike open source code and
components. This has a recursive effect on the time of
development, testing, deployment and developers. So there is a
base necessity to create system that will minimize these factors.

mailto:sagi_sara@yahoo.com

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 2, No.2, February 2011

91 | P a g e

http://ijacsa.thesai.org/

Code re-usability is the only solution for this problem. This
will reduce the development of an existing work and testing.
As the developed code has undergone the rigorous software
development life cycle, it will be robust and error free. There is
no need to re-invent the wheel. To reuse the code, a tool can be
create that can extract the metadata such as function, definition,
type, arguments, brief description, author, and so on from the
source code and store them in OWL. This source code can be
stored in the HDFS repository. For a new project, the
development can search for components in the OWL and
retrieve them at ease. The OWL represents the knowledgebase
of the company for the reuse code.

The projects are stored in OWL and the source code is
stored in the Hadoop Distributed File System (HDFS) [9]. The
client and the developer decide and approve the design
document. For the paper the UML class diagram is one such
design document considered as the input for the system. The
method metadata is extracted from the UML and passed to the
SPARQL to extract the available methods from the OWL.
Selecting appropriate method from the list the code component
is retrieved from the HDFS. The purpose of using an UML
diagram as input is before developing software this tool can be
used to estimate how many methods is to be developed by
extraction. The UML diagram is a powerful tool that acts
between the developer and the user. So it is like a contract
where both parties agree for software development using UML
diagram. After extracting the methods from the UML diagram
these methods are matched in the OWL. From the retrieved
methods the developer can account for how many are already
available in the repository and how many to be developed. If
the retrieved methods are more the development time will be
shorter. To have more method matches the corporate should
store more projects. The uploading of projects in the OWL and
HDFS the corporate knowledge grows and the developers will
use more of reuse code than developing themselves. Using the
reuse code the development cost will come down, development
time will become shorter, resource utilization will be less and
quality will go up.

The paper begins with a note on the related technology
required in Section 2. The detailed features and framework for
source code retriever is found in Section 3. The Keyword
Extractor for UML is in section 4. The Method Retriever by
Jena framework is in section 5. The Source Retriever from the
HDFS is in section 6. The implementation scenario is in
Section 7. Section 8 deals with the findings and future work of
the paper.

II. RELATED WORK

A. Metadata

Metadata is defined as “data about data” or descriptions of
stored data. Metadata definition is about defining, creating,
updating, transforming, and migrating all types of metadata that
are relevant and important to a user’s objectives. Some
metadata can be seen easily by users, such as file dates and file
sizes, while other metadata can be hidden. Metadata standards
include not only those for modeling and exchanging metadata,
but also the vocabulary and knowledge for ontology [10]. A lot
of efforts have been made to standardize the metadata but all

these efforts belong to some specific group or class. The
Dublin Core Metadata Initiative (DCMI) [11] is perhaps the
largest candidate in defining the Metadata. It is simple yet
effective element set for describing a wide range of networked
resources and comprises 15 elements. Dublin Core is more
suitable for document-like objects. IEEE LOM [12], is a
metadata standard for Learning Objects. It has approximately
100 fields to define any learning object. Medical Core
Metadata (MCM) [13] is a Standard Metadata Scheme for
Health Resources. MPEG-7 [14] multimedia description
schemes provide metadata structures for describing and
annotating multimedia content. Standard knowledge ontology
is also needed to organize such types of metadata as content
metadata and data usage metadata.

B. Hadoop & HDFS

The Hadoop project promotes the development of open
source software and it supplies a framework for the
development of highly scalable distributed computing
applications [15]. Hadoop is a free, Java-based programming
framework that supports the processing of large data sets in a
distributed computing environment and it also supports data
intensive distributed application. Hadoop is designed to
efficiently process large volumes of information[16]. It
connects many commodity computers so that they could work
in parallel. Hadoop ties smaller and low-priced machines into a
compute cluster. It is a simplified programming model which
allows the user to write and test distributed systems quickly. It
is an efficient, automatic distribution of data and it works
across machines and in turn it utilizes the underlying
parallelism of the CPU cores. The monitoring system then re-
replicates the data in response to system failures which can
result in partial storage. Even though the file parts are
replicated and distributed across several machines, they form a
single namespace, so their contents are universally accessible.
Map Reduce [17] is a functional abstraction which provides an
easy-to-understand model for designing scalable, distributed
algorithms.

C. Ontology

The key component of the Semantic Web is the collections
of information called ontologies. Ontology is a term borrowed
from philosophy that refers to the science of describing the
kinds of entities in the world and how they are related. Gruber
defined ontology as a specification of a conceptualization
[18].Ontology defines the basic terms and their relationships
comprising the vocabulary of an application domain and the
axioms for constraining the relationships among terms [19].
This definition explains what an ontology looks like [20].The
most typical kind of ontology for the Web has taxonomy and a
set of inference rules. The taxonomy defines classes of objects
and relations among them. Classes, subclasses and relations
among entities are a very powerful tool for Web use.

III. SOURCE CODE RETRIEVER FRAMEWORK

The Source Code Retriever makes use of OWL is
constructed for the project and the source code of the project is
stored in the HDFS [21]. All the project information of a
software company is stored in the OWL. The size of the project
source will be of terabytes and the corporate branches are

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 2, No.2, February 2011

92 | P a g e

http://ijacsa.thesai.org/

spread over in various geographical locations so, it is stored in
Hadoop repository to ensure distributed computing
environment. Source Code Retriever is a frame work that takes
UML class diagram or XMI (XML Metadata Interchange) file
as an input from the user and suggests the reusable methods for
the given Class Diagram. The Source Code Retriever consists
of three components: Keyword Extractor for UML, Method
Retriever and Source Retriever. The process of the Source
Code Retriever Framework is presented in the “Fig. 1” The
Keyword Extractor for UML extracts the metadata from the
UML class diagram. The class diagram created by Umberllo
tool is passed as input to the Keyword Extractor for UML.

The input for the frame work can be an existing UML class
diagram or created by the tool. Both types of input are loaded
in to Umberllo and the file type for storing UML class diagram
is XMI format. The file is parsed for metadata extraction. The
parser extracts method signatures from the XMI file and passes
it to the Method Retriever component. Method Retriever
component

UML Extractor

Source Retriever

Method Retriever

HDFS

Retrieved
Method &

source

Figure 1. Process of Source Retriever

retrieves the matched methods from the repository. Method
Retriever constructs SPARQL query to retrieve the matched
results. The user should select the appropriate method from the
list of methods and retrieve the source code by Source
Retriever component which interacts with HDFS and displays
the source code.

IV. KEYWORD EXTRACTOR FOR UML

Unified Modeling Language (UML) is a visual language for
specifying, constructing, and documenting the artifacts of
systems. It is a standardized general-purpose modeling
language in the field of software engineering. To create UML
class diagram Umberllo UML Modular open source tool is
used. The diagram is stored in XMI format. Umbrello UML
Modeller is a Unified Modeling Language diagram program for
KDE. UML allows the user to create diagrams of software and
other systems in a standard format. Umbrello It can support in
the software development process especially during the
analysis and design phases of this process. UML is the
diagramming language used to describing such models.
Software ideas can be represented in UML using different
types of diagrams. Umbrello UML Modeller 1.2 supports Class
Diagram, Sequence Diagram, Collaboration Diagram, Use

Case Diagram, State Diagram, Activity Diagram, Component
Diagram and Deployment Diagram.

The XMI is an Object Management Group (OMG) standard
for exchanging metadata information using XML. The initial
proposal of XMI "specifies an open information interchange
model that is intended to give developers working with object
technology the ability to exchange programming data over the
Internet in a standardized way, thus bringing consistency and
compatibility to applications created in collaborative
environments. "The main purpose of XMI is to enable easy
interchange of metadata between modeling tools and between
tools and metadata repositories in distributed heterogeneous
environments. XMI integrates three key industry standards:
(a) XML - a W3C standard (b) UML - an OMG (c) MOF -
Meta Object Facility and OMG modeling and metadata
repository standard. The integration of these three standards
into XMI marries the best of OMG and W3C metadata and
modeling technologies allowing developers of distributed
systems share object models and other Meta data over the
Internet.

The process flow of Keyword Extractor for UML is given
in the “Fig. 2”. The XMI or UML file is parsed with the help of
the SAX (Simple API for XML) Parser. SAX is a sequential
access parser API for XML. SAX provides a mechanism for
reading data from an XML document. SAX loads the XMI or
UML file and get the list of tags by passing name. It gets the
attribute value of the tags by attributes.getValue(<Name of the
attributes>) method. The methods used to retrieve the attributes
are Parse, Attributes and getValue(nameOfAttibute). The
Parse() method will parse the XMI file. The Attribute is to hold
the attribute value. GetValue(nameOfAttibute) method returns
class information, method information and parameter
information of the attribute.

UML Extractor

Class Name

(Name, scope)

Method Information

(Name, type)

Parameter Information

UML or XMI
file

Figure 2. Process of Keyword Extractor for UML

 The XMI file consists of XML tags. To extract class
information, method information and parameter information
are identified with the appropriate tag as given in the Table I.

TABLE I. TAGS USED TO EXTRACT METADATA FROM XMI FILE

Tag Purpose

UML:DataType It holds the data type information

UML:Class It holds the class informations

like name of the class, visibility

of the class ,etc.,

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 2, No.2, February 2011

93 | P a g e

http://ijacsa.thesai.org/

UML:Attribute Attribute is a sub tag of class. It

holds the informations of the class

attributes like name of the

attributes, type of the attribute,

and visibility of the attribute etc.,

UML:Operation It holds the methods information

of the class like name of the

method, return type of the

methods, visibility of the method.

UML:BehavioralFeatu

re.parameter

It holds the information of the

methods parameters like name of

the parameter, data type of the

parameter.

Using the tags the metadata of the UML or the XMI is
extracted. The extracted metadata are class, methods, and
attributes etc., which are passed to the Method Retriever
component.

V. METHOD RETRIEVER

Method Retriever component interact with the OWL and
returns the available methods from the OWL for the given class
diagram is represented diagrammatically in “Fig. 3”. The
extracted information from the UML file by the Keyword
Extractor for UML is passed to the Method Retriever
component. It interacts with OWL and retrieves matched
method information using SPARQL query. SPARQL is a
Query language for RDF. The SPARQL Query is executed on
OWL file. Jena is a Java framework for building Semantic Web
applications. It provides a programmatic environment for RDF,
RDFS and OWL, SPARQL and includes a rule-based inference
engine. Jena is a Java framework for manipulating ontologies
defined in RDFS and OWL Lite [22]. Jena is a leading
Semantic Web toolkit [23] for Java programmers. Jena1 and
Jena2 are released in 2000 and August 2003 respectively. The
main contribution of Jena1 was the rich Model API. Around
this API, Jena1 provided various tools, including I/O modules
for: RDF/XML [24], [25], N3 [26], and N-triple [27]; and the
query language RDQL [28]. In response to these issues, Jena2
has a more decoupled architecture than Jena1. Jena2 provides
inference support for both the RDF semantics [29] and the
OWL semantics [30].

SPARQL is an RDF query language; its name is a recursive
acronym that stands for SPARQL Protocol and RDF Query
Language used to retrieve the information from the OWL.
SPARQL can be used to express queries across diverse data
sources, whether the data is stored natively as RDF or viewed
as RDF via middleware. SPARQL contains capabilities for
querying required and optional graph patterns along with their
conjunctions and disjunctions. SPARQL also supports
extensible value testing and constraining queries by source
RDF graph. The results of SPARQL queries can be results sets
or RDF graphs.

A. Query processor

 A query processor executes the SPARQL Query and
retrieves the matched results. The SPARQL Query Language
for RDF[31] and the SPARQL Protocol for RDF[32] are
increasingly used as a standardized query API for providing

access to datasets on the public Web and within enterprise
settings. The SPARQL query takes method parameters and the
returns the results. The retrieved results contains project details
like name of the project, version of the project and method
details like name of the package, name of the class, method
name , method return type, method parameter. Query processer
takes the extracted method name and the method parameter as
an input and retrieves the methods and project information
from the OWL.

Extracted Method

OWL

Project Detail

Query Processor

Method Detail

Matched Results form OWL

Figure 3. Method Retriever Process

B. SPARQL query

The SPARQL query is constructed to extracting project
name, version of the project, package name, class name,
method name, return type, and return identifier name, method
parameter name and type. The sample query is as follows

PREFIX rdf:<http://www.w3.org/1999/02/22-rdf-syntax-ns#>

SELECT ?pname ?version ?packname ?cname ?mname

?rType ?identifier ?paramName ?parmDT ?paramT

WHERE {

 ?project rdf:type base:Project .

 ?project base:Name ?pname .

 ?project base:Project_Version ?version .

 ?project base:hasPackage ?pack .

 ?pack base:Name ?packname .

 ?pack base:hasClass ?class .

 ?class base:Name ?cname .

 ?class base:hasMethod ?subject .

 ?subject base:Name ?mname .

 ?subject base:Returns ?rType.

 ?subject base:Identifier ?identifier.

 ?subject base:hasParameter ?parameter.

 ?parameter base:Name ?paramName.

 ?parameter base:DataType ?parmDT.

 ?parameter base:DataType ?parmT.

 FILTER regex (?mname , "add" , "i") .

 FILTER regex (?parmT , "java.lang.String" , "i") .

}

VI. SOURCE RETRIEVER

Source Retriever component retrieves the appropriate
source code of the user selected method from the HDFS. It is
the primary storage system used by Hadoop applications.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 2, No.2, February 2011

94 | P a g e

http://ijacsa.thesai.org/

HDFS creates multiple replicas of data blocks and distributes
them on compute nodes throughout a cluster to enable reliable,
extremely rapid computations. The source code file location of
the Hadoop repository path is obtained from the OWL and
retrieved from the HDFS by the
copyToLocal(FromFilepath,localFilePath) method.

QDox is a high speed, small footprint parser for extracting
class/interface/method definitions from source files. When the
java source file or folder that consists java source file loaded to
QDox; it automatically performs the iteration. The loaded
information is stored in the JavaBuilder object. From the java
builder object the list of packages as an array of string are
returned. This package list has to be looped to get the class
information. From the class information the method
information is extracted. It returns the array of JavaMethod.
From this java method the information like scope of the
method, name of method, return type of the method and
parameter informations are extracted from the JavaMethod.

QDox finds the methods from the source code. The file
that is retrieved from the HDFS is stored in the local temporary
file. This file is passed to the Qdox addSource() method for
parsing. Through Qdox each method is retrieved one by one.
The retrieved methods are compared with methods that the user
requested for source code retrieval method. If it matches the
source code is retrieved by getSourceCode() method. Then the
temporary file is deleted after the process. In Hadoop
repository files are organized in the same hierarchy of java
folder. So it gets the source location from the OWL and
retrieve the java source file to a temp file. The temporary file is
loaded into QDox to identify methods. Each method is
compared with method to be searched. If it matches; the source
code of the method is retrieved by getMethodSourceCode()
method.

VII. CASE STUDY

The input for the frame work is a UML class diagram. The
sample class diagram is given below

The entire process of the framework is given in the Table
II. The Keyword Extractor for UML uses the class diagram and
retrieves the method validateLogin(username:string). The
output is given to the Method Extractor and generates the
SPAQL query and extracts the matched methods which are
listed in the Table III. From the list the appropriate method will
be selected and the QDox retrieves the source code from the
HDFS and displays the method definition of the selected
methods as shown in the output of the Source Retriever in
Table II.

TABLE II. PROCESS FLOW OF THE FRAMEWORK

Proces Input Output

UML

Extraction

Given

Class

Diagram

Method Information

Name : validateLogin

Return : Boolean

visibility : public

Parameters : User Name

DataType : username

Method

Retriever

validateLo

gin(String

userName)

Refer Table 2

Source

Retriever

validateLo

gin(String

userName)

boolean returnStatus = false;

DatabaseOperation

databaseOperation = new

DatabaseOperation();

String strQuery = "SELECT *

FROM login WHERE

uname='"+userId+"'";

ResultSet resultSet =

databaseOperation.selectFro

mDatabase(strQuery);

try {

while(resultSet.next()){

 returnStatus = true;

}

} catch (SQLException e) {

e.printStackTrace();

 }

 return returnStatus;

To test the performance of this framework the reusable

OWL files are created by uploading the completed projects.
The first OWL file is uploaded with first java project. The
second OWL file is uploaded with first and the second java
projects. The third OWL file is uploaded with first, second and
third java projects. Similarly five OWL files are constructed.
The purpose of creating OWL is to show how reusability
increases when the knowledgebase grows. A sample new
project is considered and it contains ten methods to be
developed. The OWL files are listed with the number of
packages, number of classes, number of methods and number
of parameters. These methods are matches with the OWL files
and the number of matches is listed in the Table IV.

TABLE III. METHOD RETRIEVER OUTPUT

Sl.

No.

Information

1

Project Name : CBR_1.0

Package : com.cbr.my.engine

Class Name : Login

Method

 Name : ValidateLogin

 Parameters : UserName

 Return Type : boolean

2

Project Name : RBR_1.0

Package : com.my.rbr.utils.engine

Class Name : LoginManger

Method

 Name : LoginLog

 Parameters : UserName,ActivityCode

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 2, No.2, February 2011

95 | P a g e

http://ijacsa.thesai.org/

 Return Type : Boolean

Method

 Name : LoginContol

 Parameters : UserName,password

 Return Type : Boolean

3

Project Name : BHR_1.0

Package :

com.boscoits.BHR.utils.Action

Class Name : ControlManager

Method

 Name : ManageLogin

 Parameters :

UserName,password,memberId,ActionId

 Return Type : Boolean

Method

 Name : ValidateLogin

 Parameters : UserName,password

 Return Type : Boolean

These data in the row of the Table IV shows that the

number of matched methods. The reusability graph shown in
the “Fig. 4” shows that how the matches increases when the
number of projects in the OWL grows. For the graph only five
new method names are used instead of ten listed in the Table
IV. The X-axis represents the OWL file numbers and the Y-
axis represents the number of method matched for the new
method legends. This progress shows that by uploading more
projects in the knowledgebase can able to provide nearly
hundred percent of the methods for reuse during software
development.

TABLE IV. NEW METHOD MATCHES WITH VARIOUS

KNOWLEDGEBASE

1

OWL

2

OWL

3

OWL

4

OWL

5

OWL

Classes 86 116 129 297 321

Methods 50 1088 1130 3405 3697

Packages 12 15 22 27 31

Parameters 765 1119 1174 4552 4802

Method Name

ValidateLogin 5 26 27 46 40

getUserType 0 0 0 0 2

addStudent 4 6 6 18 18

ManageRole 6 14 0 28 29

connect 4 5 8 11 16

InsertQuery 2 3 3 5 6

deleteQuery 2 3 3 5 6

updateQuery 2 3 3 5 6

selectQuery 2 3 3 5 6

connect 2 3 3 5 6

Figure 4. The number of matches for methods to the Projects

VIII. CONCLUSION

The paper presents a framework to extract the method code
components from the OWL using the UML design document.
OWL is semantically much more expressive than needed for
the results of our searching. With these sample tests the paper
argues that it is indeed possible to extract code from OWL
using the UML class diagram. The purpose of the paper is to
achieve the code reusability for the software development. The
OWL for the source code has already been created and this
paper searches and extracts the code and components and
reuses to shorten the software development life cycle. Before
starting the coding phase of the development the framework
helps the software development team to access the possibilities
of how much code can be reused and how much code need to
be developed. This assessment can help project manager to
allot resources to the project and reduce cost, time and
resource. The software companies can make use of this
framework and develop the project quickly and grab the project
at the lower cost among the competitors.

After developing OWL Ontology and storing the source
code in the HDFS, the code components can be reused. This
paper has taken design document from the user as input, then
extracted the method signature and try to search and match in
the OWL. The knowledgebase gets uploaded with more and
more projects the reuse rate is also higher. The future work can
take the SRS as input; text mining can be performed to extract
the keywords as classes and the process as methods. The SRS
artifact is much earlier phase than the UML. So considerable
amount of time can be reduced than using UML as input. The
method prototype can be used to search and match with the
OWL and the required method definition can be retrieved from
the HDFS. The purpose of storing the metadata in OWL is to
minimize the factors like time of development, time of testing,
time of deployment and developers. By creating OWL using
this framework can reduce these factors.

REFERENCES

[1]. Grigoris Antoniou and Frank van Harmelen, “A Semantic Web Primer”,

 PHI Learning Private Limited, New Delhi, 2010, pp 1-3.

[2]. Bung. M, “Treatise on Basic Philosophy. Ontology I”. The Furniture of

 the World. Vol. 3, Boston: Reidel.

[3]. Gaffney Jr., J. E,, Durek, T. A., “Software reuse - key to enhanced

 Productivity: Some quantitative models”, Information and Software

 Technology 31(5): 258-267.

[4]. Banker, R. D., Kauffman, R. J., “ Reuse and Productivity in Integrated

 Computer-Aided Software Engineering: An Empirical Study”, MIS

ValidateLo
gin

getUserTyp
e

addStudent

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 2, No.2, February 2011

96 | P a g e

http://ijacsa.thesai.org/

 Quarterly 15(3): 374-401.

[5]. Basili, V. R.,Briand L. C., Melo, W. L., “ How Reuse Influences

 Productivity in Object-Oriented Systems”, Communications of the ACM

 39(10): 104-116.

[6]. Boehm B.W., Pendo M., Pyster A., Stuckle E.D., and William R.D.,” An

 Environment for Improving Software Productivity”, In IEEE Computer,

 June 1984.

[7]. Paul R.A., “Metric-Guided Reuse”, In proceedings of 7th International

 Conference on tools with artificial Intelligence (TAI’95), 5-8 November,

 1995, pp. 120-127.

[8]. Poulin Jeffrey S., ”Measuring Software Reusability”, In proceedings of

 3rd International Conference on Software Reuse, Brazil, 1-4 November

 1994, pp. 126-138.

[9]. Gopinath Ganapathy and S. Sagayaraj, “Automatic Ontology Creation by

 Extracting Metadata from the Source code ”, in Global Journal of

 Computer Science and Technology,Vol.10, Issue 14(Ver.1.0) Nov.

 2010. pp.310-314.

[10]. Won Kim: “On Metadata Management Technology Status and Issues”,

 In Journal of Object Technology, vol. 4, no. 2, 2005, pp. 41-47.

[11]. Dublin Core Metadata Initiative. <

 http://dublincore.org/documents/>,2002.

[12]. IEEE Learning Technology Standards Committee,

 http://ltsc.ieee.org/wg12, IEEE Standards for Learning Object Metadata.

[13]. Darmoni, Thirion, “Metadata Scheme for Health Resources”

 American Medical Informatics Association, 2000 Jan–Feb; 7(1): 108–

 109.

[14]. MPEG-7 Overview: ISO/IEC JTC1/SC29/WG11 N4980,

 Kla-genfurt, July 2002.

[15]. Jason Venner, “Pro Hadoop : Build Scalable, Distributed Applications”,

 in The Cloud, Apress, 2009.

[16]. Gopinath Ganapathy and S. Sagayaraj, “Circumventing Picture

 Archiving and Communication Systems Server with Hadoop

 Framework in Health Care Services”, in Science Publication 6 (3) :

 2010: pp.310-314.

[17]. Tom White,” Hadoop: The Definitive Guide”, O’Reilly Media, Inc.,

 2009.

[18]. Gruber, T. “What is an Ontology?” (September, 2010):

 http://www.ksl-stanford.edu/kst/what-is-an-ontology.html.

[19]. Yang, X. “Ontologies and How to Build Them. (January, 2011):

 http://www.ics.uci.edu/~xwy/publications/area-exam.ps.

[20]. Bugaite, D., O. Vasilecas,” Ontology-Based Elicitation of Business

 Rules”. In A. G. Nilsson, R. Gustas, W. Wojtkowski, W. G.

 Wojtkowski, S. Wrycza, J. Zupancic, Information Systems

Development: Proc. of the ISD’2004. Springer- Verlag, Sweden, 2006,

 pp. 795-806.

[21]. Gopinath Ganapathy and S. Sagayaraj, “To Generate the Ontology from

 Java Source Code”, in International Journal of Advanced Computer

 Science and Applications(IJACSA), Volume 2 No 2 February 2011.

[22]. McCarthy, P.” Introduction to Jena”,

 www-106.ibm.com/developerworks/java/library/j-jena/, ,

 22.01.2011.

[23]. B. McBride, ”Jena IEEE Internet Computing”, July2002.

[24]. J.J. Carroll,”CoParsing of RDF & XML”, HP Labs Technical Report,

 HPL-2001-292, 2001.

[25] J.J. Carroll, “Unparsing RDF/XML,WWW2002”,

 http://www.hpl.hp.com/techreports/2001/HPL-2001-292.html.

[26]. T. Berners-Lee et al.,” Primer: Getting into RDF & Semantic Web using

 N3”, http://www.w3.org/2000/10/swap/Primer.html.

[27]. J. Grant, D. Beckett, “RDF Test Cases”, 2004, W3C6.

[28]. L. Miller, A. Seaborne, and A. Reggiori,” Three Implementations of

 SquishQL, a Simple RDF Query Language, 2002, p 423.

[29]. P. Hayes, RDF Semantics, 2004, W3C.

[30]. P.F. Patel-Schneider, P. Hayes, I. Horrocks, “OWL Semantics &

 Abstract Syntax”, 2004, W3C.

[31]. Prud’hommeax, E., Seaborne, A., “SPARQL Query Language for

 RDF”, W3C Recommendation, Retrieved November 20, 2010,

 http://www.w3.org/TR/rdf-sparql-query/

[32]. Kendall, G.C., Feigenbaum, L., Torres, E.(2008),” SPARQL Protocol for

 RDF. W3C Recommendation”, Retrieved November 20, 2009,

 http://www.w3.org/TR/rdf-sparql-protocol/

AUTHORS PROFILE

Gopinath Ganapathy is the Professor & Head, Department of Computer
Science and Engineering in Bharathidasan University, India. He obtained his
under graduation and post-graduation from Bharathidhasan University, India in
1986 and 1988 respectively. He submitted his Ph.D in 1996 in Maduari
Kamaraj University, India. Received Young Scientist Fellow Award for the
year 1994 and eventually did the research work at IIT Madras. He published
around 20 research papers. He is a member of IEEE, ACM, CSI, and ISTE. He
was a Consultant for a 8.5 years in the international firms in the USA and the
UK, including IBM, Lucent Technologies (Bell Labs) and Toyota. His research
interests include Semantic Web, NLP, Ontology, and Text Mining.

S. Sagayaraj is the Associate professor in the Department of Computer
Science, Sacred Heart College, Tirupattur, India. He did his Bachelor Degree in
Mathematics in Madras University, India in 1985. He completed his Master of
Computer Applications in Bharadhidhasan University, India in 1988. Received
Master of Philosophy in Computer Science from Bharathiar University, India in
2001. Registered for Ph.D. programme in Bharathidhasan University, India in
2008. His Research interests include Data Mining, Ontologies and Semantic
Web.

http://dublincore.org/documents/%3E,2002
http://ltsc.ieee.org/wg12
http://www.ksl-stanford.edu/kst/what-is-an-ontology.html
http://www.ics.uci.edu/~xwy/publications/area-exam.ps
http://www-106.ibm.com/developerworks/java/library/j-jena/
http://www.hpl.hp.com/techreports/2001/HPL-2001-292.html
http://www.w3.org/2000/10/swap/Primer.html
http://www.w3.org/TR/rdf-sparql-query/
http://www.w3.org/TR/rdf-sparql-protocol/

